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Abstract

The most important results and ideas in basic mathematical finance.
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1 Measure.

1.1 Null Sets.

Definition 1.1. (Null Set ). A null set is a set that can be covered by a sequence of intervals

of arbitrarily small total length. Given any ε > 0, there exists a sequence of intervals
(In)n≥1 such that:

A ⊆
∞⋃

n=1

In

and

∞∑
n=1

l(In) < ε

Problem 1.1. Show that we get an equivalent notion if in the above definition we replace

the word intervals by any of these: open-intervals, closed-intervals, intervals of the form

(a, b] or intervals of the form [a, b).

Proof. Let A be a null set. Then, we can cover it by a sequence of intervals, such that total

length of the cover can be made as small as we please. Mathematically,

∀ε > 0,∃(In)n≥1, A ⊆
∞⋃

n=1

In, such that

∞∑
n=1

l(In) <
ε

2

Let In = [an, bn] and define:

Jn :=
(
an − ε

2n+2
, bn +

ε

2n+2

)
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Since, In ⊆ Jn, it follows that:

A ⊆
∞⋃

n=1

In ⊆
∞⋃

n=1

Jn

Moreover,

l(Jn) = l(In) +
ε

2n+1

∞∑
n=1

l(Jn) =

∞∑
n=1

l(In) +
ε

22

(
1 +

1

2
+

1

22
+ . . .

)
<

ε

2
+

ε

22
· 1

1− 1/2

= ε

Consequently, A can be covered by a sequence of open intervals, whose total length can

be made arbitrarily small. This closes the proof.

Theorem 1.1. If (Nn)n≥1 is a sequence of null sets, then their countable union

N =

∞⋃
n=1

Nn

is also null.

Proof. Since N1 is null, there exists a sequence of intervals (I
1
k) such that N1 ⊆

⋃∞
k=1 I

1
k

and
∑∞

k=1 l(I
1
k) <

ε
22 .

Since N2 is null, there exists a sequence of intervals (I
2
k) such that N2 ⊆

⋃∞
k=1 I

2
k and∑∞

k=1 l(I
2
k) <

ε
23 .

Since Nj is null, there exists a sequence of intervals (I
j
k) such that Nj ⊆

⋃∞
k=1 I

j
k and∑∞

k=1 l(I
j
k) <

ε
22+j .

Clearly, we have:

∞⋃
j=1

Nj ⊆
∞⋃
j=1

∞⋃
k

Ijk

Moreover,

4



∞∑
j=1

∞∑
k=1

l(Ijk) <
ε

22
+

ε

23
+ . . .

=
ε

22

[
1 +

1

2
+

1

22
+ . . .

]
=

ε

2
< ε

Consequently, N is a null set.

A singleton set {x} is a null set - let I1 = [x − ε
4 , x + ε

4 ], In = [x, x] for n ≥ 2. Thus,
any countable set is a null set, and null sets appear to be closely related to countable sets -

this is no surprise, as any proper interval is uncountable, so any countable subset is quite

sparse when compared with an interval, hence makes no real contribution to its length.

However, uncountable sets can be null, provided their points are sufficiently sparsely dis-

tributed, as the following example due to Cantor shows:

1. Start with the intervalC0 = [0, 1], remove the openmiddle one-third, that is the interval(
1
3 ,

2
3

)
, ontaining C1 which consists of two intervals [0,

1
3 ] and [

2
3 , 1].

2. Next, remove the middle third of each of these two intervals leaving C2, consisting of

four intervals [0, 1
9 ], [

2
9 ,

3
9 ], [

6
9 ,

7
9 ] and [

8
9 , 1].

3. At the nth stage, we have a set Cn consisting of 2
n disjoint closed intervals, each of

length 1
3n . Thus, the total length of Cn is

(
2
3

)n
.

We call

C =

∞⋂
n=1

Cn

the Cantor set. Now, we show that C is null as promised.

Given any ε > 0, choose n such that
(
2
3

)n
< ε. Since, C ⊆ Cn and Cn is a union of

disjoint intervals of total length less than ε, we see that C is a null set. All that remains to

be checked is that C is an uncountable set.

Problem 1.2. Prove that C is uncountable.

Proof. Let x ∈ C be an arbitrary point.

Starting with I0 = [0, 1], for all n ∈ N, define the sequence of intervals (In), where
In = [an, bn], (Ln) and (Rn) as:
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Ln+1 =

[
an, an +

1

3n+1

]
Rn+1 =

[
bn − 1

3n+1
, bn

]
In+1 =

{
Ln+1 if x ∈ Ln+1

Rn+1 otherwise

Clearly, the left-end point of In+1, is an, if x ∈ Ln+1, otherwise it is bn − 1
3n+1 =

an + 1
3n − 1

3n+1 = an + 2
3n+1 . To summarize:

an+1 =

{
an + 0

3n+1 if x ∈ Ln+1

an + 2
3n+1 if x ∈ Rn+1

We have that, since C ⊆ [0, 1], it implies x ∈ I0. By construction, if x ∈ In, then
x ∈ In+1.

Hence,

an+1 =

n+1∑
i=1

xk

2k

where xk ∈ {0, 2} and (by induction)

x ∈ In, ∀n ∈ N

Pick an arbitrary ε > 0. We can choose N such that l(IN ) = 1
3N

< ε. Consequently, for
all n ≥ N , |an − x| < l(In) < ε. Hence, (an) → x.

Thus, x can be written in the ternary system as an infinite-length (non-terminating) string

of 0s and 2s. That is x = (0.x1x2x3 . . .)3.

By Cantor’s diagonal argument, the collection of all infinite-length (non-terminating) bi-

nary strings consisting of 0s and 2s is uncountable. So, C is uncountable.

1.2 Outer Measure.

Definition 1.2. (Outer measure) The outer measure of any set A ⊆ R is given by:

µ∗(A) = infZA
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where

ZA =

{ ∞∑
n=1

l(In) : In are intervals , A ⊆
∞⋃

n=1

In

}

We say that the (In)n≥1 covers the setA. So, the outer measure is the infimum of lengths
of all possible covers ofA (Note again, that some of the In may be empty; this avoids hav-
ing to worry whether the sequence (In) has finitely or infinitely many different members.)

Clearly, µ∗(A) ≥ 0 for any A ⊆ R. For some sets A, the series
∑∞

n=1 l(In) may diverge
for any covering of A, so µ∗(A) may be equal to∞. Since we wish to be able to add the

outer measures of various sets we have to adopt a convention to deal with infinity. An

obvious choice is a + ∞ = ∞, ∞ + ∞ = ∞ and a less obvious but quite practical

assumption is 0×∞ = 0, as we have already seen.

The set ZA is bounded from below by 0 so that the infimum always exists. If r ∈ ZA,

then [r,+∞] ⊆ ZA (clearly we may expand the first interval of any cover to increase the

total length by any number). This shows that ZA is either +∞ or the interval (x,∞) or
[x,∞] for some real number x. So, the infimum of ZA is just x.

First, we show that the concept of a null set is consistent with that of Outer measure.

Theorem 1.2. A set A ⊆ R is a null set if and only if µ?(A) = 0.

Proof. (=⇒ direction).

Suppose that A is a null set. We wish to show that infZA = 0. To this end, our claim is,

that given any ε > 0, there exists z ∈ ZA such that 0 < z < ε.

By definition of a null set, we can find a sequence of intervals (In)n≥1 covering A such

that
∑∞

n=1 l(In) < ε/2 and so
∑∞

n=1 l(In) is an element of ZA.

(⇐=direction).

Suppose thatA is a set such that µ∗(A) = 0. That is, infZA = 0. Pick an arbitrary ε > 0.
By the definition of inf, there exists z ∈ ZA, such that z < ε. But, a member of ZA is the

total length of some covering of A. That is, there exists a covering (In) of A, with total
length smaller than ε. Since, ε > 0 was arbitrary to begin with, this is true for all ε > 0.
Hence, A is a null set.

This combines our general outer measure with the special case of zero measure. Note that,

µ∗(∅) = 0 and µ∗({x}) = 0 and µ∗(Q) = 0.

Next, we observe that µ? is monotone: the bigger the set, the greater is its outer measure.

Proposition 1.1. If A ⊂ B, then µ∗(A) ≤ µ∗(B).
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Proof. Let (In) be an arbitrary covering for B. Then, B ⊆
⋃∞

n=1 In. Since A ⊂ B, it
follows that A ⊂

⋃∞
n=1 In. Thus, (In)n≥1 covers A. So, every cover for B covers A.

Consequently, ZB ⊆ ZA.

Now, B \A is non-empty, so let x ∈ B \A.

Now, let (Jn) be a covering for A, where Jn = (an, bn). Define:

J ′
n =

{
(an, x) ∪ (x, bn) if x ∈ Jn

Jn otherwise

(J ′
n)n≥1 covers A, but not B. Let z =

∑∞
n=1 l(J

′
n). Thus, there exists z ∈ ZA, such

that z /∈ ZB . So, ZB ⊂ ZA.

By the properties of inf, it follows that infZA ≤ infZB . Thus, µ
∗(A) ≤ µ∗(B).

Theorem 1.3. The outer measure of an interval equals its length.

If I is an interval, we have:

µ?(I) = l(I)

Proof. If I is unbounded then, it is clear that it cannot be covered by a system of intervals

of with finite total length. This shows that µ∗(I) = ∞ and so µ∗(I) = l(I) = ∞.

So we restrict ourselves to bounded intervals.

Step 1. µ?(I) ≤ l(I).

Take the following sequence of intervals. I1 = I , In = [0, 0] for all n ≥ 2. Then,∑∞
n=1 l(In) = l(I). So, l(I) ∈ ZI . But, µ

?(I) = infZI ≤ l(I).

Step II. l(I) ≤ µ∗(I).

(i) I = [a, b]. We shall show that for any ε > 0 :

l([a, b] ≤ µ∗([a, b]) + ε (1.1)

Pick an arbitrary ε > 0. By the definition of outer measure, there exists a sequence of
intervals (In) such that :

infZI = µ∗(I) ≤
∞∑

n=1

l(In) < µ∗(I) +
ε

2
(1.2)

We shall slightly increase each of the intervals to an open one. Let the endpoints of In be
an, bn and we take:
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Jn =
(
an − ε

2n+2
, bn +

ε

2n+2

)
It is clear that

l(In) = l(Jn)−
ε

2n+1

so that:

∞∑
n=1

l(In) =

∞∑
n=1

l(Jn)−
ε

2

We insert this in 1.2, and we have:

∞∑
n=1

l(Jn) ≤ µ∗([a, b]) + ε (1.3)

The new sequence of intervals cover [a, b], so by the Heine Borel theorem, we can choose a
finite number of Jn to cover [a, b] (the set [a, b] is compact in R). We can add some inter-
vals to this finite family to form an initial segment of the sequence - just for the simplicity

of notation. So, for some finite indexm we have:

[a, b] ⊆
m⋃

n=1

Jn

Let Jn = [cn, dn]. Put c = min{c1, . . . , cm} and d = max{d1, . . . , dm}. Then, the
above covering means that c < a and b < d and hence l([a, b]) < d− c.

