A short note on the Vasicek Model

Quasar Chunawala

November 1, 2023

Abstract

Derivation of the classical Vasicek model from first-principles.

The Vasicek Model.

Vasicek assumed that the instantaneous short rate under the real-world measure evolves as an Ornstein-Uhlenbeck process with constant coefficients. That is:

$$
d r(t)=k(\theta-r(t)) d t+\sigma d W(t)
$$

where k, θ, σ are positive constants.
We exploit the fact, that linear SDEs can be solved using ODE cookbook methods. Consider the ODE:

$$
\frac{d r_{t}}{d t}+k r_{t}=k \theta
$$

This is a linear ODE. The integrating factor is:

$$
\begin{aligned}
h(t) & =e^{\int k d t} \\
& =e^{k t}
\end{aligned}
$$

Multiplying the SDE throughout by $e^{k t}$, we find that:

$$
\begin{aligned}
e^{k t} d r_{t}+k r_{t} e^{k t} d t & =k \theta e^{k t} d t+\sigma e^{k t} d W(t) \\
d\left(e^{k t} r_{t}\right) & =k \theta e^{k t} d t+\sigma e^{k t} d W(t) \\
\int_{s}^{t} d\left(e^{k t} r_{t}\right) & =k \theta \int_{s}^{t} e^{k t} d t+\sigma \int_{s}^{t} e^{k u} d W(u) \\
e^{k t} r_{t}-e^{k s} r_{s} & =\theta\left(e^{k t}-e^{k s}\right)+\sigma \int_{s}^{t} e^{k u} d W(u) \\
r_{t}-e^{-k(t-s)} r_{s} & =\theta\left(1-e^{-k(t-s)}\right)+\sigma \int_{s}^{t} e^{-k(t-u)} d W(u) \\
r_{t} & =e^{-k(t-s)} r_{s}+\theta\left(1-e^{-k(t-s)}\right)+\sigma \int_{s}^{t} e^{-k(t-u)} d W(u)
\end{aligned}
$$

The Wiener integral $\int_{s}^{t} e^{-k(t-u)} d W(u)$ is Gaussian with mean 0 and variance :

$$
\begin{aligned}
\mathbb{E}\left[\left(\int_{s}^{t} e^{-k(t-u)} d W(u)\right)^{2}\right] & =\int_{s}^{t} e^{-2 k(t-u)} d u \\
& =\left[\frac{e^{2 k u-2 k t}}{2 k}\right]_{u=s}^{u=t} \\
& =\frac{1-e^{-2 k(t-s)}}{2 k}
\end{aligned}
$$

Hence, conditional on $\mathcal{F}_{s}, r(t)$ is normally distributed with mean and variance given by:

$$
\begin{aligned}
\mathbb{E}\left[r(t) \mid \mathcal{F}_{s}\right] & =r(s) e^{-k(t-s)}+\theta\left(1-e^{-k(t-s)}\right) \\
\operatorname{Var}\left[r(t) \mid \mathcal{F}_{s}\right] & =\frac{\sigma^{2}}{2 k}\left[1-e^{-2 k(t-s)}\right]
\end{aligned}
$$

This implies that, for each time t, the rate $r(t)$ can be negative with positive probability.
Note that, when $t \rightarrow \infty$, the expected rate tends to the value θ. The fact that θ can be regarded as a long-term average could also be inferred from the dynamics of the short-rate process itself. Notice, that the drift of the process $(r(t), t \in[0, \infty))$ is positive whenever the short rate is below θ and negative otherwise, so that r is pushed, at every time, to be closer on average to the level θ.

Term Structure and Bond Price Dynamics.

The short rate under the Vasicek model was shown to be:

$$
r_{t}=r_{s} e^{-k(t-s)}+\theta\left(1-e^{-k(t-s)}\right)+\sigma \int_{s}^{t} e^{-k(t-u)} d W(u)
$$