Next, the number d− c is certainly smaller than the total length of Jn, n = 1, 2, 3, . . . ,m
(some overlapping takes place) and

l(a, b) < d− c <

m∑
j=1

l(Jn) (1.4)

Now, it is sufficient to put (1.3) and (1.4) together to deduce (1.1). (The finite sum is less

than equal to the sum of the series, since all terms are non-negative) Letting ε → 0, we
have the desired result. l([a, b]) ≤ µ([a, b]).
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(ii) What if I = (a, b)?

Fix an arbitrary ε > 0 as before. As before it is sufficient to show (1.1). We have:

l((a, b) = l
([

a+
ε

2
, b− ε

2

])
+ ε

= µ∗
([

a+
ε

2
, b− ε

2

])
+ ε

{ From part I }
≤ µ∗((a, b)) + ε

{ By monotonicity of outer measure (1.1)}

(iii) I = (a, b] or I = [a, b).

l(I) = l((a, b)) ≤ µ∗((a, b)) { From part II }
≤ µ∗(I) {Monotonicity of Lebesgue Measure }

This closes the proof.

Theorem 1.4. (Countable Subadditivity). The outer measure is countably subadditive.

For all sequences of sets (En), we have:

µ?(
∞⋃

n=1

En) ≤
∞∑

n=1

µ?(En)

(Note that both sides might be infinite here.)

Proof. (A warm-up)

Let’s first prove a simpler statement:

µ∗(E1 ∪ E2) ≤ µ∗(E1) + µ∗(E2)

Take an ε > 0 and we show an even easier inequality:

µ∗(E1 ∪ E2) ≤ µ∗(E1) + µ∗(E2) + ε

By the definition of outer measure,
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There exists a sequence of intervals (I1n) covering E1 such that:

µ∗(E1) <

∞∑
n=1

l(I1n) < µ∗(E1) +
ε

2

There exists a sequence of intervals (I2n) covering E2 such that:

µ∗(E2) <
∞∑

n=1

l(I2n) < µ∗(E2) +
ε

2

Now, the sequence of intervals I11 , I
2
1 , I

1
2 , I

2
2 , . . . covers E1 ∪ E2. Hence,

µ∗(E1 ∪ E2) ≤
∞∑

n=1

(
l(I1n) + l(I2n)

)
≤ µ∗(E1) +

ε

2
+ µ∗(E2) +

ε

2
= µ∗(E1) + µ∗(E2) + ε

Since ε was arbitrary, this is true for all ε > 0.

Choosing ε = 1
n , passing to the limit as n → ∞, we have:

µ∗(E1 ∪ E2) ≤ µ∗(E1) + µ∗(E2)

(Proof of the theorem.)

If the right-hand side is infinite, then inequality is of course true. So, suppose that
∑∞

k=1 µ
∗(En) <

∞. For each given ε > 0 and k ≥ 1, find a covering sequence (Ikn) of Ek with :

∞∑
n=1

l(Ikn) < µ∗(Ek) +
ε

2k

The iterated series

∞∑
k=1

( ∞∑
n=1

l(Ikn)

)
<

∞∑
k=1

µ∗(Ek) + ε < ∞
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Now, I11 , I
1
2 , I

2
1 , I

1
3 , I

2
2 , I

3
1 , . . . is a countable sequence (since N × N is countable) that

covers
⋃∞

k=1 Ek . So,

µ∗

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

( ∞∑
n=1

l(Ikn)

)
<

∞∑
k=1

µ∗(Ek) + ε

To complete the proof, we simply let ε → 0.

Problem 1.3. Prove that if µ?(A) = 0 then for each B, µ?(A ∪B) = µ?(B).

Proof. Let B be an arbitrary set. By countable additivity of outer-measure, we have:

µ∗(A ∪B) ≤ µ∗(A) + µ∗(B)

= µ∗(B)

Since B ⊆ A ∪B, by the monotonicity of outer-measure,

µ∗(B) ≤ µ∗(A ∪B)

From the above discussion, it follows that, µ∗(A ∪B) = µ∗(B). Since, B was arbitrary,

this must be true for all sets B. This closes the proof.

Problem 1.4. Prove that if µ?(A4B) = 0, then µ?(A) = µ?(B).

Proof. We know that, A ⊆ B ∪ (A4B). Hence:

µ∗(A) ≤ µ∗(B ∪ (A4B))

{Monotonicity of Outer Measure }
≤ µ∗(B) + µ∗(A4B)

{ Countable Subadditivity }
= µ∗(B)

On the other hand,B ⊆ A∪ (A4B). Hence, µ∗(B) ≤ µ∗(A). Consequently, it follows
that

µ∗(A) = µ∗(B)
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Proposition 1.2. The outer measure is translation invariant.

µ∗(A) = µ∗(A+ t)

for each A and t.

Proof. Let A ⊂ R and t be a fixed real.

Let (In) be any sequence of intervals coveringA. Then, I
′
n = [an+t, bn+t] is a covering

for A + t. Now, l(I ′n) = l(In) for all n ∈ N. So,
∑∞

n=1 l(I
′
n) =

∑∞
n=1 l(In). Hence,

if z ∈ ZA, it follows that z ∈ ZA+t and vice-versa. Consequently, ZA = ZA+t. So,

infZA = infZA+t. Therefore, µ
∗(A) = µ∗(A+ t).

1.3 Lebesgue measurable sets and Lebesgue measure.

With the outer measure, subadditivity as in Theorem (1.4) is as far as we can get. Wewish to

however, ensure, that, if the sets (En) are pairwise disjoint (that isEi∩Ej = ∅, i 6= j) then
the inequality in Theorem (1.4) becomes an equality. It turns out that this will not in general

be true for the outer-measure. But our wish is entirely a reasonable one: any length function

should atleast be finitely additive, since decomposing a set into finitely many disjoint pieces,

should not alter it’s length. Moreover, since we constructed our length function via the

approximation of complicated sets by simpler sets (that is intervals), it seems fair to demand

a continuity property : if pairwise disjoint En have union E, then the lengths of sets Bn =
E \

⋃n
k=1 Ek may be expected to decrease to 0 as n → ∞. Combining this with finite

additivity leads quite naturally to demand that length be countably additive, that is:

µ?

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ?(En) when Ei ∩ Ej = ∅ for i 6= j (1.5)

We therefore turn to the task of finding the class of sets in R which have this property.

Definition 1.3. A set E is Lebesgue measurable if for every set A ⊆ R we have:

µ?(A) = µ?(A ∩ E) + µ?(A ∩ EC) (1.6)

We write E ⊂ F .

We obviously have A = (A∩E)∪ (A∩EC), hence by countable subadditivity (1.4), we
have:

µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ EC)
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for any A and E. So, our future task of verifying countable additivity property (1.5) has
simplified: E ∈ F if and only the following inequality holds:

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ EC)

for all A ⊆ R.

Now, we give examples of measurable sets.

Theorem 1.5. (i) Any null set is measurable.

(ii) Any interval is measurable.

Proof. (i) If N is a null set, then by Theorem (1.2), the null set has outer measure zero, so

µ∗(N) = 0. For all A ⊆ R, since A ∩N ⊆ N and A ∩NC ⊆ A. Thus,

µ∗(A ∩N) + µ∗(A ∩NC) ≤ µ∗(N) + µ∗(A)

µ∗(A ∩N) + µ∗(A ∩NC) ≤ µ∗(A)

(ii) Let E = I be an interval. Suppose, for example, I = [a, b]. Take any A ⊆ R and

ε > 0. Find a covering of A with:

µ?(A) ≤
∞∑

n=1

l(In) ≤ µ?(A) + ε

Clearly, the intervals I ′n = In ∩ [a, b] cover A ∩ [a, b] and hence
∑

l(I ′n) ∈ ZA∩[a,b],

that is,

µ?(A ∩ [a, b]) ≤
∞∑

n=1

l(I ′n)

The intervals I ′′n = In ∩ (−∞, a) and I ′′′n = In ∩ (b,+∞) cover A ∩ [a, b]c, so:

µ∗(A ∩ [a, b]c) ≤
∞∑

n=1

l(I ′′n) + l(I ′′′n )

Since, the intervals I ′n ∪ I ′′n ∪ I ′′′n cover A, it follows that:

14



µ∗(A ∩ [a, b]) + µ∗(A ∩ [a, b]c) ≤
∞∑

n=1

l(I ′n) + l(I ′′n) + l(I ′′′n )

=

∞∑
n=1

l(In)

≤ µ∗(A) + ε

Letting ε → 0, we have the desired result.

The fundamental properties of the class F of all Lebesgue measurable subsets of R can

now be proved. They fall into two categories: first we show that certain set operations on

F produce sets in F (these are what we call closure properties) and second we prove that
for sets in F the outer measure µ∗ has the property of countable additivity announced

above.

Theorem 1.6. (Closure properties of F )

(i) R ∈ F .

(ii) If E ∈ F , then EC ∈ F .

(iii) If En ∈ F , for all n = 1, 2, 3, . . . then
⋃∞

n=1 En ∈ F .

Moreover, if En ∈ F , for all n = 1, 2, 3, . . . and Ei ∩ Ej = ∅ for i 6= j, then:

µ?(

∞⋃
n=1

En) =

∞∑
n=1

µ?(En) (1.7)

Remark. This result is the most important theorem in this chapter and provides the basis

for all that follows. It also allows us to give names to the quantities under discussion.

Conditions (i)-(iii) mean that F is a sigma-algebra. In other words, we say that a family of

sets is a sigma-algebra, if it contains the base set and is closed under countable unions, and

complements. A [0,∞)-valued function defined on a sigma-algebra is called a measure if
it satisfies countable additivity (1.7) for pairwise disjoint sets.

An alternative, rather more abstract and general approach to measure theory is to begin

with the above properties as axioms, i.e. to call the the triple (Ω,F , µ) a measure space, if
Ω is an abstractly given set, F is a sigma-algebra of the subsets of Ω and µ : F → [0,∞]
is a function satisfying countable additivity. The task of defining the Lebesgue measure on

R then becomes that of verifying, with F and µ = µ? on F defined above, that the triple

(Ω,F , µ) satisfies these axioms.

Although the requirements of probability theory will mean that we have to consider such

general measure spaces in due course, we have chosen our more concrete approach to the

fundamental example of Lebesgue measure in order to demonstrate how this important

measure space arises quite naturally from the considerations of the lengths of sets in R and

leads to a theory of integration which greatly extends that of Riemann. It is also sufficient

to allow us to develop most of the important examples of probability distributions.
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Proof. (1) Let A ⊆ R. Note that A ∩ R = A, RC = ∅, so that A ∩ RC = ∅. Thus, the
equation (1.6) now reads, µ?(A) = µ?(A) + µ?(∅) which is obviously true, since ∅ is a
null set and µ?(∅) = 0.

(2) Suppose E ∈ F and take any arbitrary A ⊆ R. We have to show (1.6) for EC , that is:

µ?(A) = µ?(A ∩ EC) + µ?(A ∩ (EC)C) (1.8)

but since (EC)C = E, this reduces to the condition for E which holds by hypothesis.

(3) We split the proof (iii) into several steps. But first:

A warm up. Suppose that E1 ∩E2 = ∅, E1, E2 ∈ F . We shall show that E1 ∪E2 ∈ F
and µ?(E1 ∪ E2) = µ?(E1) + µ?(E2).

Let A ⊆ R. We have the condition for E1:

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ EC
1 ) (1.9)

Now, we apply (1.6) for E2 with A ∩ EC
1 in place of A.

µ?(A ∩ EC
1 ) = µ?(A ∩ EC

1 ∩ E2) + µ?(A ∩ EC
1 ∩ EC

2 )

= µ?(A ∩ (EC
1 ∩ E2)) + µ?(A ∩ (EC

1 ∩ EC
2 ))

The situation is depicted in the figure below.

E1 A

E2

Figure. The sets A, E1 and E2.

Since E1 and E2 are disjoint, E
C
1 ∩ E2 = E2. By De-Morgan’s laws, E

C
1 ∩ EC

2 =
(E1 ∪ E2)

C . We substitute and we have:

µ?(A ∩ EC
1 ) = µ?(A ∩ E2) + µ?(A ∩ (E1 ∪ E2)

C)
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Substituting this into (1.9), we get:

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ E2) + µ?(A ∩ (E1 ∪ E2)
C) (1.10)

Now, by the subadditivity property of µ?, we have:

µ?(A ∩ E1) + µ?(A ∩ E2) ≥ µ?((A ∩ E1) ∪ (A ∩ E2))

= µ?(A ∩ (E1 ∪ E2))

So, (1.10) gives:

µ?(A) ≥ µ?(A ∩ (E1 ∪ E2)) + µ?(A ∩ (E1 ∪ E2)
C)

which is sufficient for E1 ∪ E2 to belong to F .

Finally, let A = E1 ∪ E2. Then, the equation (1.10) yields:

µ?(E1 ∪ E2) = µ?(E1) + µ?(E2)

We return to the main proof of (iii).

Step 1. Our claim is: if pariwise disjoint Ek , k = 1, 2, . . . are in F then their countable

union is in F and countable additivity (1.5) holds.

We begin as in the proof of theWarm Up and we have:

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ EC
1 )

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ E2) + µ?(A ∩ (E1 ∪ E2)
C) (1.11)

(See (1.10)).

E3 is also measurable. Let A = A ∩ EC
1 ∩ EC

2 . Then:

µ?(A ∩ EC
1 ∩ EC

2 ) = µ?(A ∩ EC
1 ∩ EC

2 ∩ E3) + µ?(A ∩ EC
1 ∩ EC

2 ∩ EC
3 )

But, EC
1 ∩ EC

2 ∩ E3 = E3 since they are pairwise disjoint. So,

µ?(A ∩ (E1 ∪ E2)
C) = µ?(A ∩ E3) + µ?(A ∩ (E1 ∪ E2 ∪ E3)

C) (1.12)
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Substituting the value of (1.12) in equation (1.11), we get after n = 3 steps:

µ?(A) =

3∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂(

3⋃
k=1

Ek

)C
 (1.13)

We proceed by mathematical induction. We induct on k. Our hypothesis is, that after n
steps, we expect:

µ?(A) =

n∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂(

n⋃
k=1

Ek

)C
 (1.14)

Let’s assume that

µ?(A) =

n−1∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂(

n−1⋃
k=1

Ek

)C
 (1.15)

is true.

Since En ∈ F , we may apply the definition (1.6) with A = A
⋂(⋃n−1

k=1 Ek

)C
:

µ?

A
⋂(

n−1⋃
k=1

Ek

)C
 = µ?

A
⋂(

n−1⋃
k=1

Ek

)C⋂
En

+µ?

A
⋂(

n−1⋃
k=1

Ek

)C⋂
EC

n


(1.16)

Now we make the same observations as in theWarm Up:

(
n−1⋃
k=1

Ek

)C⋂
En = En {Ei are pairwise disjoint}

(
n−1⋃
k=1

Ek

)C⋂
EC

n =

(
n⋃

k=1

En

)C

{De-Morgan’s laws}

Inserting these into equation (1.16), we get:

µ?

A
⋂(

n−1⋃
k=1

Ek

)C
 = µ?(A ∩ En) + µ?

A
⋂(

n⋃
k=1

En

)C

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and inserting this into (1.15), we get :

µ?(A) =

n−1∑
k=1

µ?(A ∩ Ek) + µ?(A ∩ En) + µ?

A
⋂(

n⋃
k=1

En

)C


This proves the induction hypothesis.

As will be seen at the next step, the fact that Ek are pairwise disjoint is not necessary

in order to ensure that their union belongs to F . However, with this assumption we
have equality in (1.14)which does not hold otherwise. This equality will allow us to prove

countable additivity (1.7).

Since:

(
n⋃

k=1

Ek

)C

⊇

( ∞⋃
k=1

Ek

)C

from (1.14) by monotonicity of measure, we get:

µ?(A) =

n∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂(

n⋃
k=1

Ek

)C


≥
n∑

k=1

µ?(A ∩ Ek) + µ?

A
⋂( ∞⋃

k=1

Ek

)C


By theOrder Limit Theorem, the inequality remains true, if we pass to the limit, asn → ∞:

µ?(A) ≥
∞∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂( ∞⋃

k=1

Ek

)C
 (1.17)

By countable sub-additivity of µ? (Theorem (1.4)) :

∞∑
k=1

µ?(A ∩ Ek) ≥ µ?

(
A
⋂( ∞⋃

k=1

Ek

))

and so:
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µ?(A) ≥ µ?

(
A
⋂( ∞⋃

k=1

Ek

))
+ µ?

A
⋂( ∞⋃

k=1

Ek

)C
 (1.18)

So, we have shown that
⋃∞

k=1 Ek ∈ F and hence the two sides of (1.18) are equal.

The right hand side of (1.17) is squeezed between the left and right of (1.18). That is:

µ?(A) = µ?

(
A
⋂( ∞⋃

k=1

Ek

))
+ µ?

A
⋂( ∞⋃

k=1

Ek

)C


≤
∞∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂( ∞⋃

k=1

Ek

)C


≤ µ?(A)

Consequently,

µ?(A) =

∞∑
k=1

µ?(A ∩ Ek) + µ?

A
⋂( ∞⋃

k=1

Ek

)C
 (1.19)

The equality here is a consequence of the assumption that Ek are pairwise disjoint. It

holds for any set A so we may insert A =
⋃∞

j=1 Ej . The last term on the right is

zero, because the length of the empty set, µ?(∅) = 0. And, since the Ei are disjoint,(⋃∞
j=1 Ej

)⋂
Ek = Ek . As a result, we have:

µ?

 ∞⋃
j=1

Ej

 =
∞∑
j=1

µ?(Ej)

Step 2. Our claim is, if E1, E2 ∈ F , then E1 ∪ E2 ∈ F (not necessarily disjoint).

Again we begin as in theWarm Up:

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ EC
1 ) (1.20)

Next applying the definition (1.6) to E2 and with A ∩ EC
1 in place of A we get:

µ?(A ∩ EC
1 ) = µ?(A ∩ EC

1 ∩ E2) + µ?(A ∩ EC
1 ∩ EC

2 )
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We insert this into (1.20) to get:

µ?(A) = µ?(A ∩ E1) + µ?(A ∩ EC
1 ∩ E2) + µ?(A ∩ EC

1 ∩ EC
2 ) (1.21)

By DeMorgan’s law, EC
1 ∩ EC

2 = (E1 ∪ E2)
C so as before:

µ?(A ∩ EC
1 ∩ EC

2 ) = µ?(A ∩ (E1 ∪ E2)
C)

Now, consider the set (A ∩ E1) ∪ (A ∩ EC
1 ∩ E2). This, can be written as: A ∩ (E1 ∪

(EC
1 ∩ E2)) = A ∩ (E1 ∪ EC

1 ) ∩ (E1 ∪ E2) = A ∩ (E1 ∪ E2).

By Countable Subadditivity of µ?, we have:

µ?(A ∩ E1) + µ?(A ∩ EC
1 ∩ E2) ≥ µ?(A ∩ (E1 ∪ E2))

Inserting these facts into (1.21), we get:

µ?(A) ≥ µ?(A ∩ (E1 ∪ E2)) + µ?(A ∩ (E1 ∪ E2)
C)

as required.

Step 3. Our claim is, if Ek ∈ F , k = 1, 2, . . . , n, then the finite union E1 ∪ E2 ∪ . . . ∪
En ∈ F . (not necessarily disjoint)

We argue by induction. Suppose that the claim is true for n− 1. Then,

E1 ∪ E2 ∪ . . . ∪ En = (E1 ∪ . . . ∪ En−1) ∪ En

so that the result follows from Step 2.

Step 4. If E1, E2 ∈ F , then E1 ∩ E2 ∈ F .

We have EC
1 , EC

2 ∈ F by (ii), EC
1 ∪ EC

2 ∈ F by step 2, and (EC
1 ∪ EC

2 )C ∈ F by (ii)

again. But, by De-Morgan’s laws, this is (EC
1 ∪ EC

2 )C = E1 ∩ E2.

Step 5. The general case: if E1, E2, . . . are in F , then so is the countably infinite union⋃∞
k=1 Ek .

Let Ek ∈ F , k = 1, 2, . . .. We define the auxiliary sequence of pairwise disjoint sets Fk

with the same union as Ek :

21



F1 = E1

F2 = E2 \ E1 = E2 ∩ EC
1

F3 = E3 \ (E1 ∪ E2) = E3 ∩ (E1 ∪ E2)
C

...

Fk = Ek \ (E1 ∪ E2 ∪ . . . ∪ Ek−1) = Ek ∩ (E1 ∪ . . . ∪ Ek−1)
C

By steps 3 and 4, we know that all Fk are in F . By the very construction, they are pairwise
disjoint, so by step 1, their union is in F . We shall show that:

∞⋃
k=1

Fk =

∞⋃
k=1

Ek

The inclusion:

∞⋃
k=1

Fk ⊆
∞⋃
k=1

Ek

is obvious since for each k, Fk ⊆ Ek by definition. For the inverse, let a ∈
⋃∞

k=1 Ek .