Now integrating the short rate from s to T, we get:

$$
\begin{aligned}
\int_{s}^{T} r_{t} d t & =r_{s} \int_{s}^{T} e^{-k(t-s)} d t+\theta \int_{s}^{T}\left(1-e^{-k(t-s)}\right) d t+\sigma \int_{s}^{T} \int_{u}^{T} e^{-k(t-u)} d W(u) d t \\
& =r_{s}\left[\frac{e^{-k(t-s)}}{-k}\right]_{t=s}^{t=T}+\theta(T-s)-\theta\left[\frac{e^{-k(t-s)}}{-k}\right]_{t=s}^{t=T}+\sigma \int_{s}^{T} \int_{u}^{T} e^{-k(t-u)} d t d W(u) \\
& =r_{s}\left(\frac{e^{-k(T-s)}-1}{-k}\right)+\theta(T-s)-\theta\left(\frac{e^{-k(T-s)}-1}{-k}\right)+\sigma \int_{s}^{T}\left[\frac{e^{-k(t-u)}}{-k}\right]_{t=u}^{t=T} d W(u) \\
& =r_{s}\left(\frac{1-e^{-k(T-s)}}{k}\right)+\theta\left[(T-s)-\frac{1-e^{-k(T-s)}}{k}\right]+\frac{\sigma}{k} \int_{s}^{T}\left(1-e^{-k(T-u)}\right) d W(u)
\end{aligned}
$$

Again, the Wiener integral term $\int_{s}^{T}\left(1-e^{-k(T-u)}\right) d W(u)$ is Gaussian with mean 0 and variance:

$$
\begin{aligned}
\mathbb{E}\left[\left(\int_{s}^{T}\left(1-e^{-k(T-u)}\right) d W(u)\right)^{2}\right] & =\int_{s}^{T}\left(1-e^{-k(T-u)}\right)^{2} d u \\
& =\int_{s}^{T}\left(1-2 e^{-k(T-u)}+e^{-2 k(T-u)}\right) d u \\
& =\left[u-2 \frac{e^{-k(T-u)}}{k}+\frac{e^{-2 k(T-u)}}{2 k}\right]_{u=s}^{u=T} \\
& =\left(T-\frac{2}{k}+\frac{1}{2 k}-\left(s-\frac{2}{k} e^{-k(T-s)}+\frac{e^{-2 k(T-s)}}{2 k}\right)\right) \\
& =(T-s)-\frac{2}{k}\left(1-e^{-k(T-s)}\right)+\frac{1}{2 k}\left(1-e^{-2 k(T-s)}\right) \\
& =\frac{1}{2 k}\left(2 k(T-s)-4\left(1-e^{-k(T-s)}\right)+\left(1-e^{-2 k(T-s)}\right)\right) \\
& \left.=\frac{1}{2 k}\left(2 k(T-s)-3+4 e^{-k(T-s)}-e^{-2 k(T-s)}\right)\right)
\end{aligned}
$$

Hence, conditional on $\mathcal{F}_{s}, \int_{s}^{T} r_{t} d t$ is normally distributed with mean and variance:

$$
\begin{aligned}
\mathbb{E}\left[\int_{s}^{T} r_{t} d t \mid \mathcal{F}_{s}\right] & =r_{s}\left(\frac{1-e^{-k(T-s)}}{k}\right)+\theta\left[(T-s)-\frac{1-e^{-k(T-s)}}{k}\right] \\
\operatorname{Var}\left[\int_{s}^{T} r_{t} d t \mid \mathcal{F}_{s}\right] & \left.=\frac{\sigma^{2}}{2 k^{3}}\left(2 k(T-s)-3+4 e^{-k(T-s)}-e^{-2 k(T-s)}\right)\right)
\end{aligned}
$$

Hence, the bond price at time s can be represented as:

$$
\begin{aligned}
P(s, T) & =\mathbb{E}\left[e^{-\int_{s}^{T} r_{t} d t} \mid \mathcal{F}_{s}\right]=\exp \left[-\mathbb{E}\left[\int_{s}^{T} r_{t} d t \mid \mathcal{F}_{s}\right]+\frac{1}{2} \operatorname{Var}\left[\int_{s}^{T} r_{t} d t \mid \mathcal{F}_{s}\right]\right] \\
& =\exp \left[-r_{s}\left(\frac{1-e^{-k(T-s)}}{k}\right)-\theta\left((T-s)-\frac{1-e^{-k(T-s)}}{k}\right)+\frac{\sigma^{2}}{4 k^{3}}\left(2 k(T-s)-3+4 e^{-k(T-s)}-e^{-2 k(T}\right.\right.
\end{aligned}
$$