Put S = {n ∈ N : a ∈ En} which is non-empty since a belongs to the union. Let
n0 = minS ∈ S. If n0 = 1, then a ∈ E1 = F1. Suppose n0 > 1. So, a ∈ En0

and

by definition of n0, a /∈ E1,. . . ,a /∈ En0−1. By the definition of Fn0
, this means that

a ∈ Fn0
so a is in

⋃∞
k=1 Fk . This closes the proof.

Using De-Morgan’s laws, we can easily verify an additional property of F .

Proposition 1.3. If Ek ∈ F , k = 1, 2, . . . , then

E =

∞⋂
k=1

Ek ∈ F

Proof. F is closed under complementation. Thus, Ek ∈ F =⇒ EC
k ∈ F . Since, F is

closed under countable unions,
⋃∞

k=1 E
C
k ∈ F . And it follows that,

(⋃∞
k=1 E

C
k

)C ∈ F .
By De-Morgan’s laws,

(⋃∞
k=1 E

C
k

)C
=
⋂∞

k=1 Ek . This closes the proof.

We can therefore summarize the properties of the family F of Lebesgue measurable sets

as follows:

F is closed under countable unions, countable intersections and complements. It contains

intervals and null sets.
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Definition 1.4. (Lebesgue Measure). We shall write µ(E) instead of µ?(E) for any E in F
and call µ(E) the Lebesgue measure of the set E.

The Lebesgue measure µ : F → [0,∞] is a countably additive set function defined on
the sigma-algebra F of measurable sets. The Lebesgue measure of an interval is equal to

its length. The Lebesgue measure of a null-set is zero.

1.4 Basic Properties of Lebesgue Measure.

Since Lebesgue measure is nothing else than the outer measure restricted to a special class

of setsF , some properties of the outer measure are automatically inherited by the Lebesgue
measure.

Proposition 1.4. Suppose that A,B ∈ F .

(1) If A ⊂ B, then µ(A) ≤ µ(B).

(2) If A ⊂ B and µ(A) is finite, then µ(B \A) = µ(B)− µ(A).

(3) µ is translation invariant.

Since the empty set ∅ ∈ F , we can take Ei = ∅ for all i > n in (1.7) to conclude that Lebesgue

measure is finitely additive: if Ei ∈ F are pairwise disjoint, then:

µ

(
n⋃

i=1

Ei

)
=

n∑
i=1

µ(Ei)

Remark. Property (2) is derived as follows. Since B = (B \A)∪A and B \A and A are

disjoint, µ(B) = µ(B \A) + µ(A). Consequently, µ(B \A) = µ(B)− µ(A).

Problem 1.5. Find a formula describing µ(A∪B) and µ(A∪B∪C) in terms of measures
of the individual sets and their intersections (we do not assume that the sets are pairwise

disjoint).

Proof. We have:

A ∪B =
(
A ∩ (A ∩B)C

)
∪
(
B ∩ (A ∩B)C

)
∪ (A ∩B)

The three sets A \ (A∩B), B \ (A∩B) and A∩B are pairwise disjoint. Consequently,

by finite additivity of the Lebesgue measure:

µ(A ∪B) = µ(A \ (A ∩B)) + µ(B \ (A ∩B)) + µ(A ∩B)

= µ(A)− µ(A ∩B) + µ(B)− µ(A ∩B) + µ(A ∩B)

{∵ (A ∩B) ⊆ A,µ(A \ (A ∩B)) = µ(A)− µ(A ∩B)}
= µ(A) + µ(B)− µ(A ∩B)
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Let B = B ∪ C

µ(A ∪ (B ∪ C)) = µ(A) + µ(B ∪ C)− µ(A ∩ (B ∪ C))

= µ(A) + µ(B) + µ(C)− µ(B ∩ C)− µ((A ∩B) ∪ (A ∩ C))

= µ(A) + µ(B) + µ(C)− µ(B ∩ C)− µ(A ∩B)− µ(A ∩ C)

+ µ(A ∩B ∩ C)

Recalling that the symmetric difference A∆B of two sets is defined by A∆B = (A \ B) ∪
(B \A) the following result is also easy to check:

Proposition 1.5. If A ∈ F , and µ(A∆B) = 0, then B ∈ F and µ(A) = µ(B).

Proof. Null sets belong to F . Since A∆B is a null set, it belongs to F . Now, A ∩ BC

andAC ∩B are subsets of A∆B, they are also null sets and belong to F . We have:

µ(A) = µ(A ∩ (B ∪BC))

= µ(A ∩B) + µ(A ∩BC)

= µ(A ∩B)

And likewise, µ(B) = µ(A ∩B). Hence, µ(A) = µ(B).

Lemma 1.1. Let (An)
∞
n=1, (Bn)

∞
n=1 be a sequence of sets. The difference of the union of sets is

contained in the union of the difference of sets. We have:

⋃
n≥1

An

−

⋃
n≥1

Bn

 ⊂
⋃
n≥1

(An −Bn)

Proof. We have:

A−

⋃
n≥1

Bn

 = A
⋂⋃

n≥1

Bn

C

= A
⋂⋂

n≥1

BC
n


=
⋂
n≥1

(
A ∩BC

n

)
=
⋂
n≥1

(A−Bn)
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Thus,

⋃
n≥1

An

−

⋃
n≥1

Bn

 =

⋃
n≥1

An

⋂⋃
n≥1

Bn

C

=

 ⋃
m≥1

Am

⋂⋂
n≥1

BC
n


=
⋃
m≥1

Am ∩

⋂
n≥1

BC
n


=
⋃
m≥1

⋂
n≥1

(Am ∩BC
n )

=
⋃
m≥1

⋂
n≥1

(Am −Bn)


⊂
⋃
m≥1

{Am −Bm}

Every open set inR can be expressed as the union of a countable number of open intervals.

This ensures that open sets in R are Lebesgue measurable, since F contains intervals and

is closed under countable unions. We can approximate the measure of any A ∈ F from

the above by the measures of a sequence of open sets containing A. This is clear from the
below result:

Theorem 1.7. (i)For any ε > 0, A ∈ R, we can find an open set O such that :

A ⊂ O, µ(O) ≤ µ?(A) + ε

Consequently, for any E ∈ F we can find an open set O containing E such that µ(O \ E) < ε.

(ii) For any A ⊂ R, we can find a sequence of open sets On,such that:

A ⊂
∞⋂

n=1

On, µ

( ∞⋂
n=1

On

)
= µ?(A)

Proof. (i) By definition of µ?(A) we can find a sequence (In) of intervals with A ⊂⋃∞
n=1 In and

∑∞
n=1 l(In) ≤ µ?(A) + ε/2. That is,

25



∃(In)∞n=1, A ⊂
⋃
n

In,

∞∑
n=1

l(In)−
ε

2
≤ µ?(A)

Each In is contained in an open interval whose length is very close to that of In; if the left
and right end-points of In are an and bn respectively, let Jn =

(
an − ε

2n+2 , bn + ε
2n+2

)
.

Set O =
⋃∞

n=1 Jn, which is open. Remember, that Jn’s are overlapping. Then, A ⊂ O
and

µ(O) ≤
∞∑

n=1

l(Jn) =

∞∑
n=1

l(In) +
ε

2
≤ µ?(A) + ε

When µ(E) < ∞ the final statement follows at once from (ii) in proposition (1.4), since

µ(O \ E) = µ(O)− µ(E) ≤ ε.

When µ(E) = ∞ we first write R as the countable union of the finite intervals: R =⋃
n(−n, n). Now, En = E ∩ (−n, n) has finite measure, so we can find an open set

On ⊃ En with µ(On \ En) ≤ ε
2n . The set O =

⋃
n On is open and contains E. Now,

O \ E =

(⋃
n

On

)
\

(⋃
n

En

)
⊂
⋃
n

(On \ En)

so that µ(O \ E) ≤
∑

n µ(On \ En) ≤ ε.

(ii) In (i) use ε = 1
n and let On be the open set so obtained. With E =

⋂
n On we obtain

a measurable set containing A such that µ(E) < µ(On) ≤ µ?(A) + 1
n for each n, hence

the result follows.

Remark. Theorem (1.7) shows how the freedom ofmovement allowed by the closure prop-

erties of the sigma-fieldF can be exploited by producing, for any setA ⊂ R, a measurable

set O ⊃ A which is obtained from open intervals using two operations and whose mea-

sure(length) equals the outer measure of A.

Theorem 1.8. (Continuity Property of the Lebesgue measure) The Lebesgue measure µ preserves limits.

(1) Suppose that (An)
∞
n=1 is a sequence of measurable sets in F . Then, we have:

lim
m→∞

µ

(
m⋃
i=1

Ai

)
= µ

(
lim

m→∞

m⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

Ai

)
(1.22)

(2) If An ⊂ An+1 is a monotonically increasing sequence of sets in F , then we have:
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lim
m→∞

µ(Am) = µ

( ∞⋃
m=1

Am

)
(1.23)

(3) If An ⊃ An+1 is a monotonically decreasing sequence of sets in F , then we have:

lim
m→∞

µ(Am) = µ

( ∞⋂
m=1

Am

)
(1.24)

Proof. (1) Define a new family of setsB1 = A1,B2 = A2 \A1, . . .,Bn = An \
⋃∞

n=1 Ai

and so forth. Then, we make the following claims:

Claim I.Bi ∩Bj = ∅, for all i 6= j.

We proceed by contradiction. Let m < n. Assume that there exists an element x ∈
Bm ∩Bn. It follows that:

x ∈ (Bm ∩Bn) ⇐⇒ (x ∈ Bm) ∧ (x ∈ Bn)

⇐⇒

(
x ∈

(
Am \

m−1⋃
i=1

Ai

))
∧

x ∈

An \
n−1⋃
j=1

Aj



In words, x belongs to both Am and the set
(⋃n−1

j=1 Aj

)C
. Since, m,n ∈ Z+, and

m < n, we must havem ≤ n− 1. If x ∈ Am, then it must belong to
⋃n−1

j=1 Aj . This is

a contradiction. Hence, our initial assumption is false. Bm ∩Bn is disjoint.

Claim II.
⋃∞

i=1 Ai =
⋃∞

i=1 Bi.

We proceed by mathematical induction. The claim is vacuously true for n = 1, since
B1 = A1 by construction. For n = 2, we have:

A1 ∪A2 = (A2 ∪A1) ∩ (A1 ∪AC
1 )

= ((A2 ∪A1) ∩A1) ∪ ((A2 ∪A1) ∩AC
1 )

= A1 ∪ ((A2 ∩AC
1 ) ∪ ∅)

= A1 ∪ (A2 \A1)

= B1 ∪B2

Assume that the claim is true for n− 1. Define S =
(⋃n−1

i=1 Ai

)
We have:
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n⋃
i=1

Ai = (An ∪ S) ∩
(
S ∪ SC

)
= S ∪ (An \ S)

=

(
n−1⋃
i=1

Ai

)⋃(
An \

(
n−1⋃
i=1

Ai

))

=

(
n−1⋃
i=1

Bi

)⋃
Bn

{since the claim holds for n− 1}

=

n⋃
i=1

Bi

Hence, the proposition holds true for all n. Passing to the limit as n → ∞, we have the

desired result. This closes the proof.

Since {Bi, i ≥ 1} is a disjoint sequence of events, and using the above claims, we get:

µ

( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

Bi

)

=

∞∑
i=1

µ(Bi)

{Countable additivity}

Therefore:
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µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Bi)

= lim
m→∞

m∑
i=1

µ(Bi)

{An infinite series converges to the limit
of the sequence of partial sums.}

= lim
m→∞

µ

(
m⋃
i=1

Bi

)
{Finite additivity}

= lim
m→∞

µ

(
m⋃
i=1

Ai

)
{By construction}

(2) If An ⊂ An+1, then
⋃m

i=1 Ai = Am. Consequently,

µ

( ∞⋃
i=1

Ai

)
= lim

m→∞
µ

(
m⋃
i=1

Ai

)
= lim

m→∞
µ(Am)

(3) IfAn ⊃ An+1, thenA1 \An ⊂ A1 \An+1. Thus, {A1 \An, n ≥ 1} is an increasing
sequence of sets. From (2), it follows that:

lim
m→∞

µ(A1 \Am) = µ

(
lim

m→∞

m⋃
i=1

A1 \Ai

)

= µ

(
lim

m→∞

m⋃
i=1

(
A1 ∩AC

i

))

= µ

(
lim

m→∞
A1

⋂(
m⋃
i=1

AC
i

))

= µ

 lim
m→∞

A1

⋂(
m⋂
i=1

Ai

)C


lim
m→∞

µ(A1)− lim
m→∞

µ(Am) = µ(A1)− µ

(
lim

m→∞

m⋂
i=1

Ai

)

=⇒ lim
m→∞

µ(Am) = µ

(
lim

m→∞

m⋂
i=1

Ai

)
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Remark. The proof of theorem (1.8) simply relies on countable additivity of µ and on the
definition of the sum of an infinite series in [0,∞], i.e. that:

∞∑
i=1

µ(Ai) = lim
n→∞

n∑
i=1

µ(Ai)

Consequently, this result is true not only for the set function µ, but any countably additive
set function defined on a sigma-field. It also leads us to the following claim, which, though,

we consider it here only for µ, actually characterizes countably additive set functions.

B1

B2

...

Bn

An
Bn+1

Figure. The sets Bn and An(light-gray).

Theorem 1.9. The set function µ satisfies:

(1) µ is finitely additive, that is, for pairwise disjoint sets (Ai) we have:

µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai)

for each n;

(ii) µ is continuous at ∅, that is, if (Bn) decrease to ∅, µ(Bn) decreases to 0.
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Proof. To prove this claim, recall that µ : F → [0,∞] is countably additive. This implies
(i), as we have already seen. To prove (ii), consider a sequence (Bn) in F which decreases

to ∅. Then, An = Bn \ Bn+1 defines a disjoint sequence in F and
⋃∞

n=1 An = B1.

We may assume that B1 is bounded, so that µ(Bn) is finite for all n, so that, µ(An) =
µ(Bn \Bn+1) = µ(Bn)− µ(Bn+1) ≥ 0 and hence we have:

µ(B1) =
∞∑

n=1

µ(An)

=

∞∑
n=1

µ(Bn)− µ(Bn+1)

= lim
n→∞

(µ(B1)− µ(Bn))

which shows that limn→∞ µ(Bn) → 0.

1.5 Borel Sets.

The definition ofF does not lend itself easily to the verification that a particular set belongs

toF ; in our proofs we have had to work quite hard to show thatF is closed under various

operations. It is therefore useful to add another construction to our armoury; one which

shows more directly, how open sets(and indeed open intervals) and the structure of sigma-

fields lie at the heart of many of the concepts we have developed. We begin with an

auxiliary construction enabling us to produce new sigma-fields.

Theorem 1.10. The intersection of a family of σ-fields is a σ-field.

Proof. Let Fα be σ-fields for α ∈ Λ (the index set Λ can be arbitrary). Put

F =
⋂
α∈Λ

Fα

We verify the conditions of the definition.

1. R ∈ Fα for all α ∈ Λ so R ∈ F .

2. If E ∈ F , then E ∈ Fα for all α ∈ Λ. Since Fα is a σ-field, it is closed under
complementation, so EC belongs to Fα for all α ∈ Λ. Hence, EC ∈ F .

3. If Ek belongs to F for k = 1, 2, 3, . . ., then Ek ∈ Fα for all α, k hence,
⋃∞

k=1 Ek ∈
Fα for all α and so

⋃∞
k=1 Ek ∈ F .

Definition 1.5. Put

B =
⋂

{F : F is a sigma-field containing all intervals} (1.25)
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We say that B is the σ-field generated by all the intervals and we call the elements of B
- Borel sets (after Emile Borel 1871-1956). It is obviously the smallest σ-field containing
all the intervals. In general, we say that G is the σ-field generated by a family of sets A if

G =
⋂
{F : F is a sigma-field such that F ⊃ A}.

Example 1.1. (Borel Sets) The following examples illustrate how the closure properties

of the σ-field B may be used to verify that most familiar sets in R belong to B.

(1) By construction, all intervals belong to B and since B is a σ-field, all open sets must
belong to B, as any open set is the countable union of open intervals.

(2) Countable sets are Borel sets, since each set is a countable union of closed intervals

of the form [a, a] ; in particular N and Q are Borel sets. Since, B is a σ-field, it is closed
under complementation. So, R \Q - the set of irrational numbers belongs to B and it is a
borel set. Similarly, finite sets are also Borel sets.

The definition of B is also very flexible - as long as we start will all intervals of a particular
type, these collections generate the same Borel σ-field:

Theorem 1.11. If instead of all intervals, we take all open intervals, all closed intervals, all intervals of

the form (a,∞) (or of the form [a,∞), (−∞, b) or (−∞, b]), all open sets, or all closed sets, then

the σ-field generated by them is the same as B.

Proof. Let I be the set of all intervals and O be the set of all open intervals. Consider for

example the σ-field generated by the family of open intervals O and denote it by C:

C =
⋂

{F ⊃ O,F is a sigma-field}

We have to show that B = C. Since open intervals are intervals, O ⊂ I (the family of all
intervals), then :

{F ⊃ I} ⊂ {F ⊃ O}

that is the collection of all σ-fields F which contain I is smaller than the collection of all
σ-fields which contain the smaller family O, since it is a more demanding requirement to
contain a bigger family, so there are fewer such objects. The inclusion is reversed after

we take the intersection on both sides, thus C ⊂ B (the intersection of a smaller family is
bigger, as the requirement of belong to each of its members is a less stringent one).

We shall show that C contains all the intervals. This will be sufficient, since B is the

intersection of such σ-fields, so it is contained in each, and therefore B ⊂ C.

To this end, consider the intervals [a, b), [a, b], (a, b) (the intervals of the form (a, b) are
in C by definition):
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[a, b) =

∞⋂
n=1

(
a− 1

n
, b

)

[a, b] =

∞⋂
n=1

(
a− 1

n
, b+

1

n

)

(a, b] =

∞⋂
n=1

(
a, b+

1

n

)

C as a σ-field is closed with respect to countable intersection, so it contains the sets on the
right. The argument for unbounded intervals is similar:

(a,∞) =

∞⋃
n=1

(a, n)

and

(−∞, b) =

∞⋃
n=1

(−n, b)

The proof is complete.

Remark. Since F is a σ-field containing all the intervals, and B is the smallest such σ-field,
we have the inclusion B ⊂ F , that is every Borel set in R is Lebesgue measurable. The

question therefore arises whether these σ-fields might be the same. In fact, the inclusion
is proper. It is not altogether straightforward to construct a set in F \ B. However,
by theorem 1.7 (ii), given any E ∈ F , we can find a Borel set B ⊃ E of the form

B =
⋂

n On, where the On are open sets, such that µ(E) = µ(B). In particular,

µ(B∆E) = µ(B \ E) = 0

Hence, µ cannot distinguish between the measurable set E and the Borel set B we have

constructed.

Thus, given a Lebesgue measurable set E we can find a Borel set B such that their sym-

metric difference E∆B is a null set. Now, we know that E∆B ∈ F , and it is obvious
that subsets of null sets are also null, and hence in F . However, we cannot conclude that
every null set will be a Borel set (if B did contain all the null sets then by theorem 1.7 (ii),

we should have
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2 Expectation.

The goal of this section is to define the expectation of random variables and establish it’s

basic properties.

2.1 Lebesgue-measurable functions.

Integration is concerned with the process of approximation. In the Riemann integral, we

split the interval I = [a, b] over which we integrate into a partition {x0 = a < x1 <
x2 < . . . < xn = b}. Define In := [xn−1, xn]. Then, we construct approximating
sums by multiplying the lengths of small subintervals by certain numbers an (related to
the values of the function in question; for example an = supIn f(x), an = infIn f(x)):

∞∑
n=1

anl(In) (2.1)

For large n, this sum is close to the Riemann integral
∫ b

a
f(x)dx.

x

y

Figure. Riemann sums.

The approach to the Lebesgue integral is similar but there is a crucial difference. Instead of

splitting the integration domain into various parts, we decompose the range of the function.

Again, a simple way is to introduce short intervals Jn of equal length.
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x

y

f−1(J4) f−1(J5) f−1(J4) f−1(J3)

J1

J2

J3

J4

J5

y1

y2

y3

y4

y5

Figure. Lebesgue sums.

To build the approximating sums, we first take the inverse images of Jn by f , that is by
f−1(Jn). These may be complicated sets, not necessarily intervals. Here the theory of
measure developed previously comes into its own. We are able to measure sets provided

they are measurable i.e. they are in F . Given that, we compute:

N∑
n=1

anµ(f
−1(Jn)) (2.2)

where an ∈ Jn or an = inf Jn = yn−1 for example. The following definition guarantees

that the above procedure makes sense.

Definition 2.1. Suppose that E is a measurable set. We say that a function f : E → R is

(Lebesgue)-measurable if for any interval I ⊆ R

f−1(I) = {x ∈ R : f(x) ∈ I} ∈ F

In what follows, the termmeasurable (without qualification) will refer to Lebesgue-measurable

functions.

If all the sets f−1(I) ∈ B, that is, if they are Borel sets, we call f Borel-measurable, or simply

a Borel function.
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The underlying philosophy is one which is common for various mathematical notions :

the inverse image of a nice set is nice. Remember continous functions, for example, where

the inverse image of an open set is open. The actual meaning of the word nice depends

on the particular branch of mathematics.

Remark. The terminology is unfortunate. Measurable objects should be measured (as with

measurable sets). However, measurable functions will be integrated. The confusion here

stems from the fact that the word integrable which would probably best fit here, carries a

more restricted meaning as we shall see later.

2.2 Simple Random Variables.

In the special case of probability spaces we use the phrase random variable to mean a mea-

surable function. That is, if (Ω,F ,P) is a probability space, thenX : Ω → R is a random

variable if for all x ∈ R, the set X−1((−∞, x]) is in F :

{ω ∈ Ω : X(ω) ≤ x} ∈ F

A function f : Ω → R is called simple if its image f(Ω) is a finite-set. That is, f can be
written as a finite linear-combination of indicator functions. We can write:

f(ω) =

n∑
i=1

aiIAi(ω)

for all ω ∈ Ω, for some distinct a1, . . . , an ≥ 0 (values) and setsA1, . . . , An which form

a partition of Ω.

A random variable X : Ω → R is called simple, if its image X(Ω) takes a finite set
of values. That is, X can be written as a finite linear-combination of indicator random

variables. We can write:

X(ω) =

n∑
i=1

aiIAi(ω)

for all ω ∈ Ω, for some distinct a1, . . . , an ≥ 0 and events A1, . . . , Anwhich form a

partition of Ω. Note that: X ≥ 0.

The abstract(Lebesgue) integral of a simple function f (with respect to the measure µ),
denoted

∫
fdµ is defined as:

∫
fdµ =

n∑
k=1

akµ(Ak)

The expectation of the simple random variable X , denoted by EX is defined as :
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∫
XdP = EX =

n∑
k=1

xkP(Ak)

This equates to discretising the y-axis.

The expectation of a non-negative random variable X is defined as :

EX = sup{EZ : Z is simple and Z ≤ X}

Note that, we can always take Z = 0, so that, EZ = 0 and therefore EX is bounded

below by 0. That is, EX ≥ 0.

The abstract(Lebesgue) integral of a non-negative function f is defined as:

∫
fdµ = sup{

∫
qdµ : q is simple and q ≤ f}

Again, we can always take q = 0, so that
∫
qdµ = 0 · IΩ = 0. Therefore,

∫
fdµ is

bounded below by zero and
∫
fdµ ≥ 0.

For an arbitrary random variable X , we can always write :

X = X+ −X−

where X+ = max{X, 0} = X · I{X≥0} and X
− = max{−X, 0} = −X · I{X≤0}.

These are non-negative random variables and the expectation of X is defined as:

EX = EX+ − EX−

Theorem 2.1. Let X and Y be simple random variables. Then, E(X + Y ) = EX + EY .

Proof. Let X =
∑m

k=1 xkIAk
and Y =

∑n
l=1 ylIBl

for some non-negative numbers

xk, yl and events Ak and Bl are such that the Ak and Bl partition Ω. Then, the events
Ak ∩Bl partition Ω and
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E(X + Y ) =
∑

k≤m,l≤n

(xk + yl)P(Ak ∩Bl)

=
∑

k≤m,l≤n

xkP(Ak ∩Bl) +
∑

k≤m,l≤n

ylP(Ak ∩Bl)

=
∑
k≤m

xk

∑
l≤n

P(Ak ∩Bl) +
∑
l≤n

yl
∑
k≤m

P(Ak ∩Bl)

=
∑
k≤m

xk(P(Ak ∩B1) + P(Ak ∩B2) + . . .+ P(Ak ∩Bn))

+
∑
l≤n

yl(P(A1 ∩Bl) + P(A2 ∩Bl) + . . .+ P(Am ∩Bl))

=
∑
k≤m

xkP(Ak) +
∑
l≤n

ylP(Bl)

= EX + EY

2.3 Non-negative Random Variables.

Our main goal is to prove the linearity of expectation. We first establish a few basic prop-

erties of expectation for non-negative random variables.

Theorem 2.2. Let X and Y be non-negative random variables. We have:

(a) If A ∈ F , then EIA =
∫
IA · dP = P(A).

(b) (Monotonicity). If X ≤ Y , then EX ≤ EY .

(c) (Translation and Scaling) For a ≥ 0, E(a+X) = a+ EX and E(aX) = aEX .

(d) If EX = 0, then X = 0 almost surely (that is P{X = 0} = 1).

(e) If A and B are events such that A ⊂ B, then EX1A ≤ EX1B .

Proof. (a) IAis a simple random variable. Then, by the definition of the Lebesgue integral,

EIA =
∫
IAdP = 1 · P(A).

(b) Let SX , SY be the set of all simple random variables which are less than or equal

to X,Y respectively. Since X ≤ Y , every simple random variable which is less than

or equal to X is also less than or equal Y . But, there exists simple random variables

that are less than or equal to Y but greater than X . Consequently, SX ⊆ SY . Thus,

{EZ : Z is simple and Z ≤ X} ⊆ {EZ : Z is simple and Z ≤ Y }. Therefore, it
follows that sup{EZ : Z is simple and Z ≤ X} ≤ sup{EZ : Z is simple and Z ≤ Y }.
Consequently, EX ≤ EY .

(c) Let Z be an arbitrary simple random variable which is less than or equal to X . Then,
Z =

∑m
k=1 xkIAk

where xk ≥ 0. We have:
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E(a+ Z) =

m∑
k=1

(a+ xk)P(Ak)

= a

m∑
k=1

P(Ak) +

m∑
k=1

xkP(Ak)

= a+ EZ

Note that, for all simple random variables Z ≤ X ⇐⇒a+ Z ≤ a+X .

E(a+X) = sup{E(a+ Z) : a+ Z is a simple random variable and a+ Z ≤ a+X}
= sup{a+ EZ : Z is a simple random variable and Z ≤ X}
= a+ sup{EZ : Z is a simple random variable and Z ≤ X}
= a+ EX

Also,

E(aZ) =

m∑
k=1

axkP(Ak)

= a

m∑
k=1

xkP(Ak)

= aEZ

(∀ simple random variables Z)(Z ≤ X)⇐⇒aZ ≤ aX .

E(aX) = sup{EaZ : aZ is a simple random variable and aZ ≤ aX}
= sup{aEZ : Z is a simple random variable and Z ≤ X}
= a sup{EZ : Z is a simple random variable and Z ≤ X}
= aEX

(d) For n ≥ 1, we have X ≥ XI{X≥ 1
n} ≥ 1

nI{X≥ 1
n}. So, by (a) and (b), we have:

0 = EX ≥ 1

n
EI{X≥ 1

n} =
1

n
P{X ≥ 1

n
}

But since P{X ≥ 1
n} ≥ 0, we conclude that P{X ≥ 1

n} = 0.

Now,
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P(X > 0) = P(
∞⋃

n=1

{X ≥ 1

n
}) = P(lim{X ≥ 1

n
}) = lim

(
P
{
X ≥ 1

n

})
= 0

(e) Clearly, if A ⊂ B, then X · IA ≤ X · IB . Thus, by the monotonicity property,
EX1A ≤ EX1B .

The following lemma gives a way to approximate non-negative random variables with

monotone sequences of simple ones.

Lemma 2.1. If X is a random variable, then there is a sequence (Zn) of non-negative simple random
variables such that for every ω ∈ Ω, Zn(ω) ≤ Zn+1(ω) and Zn(ω) → X(ω) pointwise.

Proof. For each positive integer n, define

Zn =

n·2n∑
k=1

k − 1

2n
1{ k−1

2n <X< k
2n } + n · 1{X≥n}

Essentially, we are dividing the interval (0, n) on the y−axis into n ·2n strips, each of size
1/2n. Beyond the point X ≥ n, Zn takes the constant value n.

If n = 2, this is what Z2(ω) looks like. It chops the interval [0, 2] on the Y−axis into 8
sub-intervals.

ω

X(ω)

Z2(ω)
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Figure. The step function Z2(ω).

As n increases, Zn(ω) better approximates of X(ω).

Pick any arbitrary ω ∈ Ω. Let ε > 0.

By the Archimedean property, there exists a natural number N1 ∈ N, such that N1 >
X(ω).

We have that X(ω) lies in an interval In, that is
k−1
2n < X(ω) < k

2n for some 1 ≤ k ≤
n · 2n, k ∈ Z+, for all n ≥ N1.

There exists N2 ∈ N, such that l(In) =
1
2n < ε for all n ≥ N2.

Pick N = max{N1, N2}. Then, for all n ≥ N , |Zn(ω)−X(ω)| < ε.

Thus, (Zn(ω)) converges pointwise to X(ω) for all ω ∈ Ω.

Note that, the partition points at stage (n + 1) include the partition points at stage n
and new partition points at the mid-points of the old ones. Because of this, (Zn) is a
monotonically increasing sequence.

Lemma 2.2. If X is a positive random variable, and if (Xn)
∞
n=1 is any sequence of positive simple

random variables increasing to X , then E[Xn] increases to E[X].

Proof. Recall the definition of E[X]. We have:

E[X] = sup {EZ : Z is a simple random variable and Z ≤ X}

Therefore, observe that if the sequence EXn increases to some limit a, then Xn ≤ X
implies EXn ≤ EX , so limEXn ≤ EX , and so, a ≤ E[X].

To obtain, that indeed a = E[X], it should be enough to prove that if Y is a simple

random variable such that 0 ≤ Y ≤ X , then E[Y ] ≤ a.

Suppose the random variable Y takes on m different values, say, a1, . . . , am and let the

set Ak = {ω : Y (ω) = ak}. Choose ε ∈ (0, 1]. The random variable Yn,ε = (1 −
ε)Y 1{(1−ε)Y≤Xn} takes the value (1− ε)ak on the setAk,n,ε = Ak∩{(1− ε)Y ≤ Xn}
and 0 on the set {(1− ε)Y ≥ Xn}.

At this point, I think a sketch is pretty helpful. Essentially, Yn,ε is a shifted step function.
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ω

X(ω)

Xn(ω)

Y (ω)

Yn,ε

the shifted step function

Figure. The shifted step function Yn,ε = (1− ε)Y 1(1−ε)Y≤Xn
.

Furthermore, it is obvious that Yn,ε ≤ Xn.

So, the expectation of this random variable is:

EYn,ε = (1− ε)

m∑
k=1

akP(An,k,ε) (2.3)

and by monotonicity, EYn,ε ≤ EXn = a.

Now, recall thatY ≤ limn Xn, and hence (1−ε)Y < limn Xn. It should be clear from the

diagram, intuitively, that, as n → ∞, the setAk,n,ε = Ak∩{(1−ε)Y ≤ Xn} approaches
Ak . Consequently, by the continuity of probability measure, P(An,k,ε) → P(Ak). Hence,
taking the limit in (2.3) gives:

(1− ε)

m∑
k=1

akP(Ak) = (1− ε)EY ≤ a

Letting ε → 0 in the above, we deduce that E[Y ] ≤ a, as required.
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Theorem 2.3. (Monotone Convergence Theorem). Let X1, X2, . . . , Xn be a sequence of random

variables converging almost surely to another random variable X . That is,

0 ≤ X1 ≤ X2 ≤ X3 ≤ . . . ≤

almost surely, then

lim
n→∞

EXn = E( lim
n→∞

Xn) = EX

That is, expectation preserves limits.

Proof. Using lemma (2.1), for each n, we can choose an increasing sequence Yn,k , k =
1, 2, 3, . . . of positive simple random variables increasing to Xn and set:

Zk = max
n≤k

Yn,k

Essentially, we have these sequences of positive increasing random variables (Y1,k) → X1,

(Y2,k) → X2, . . ., (Yn,k) → Xn. And now, we construct a sequence (Zk) by takingZk as

the maximum of the r.v.’s{Yk,1, Yk,2, . . . , Yk,k, }. Thus, (Zk : k ≥ 1) is a non-decreasing
sequence of positive simple random variables and thus it has a limit Z = limk→∞ Zk .

Also,

Yn,k ≤ Zk ≤ Xk ≤ X almost surely ∀n ≤ k

Hence,

lim
k→∞

Yn,k ≤ lim
k→∞

Zk ≤ X almost surely

In other words,

Xn ≤ Z ≤ X almost surely

Next, if we let n → ∞, we have:

X = Z almost surely

Since the expectation is a positive operator, we have:

E[Yn,k] ≤ E[Zk] ≤ E[Xk] for n ≤ k
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Fix n and let k → ∞. Using lemma (2.2), we obtain:

E[Xn] ≤ E[Z] ≤ lim
k→∞

E[Xk]

Now, let n → ∞ to obtain:

lim
n→∞

E[Xn] ≤ E[Z] ≤ lim
k→∞

E[Xk]

By the squeeze theorem,

lim
n→∞

E[Xn] = E[Z] = E[ lim
n→∞

Xn]

Theorem 2.4. (Linearity of Expectations) Let X and Y be non-negative random variables. Then,

E(X + Y ) = EX + EY

Proof. By lemma 2.1, there exists monotonic sequences of non-negative random variables

(Xn)
∞
n=1 and (Yn)

∞
n=1 such that (Xn) → X and (Yn) → Y . Then, the sequence

Xn+Yn is also monotone, and by the Algebraic limit theorem for sequences,Xn+Yn →
X + Y . By theorem 2.1,

E(Xn + Yn) = EXn + EYn

Passing to the limits, we get:

limE(Xn + Yn) = limEXn + limEYn

By the Monotone convergence theorem, E preserves limits, so,

E(X + Y ) = EX + EY
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2.4 Fatou’s Lemma.

Theorem 2.5. (Fatou’s Lemma) Let Y be a random variable that satisfies E[|Y |] < ∞. Let
(Xn)

∞
n=1 be a sequence of random variables. Then the following holds:

• If Y ≤ Xn, for all n, then E [lim infn→∞ Xn] ≤ lim infn→∞ E [Xn].

• If Y ≥ Xn, for all n, then E
[
lim supn→∞ Xn

]
≥ lim supn→∞ E [Xn].

Proof. Firstly, if Xn ≥ Y , that is, (X1, X2, X3, . . .) is any sequence of random variables

bounded below, analogous to a sequence of real numbers, the point-wise limit,lim infn→∞ Xn

always exists and therefore lim inf random variable is defined. Similarly, ifXn ≤ Y , that is,
(X1, X2, X3, . . .) is any sequence of random variables bounded above, then lim supn→∞ Xn

always exists and therefore lim sup random variable is defined.

Fix some n ∈ N. From the definition of infimum, we have:

inf
k≥n

Xk − Y ≤ Xm − Y, ∀m ≥ n

By the monotonicity property, it follows that:

E
[
inf
k≥n

Xk − Y

]
≤ E [Xm − Y ] ∀m ≥ n

The left-hand side is a constant real number. The right-hand side is indexed bym. So, this
inequality holds for a sequence of real numbers (am), m ≥ n, where am = Xm(ω) −
Y (ω).

Consider the set:

{am, am+1, am+2, . . .}

This set is bounded below for all m ≥ n. Hence, its infimum exists. I can take infimum

with respect tom, on both sides. By the order limit theorem, we have:

inf
m≥n

E
[
inf
k≥n

Xk − Y

]
≤ inf

m≥n
E [Xm − Y ] ∀m ≥ n

Thus,

E
[
inf
k≥n

Xk − Y

]
≤ inf

m≥n
E [Xm − Y ] ∀m ≥ n
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Define Zn = infk≥n Xk − Y and Sn = infm≥n E [Xm − Y ]. So, we can write:

EZn ≤ Sn

Passing to the limit as n → ∞, by the Order limit theorem, we have:

lim
n→∞

EZn ≤ lim
n→∞

Sn

Note that, Zn ≥ 0, since Xk ≥ Y . And Zn is a sequence of monotonically increasing

random variables. Thus, limZn exists. By the Monotone Convergence theorem,

lim
n→∞

EZn = E
[
lim

n→∞
Zn

]
= E

[
lim inf
n→∞

Xn − Y
]
≤ lim

n→∞
Sn = lim inf

n→∞
E [Xn − Y ]

and so, it follows that:

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E [Xn]

The DCT is an important result which asserts a sufficient condition under which we can

interchange a limit and expectation.

Theorem 2.6. (Dominated Convergence Theorem). Consider a sequence of random variables that

converges almost surely to X . Suppose that there exists a random variable Y , such that |Xn| ≤ Y
almost surely for all n and E[Y ] < ∞. Then, we have:

lim
n→∞

E[Xn] = E[X]

Proof. Since −Y ≤ Xn ≤ Y for all n ∈ N, we can invoke both sides of Fatou’s Lemma:

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
EXn

and

E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
EXn

Thus,

EX = E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
EXn ≤ EXn ≤ lim sup

n→∞
EXn ≤ E

[
lim sup
n→∞n

Xn

]
= EX
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This implies that:

lim inf
n→∞

EXn = lim sup
n→∞

EXn

so

lim
n→∞

EXn

exists and further

lim
n→∞

EXn = EX

3 Gaussian Processes.

3.1 Random Vectors.

Consider a probability space (Ω,F ,P). We can define several random variables on Ω.
A n-tuple of random variables on this space is called a random vector. For example, if

X1, X2, . . . , Xn are random variables on (Ω,F ,P), then the n-tuple (X1, X2, . . . , Xn)
is a random vector on (Ω,F ,P). The vector is said to ben-dimensional because it contains
n-variables. We will sometimes denote a random vector by X .

A good point of view is to think of a random vector X = (X1, . . . , Xn) as a random
variable (point) in Rn. In other words, for an outcome ω ∈ Ω, X(ω) is a point sampled
in Rn, where Xj(ω) represents the j-th coordinate of the point. The distribution of X ,
denoted µX is the probability on Rndefined by the events related to the values of X :

P{X ∈ A} = µX(A) for a subset A in Rn

In other words, P(X ∈ A) = µX(A) is the probability that the random point X falls in

A. The distribution of the vector X is also called the joint distribution of (X1, . . . , Xn).

Definition 3.1. The joint distribution function of X = (X,Y ) is the function F :
R2 → [0, 1] given by:

FX(x, y) = P(X ≤ x, Y ≤ y) (3.1)

Definition 3.2. The joint PDF fX(x1, . . . , xn) of a random vector X is a function fX :
Rn → R such that the probability thatX falls in a subset A of Rn and is expressed as the

multiple integral of f(x1, x2, . . . , xn) over A:
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P(X ∈ A) =

∫
A

f(x1, x2, . . . , xn)dx1dx2 . . . dxn

Note that: we must have that the integral of f over the whole of Rn is 1.

If F is differentiable at the point (x, y), then we usually specify:

f(x, y) =
∂2

∂x∂y
F (x, y) (3.2)

Theorem 3.1. Let (X,Y ) be the random variables with joint density function fX,Y (x, y). The

marginal density function fX(x) and fY (y) of the random variables X and Y respectively is given by:

fX(x) =

∫ +∞

−∞
f(X,Y )(x, y)dy

fY (y) =

∫ +∞

−∞
f(X,Y )(x, y)dx

Proof. We have:

FX(x) = P (X ≤ x)

=

∫ x

−∞

∫ y=+∞

y=−∞
f(x, y)dydx

Differentiating both sides with respect to x,

fX(x) =

∫ y=+∞

y=−∞
f(x, y)dydx

Definition 3.3. For continuous random variablesX and Y with the joint density function

f(X,Y ), the conditional density of Y given X = x is:

fY |X(y|x) =
f(X,Y )(x, y)

fX(x)

for all x with fX(x) > 0. This is considered as a function of y for a fixed x. As a
convention, in order to make fY |X(y|x) well-defined for all real x, let fY |X(y|x) = 0
for all x with fX(x) = 0.

48



We are essentially slicing the the joint density function of f(X,Y )(x, y) by a thin plane
X = x. How can we speak of conditioning onX = x forX being a continuous random

variable, considering that this event has probability zero. Rigorously speaking, we are

actually conditioning on the event that X falls within a small interval containing x, say
X ∈ (x− ε, x+ ε) and then taking the limit as ε approaches zero from the right.

We can recover the joint PDF f(X,Y ) if we have the conditional PDF fY |X and the cor-

responding marginal fX :

f(X,Y )(x, y) = fY |X(y|x) · fX(x)

Theorem 3.2. (Bayes rule and LOTP) Let (X,Y ) be continuous random variables. We have the

following continuous form of the Bayes rule:

fY |X(y|x) =
fX|Y (x|y) · fY (y)

fX(x)
(3.3)

And we have the following continuous form of the law of total probability:

fX(x) =

∫ y=+∞

y=−∞
fX|Y (x|y) · fY (y)dy

Proof. By the definition of conditional PDFs, we have:

fX|Y (x|y) · fY (y) = f(X,Y )(x, y) = fY |X(y|x) · fX(x)

Dividing throughout by fX(x), we have:

fY |X(x) =
fX|Y (x|y) · fY (y)

fX(x)
=

f(X,Y )(x, y)

fX(x)

Example 3.1. (Sampling uniformly in the unit disc). Consider the random vector X =
(X,Y ) corresponding to a random point chosen uniformly in the unit disc {(x, y) : x2+
y2 ≤ 1}. X is said to have uniform on the unit circle distribution. In this case the PDF is

0 outside the disc and 1
π inside the disc:

f(x, y) =
1

π
if x2 + y2 ≤ 1
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The random point (X,Y ) has x-coordinate X and Y coordinate Y . Each of these are
random variables and their PDFs and CDFs can be computed. This is a valid PDF, be-

cause:

∫ ∫
D

f(x, y)dydx =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

1

π
dydx

=
1

π

∫ 1

−1

[y]
+
√
1−x2

−
√
1−x2 dx

=
2

π

∫ 1

−1

√
1− x2dx

Substituting x = sin θ, we have: dx = cos θdθ and
√
1− x2 = cos θ. The limits of

integration are θ = −π/2 to θ = π/2. Thus,

∫ ∫
D

f(x, y)dydx =
2

π

∫ π/2

−π/2

cos2 θdθ

=
1

π

∫ π/2

−π/2

(1 + cos 2θ)dθ

=
1

π

[
θ +

1

2
sin 2θ

]π/2
−π/2

=
1

π
· π

= 1

The CDF of X is given by:

FX(a) =

∫ a

−1

∫ √
1−x2

−
√
1−x2

1

π
dydx

=
2

π

∫ a

−1

√
1− x2dx

I leave it in this integral form. The PDF of X is obtained by differentiating the CDF, so

it is:

fX(x) =
2

π

√
1− x2 (3.4)

Let’s quickly plot the density of X over the domain of the definition −1 ≤ x ≤ 1.
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Figure. The PDF of the random variable X .

Not suprisingly the distribution of the x-coordinate is no longer uniform!

If (X1, X2, . . . , Xn) is a random vector, the distribution of a single coordinate, say X1

is called the marginal distribution. In the example 3.1, the marginal distribution of X is

determined by the PDF 3.4.

Random variables X1, X2, . . . , Xn defined on the same probability space are said to be

independent if for any intervals A1, A2, . . . , An in R, the probability factors:

P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P(X1 ∈ A1)×P(X2 ∈ A2)×. . .×P(Xn ∈ An)

We say that the random variables are independent and identically distributed (IID) if they

are independent and their marginal distributions are the same.

When the random vector (X1, X2, . . . , Xn) has a joint PDF f(x1, x2, . . . , xn), the in-
dependence of random variables is equivalent to saying that the joint PDF is given by the

product of the marginal PDFs:

f(x1, x2, . . . , xn) = f1(x1)× f2(x2)× . . .× fn(xn) (3.5)

3.2 Basic Probabilistic Inequalities.

Inequalities are extremely useful tools in the theoretical development of probability theory.

3.2.1 Jensen’s inequality.

Theorem 3.3. If g is a convex function, and a > 0, b > 0, with p ∈ [0, 1], it follows that:

g(pa+ (1− p)b) ≤ pg(a) + (1− p)g(b) (3.6)
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Proof. This directly follows from the definition of convex functions.

3.2.2 Jensen’s inequality for Random variables.

Theorem 3.4. If g is a convex function, then it follows that:

E(g(X)) ≥ g(EX) (3.7)

Proof. Another way to express the idea, that a function is convex is to observe that the

tangent line at an arbitrary point (t, g(t)) always lies below the curve. Let y = a+ bx be
the tangent to g at the point t. Then, it follows that:

a+ bt = g(t)

a+ bx ≤ g(x)

for all x.

Thus, it follows that, for any point t, there exists b such that:

g(x)− g(t) ≥ b(x− t)

for all x. Set t = EX and x = X . Then,

g(X)− g(EX) ≥ b(X − EX)

Taking expectations on both sides and simplifying:

E (g(X))− g(EX) ≥ b(EX − EX) = 0

Eg(X) ≥ g(EX)

3.2.3 Young’s Inequality.

Theorem 3.5. If a ≥ 0 and b ≥ 0 are non-negative real numbers and if p > 1 and q > 1 are

real numbers such that 1
p + 1

q = 1, then:

ab ≤ ap

p
+

bq

q
(3.8)
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Proof. Consider g(x) = logx. Being a concave function, Jensen’s inequality can be re-
versed. We have:

g

(
1

p
ap +

1

q
bq
)

≥ 1

p
g(ap) +

1

q
g(bq)

log

(
1

p
ap +

1

q
bq
)

≥ 1

p
log(ap) +

1

q
log(bq)

log

(
1

p
ap +

1

q
bq
)

≥ 1

p
· p log(a) + 1

q
· q log(b)

log

(
1

p
ap +

1

q
bq
)

≥ log ab

By the Monotonicity of the logx function, it follows that :

ab ≤ ap

p
+

bq

q

3.2.4 Chebyshev’s inequality.

One of the simplest and very useful probabilistic inequalities is a tail bound by expectation:

the so called Chebyshev’s inequality.

Theorem 3.6. (Chebyshev’s inequality) IfX is a non-negative random variable, then for every t ≥ 0:

P(X ≥ t) ≤ 1

t
EX (3.9)

Proof. We have:

t · 1{X≥t} ≤ 1{X≥t} ·X

By the monotonicity of expectations, we have:

E1{X≥t} ≤ 1

t
EX

=⇒ P{X ≥ t} ≤ 1

t
EX

This closes the proof.
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There are several variants, easily deduced from Chebyshev’s inequality monotonicity of

several functions. For a non-negative random variable X and t > 0, using the power
function xp, p > 0, we get:

P(X ≥ t) = P(Xp ≥ tp) ≤ 1

tp
EXp (3.10)

For a real valued random variable X , every t ∈ R, using the square function x2 and

variance, we have:

P(|X − EX| ≥ t) ≤ 1

t2
E|X − EX|2 =

1

t2
V ar(X) (3.11)

For a real-valued random variable X , every t ∈ R and λ > 0, using the exponential
function eλx(which is monotonic), we have:

P(X ≥ t) = P(λX ≥ λt) = P(eλX ≥ eλt) ≤ 1

eλt
EeλX (3.12)

Our next inequality, the so-called Holder’s inequality is a very effective inequality to factor

out the expectation of a product.

3.2.5 Holder’s inequality.

Theorem 3.7. Let p, q ≥ 1 be such that 1
p + 1

q = 1, For random variables X and Y , we have:

E|XY | ≤ (E|Xp|)1/p (E|Y q|)1/q

Proof. From the Young’s inequality, for any a, b ∈ R, p, q ≥ 1, we have:

ab ≤ ap

p
+

bq

q

Setting a = |X|
(E|Xp|)1/p and b =

|Y |
(E|Y q|)1/q , we get:

|XY |
(E|Xp|)1/p (E|Y q|)1/q

≤ 1

p
· |X|p

E|Xp|
+

1

q
· |Y |q

E|Y q|

Taking expectations on both sides, and using the monotonicity of expectation property,

we get:
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E|XY |
(E|Xp|)1/p (E|Y q|)1/q

≤ 1

p
· E|X|p

E|Xp|
+

1

q
· E|Y |q

E|Y q|
=

1

p
+

1

q
= 1

Consequently,

E|XY | ≤ (E|Xp|)1/p (E|Y q|)1/q

Let p = 2 and q = 2. Then, we get the Cauchy-Schwarz inequality:

E|XY | ≤
[
E(X2)

]1/2 [E(Y 2)
]1/2

In some ways, the p-th moment of a random variable can be thought of as it’s length or

p-norm.

Define:

‖X‖p = (E|X|p)1/p

3.2.6 Minkowski’s Inequality.

Theorem 3.8. For random variables X and Y , and for all p ≥ 1 we have:

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p (3.13)

Proof. The basic idea of the proof is to use Holder’s inequality. Let 1
q = 1− 1

p or in other

words, q = p
p−1 . We have:

E|X||X + Y |p−1 ≤ (E|X|p)1/p
(
E|X + Y |(p−1)q

)1/q
(a)

E|Y ||X + Y |p−1 ≤ (E|Y |p)1/p
(
E|X + Y |(p−1)q

)1/q
(b)

Adding the above two equations, we get:

E(|X + Y ||X + Y |p−1) ≤ E(|X|+ |Y |)(|X + Y |p−1) ≤
{
(E|X|p)1/p + (E|Y |p)1/p

}(
E|X + Y |(p−1)q

)1/q
E|X + Y |p ≤

{
‖X‖p + ‖Y ‖p

}
(E|X + Y |p)1/q

(E|X + Y |p)1/p ≤ ‖X‖p + ‖Y ‖p
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p
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3.3 A quick refresher of linear algebra.

Many of the concepts in this chapter have very elegant interpretations, if we think of real-

valued random variables on a probability space as vectors in a vector space. In particular,

variance is related to the concept of norm and distance, while covariance is related to inner-

products. These concepts can help unify some of the ideas in this chapter from a geometric

point of view. Of course, real-valued random variables are simply measurable, real-valued

functions on the abstract space Ω.

Definition 3.4. (Vector Space).

By a vector space, we mean a non-empty set V with two operations:

• Vector addition: + : (x, y) → x+ y

• Scalar multiplication: · : (α, x) → αx

such that the following conditions are satisfied:

(A1) Commutativity. x+ y = y+ x for all x, y ∈ V

(A2) Associativity: (x+ y) + z = x+ (y+ z) for all x, y, z ∈ V

(A3) Zero Element: There exists a zero element, denoted 0 in V , for all x ∈ V , such that
x+ 0 = x.

(A4) Additive Inverse: For all x ∈ V , there exists an additive inverse(negative element)
denoted −x in V , such that x+ (−x) = 0.

(M1) Scalar multiplication by identity element in F : For all x ∈ V , 1 · x = x, where 1
denotes the multiplicative identity in F .

(M2) Scalar multiplication and field multiplication mix well: For all α, β ∈ F and v ∈ V ,
(αβ)v = α(βv).

(D1) Distribution of scalar multiplication over vector addition: For all α ∈ F , and u, v ∈
V , α(u+ v) = αu+ αv.

(D2) Distribution of field addition over scalar multiplication: For all α, β ∈ F , and v ∈ V ,
(α+ β)v = αv+ βv.

As usual, our starting point is a random experimentmodeled by a probability space (Ω,F ,P),
so that Ω is the set of outcomes, F is the σ-algebra of events and P is the probability mea-
sure on the measurable space (Ω,F). Our basic vector space V consists of all real-valued

random variables defined on (Ω,F ,P). We define vector addition and scalar multiplica-
tion in the usual way point-wise.

• Vector addition: (X + Y )(ω) = X(ω) + Y (ω).

• Scalar multiplication: (αX)(ω) = αX(ω)
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Clearly, any function g of a random variable X(ω) is also a random variable on the same

probability space and any linear combination of random variables on (Ω,F ,P) also define
a new random variable on the same probability space. Thus, V is closed under vector ad-

dition and scalar-multiplication. Since vector-addition and scalar multiplication is defined

point-wise, it is easy to see that - all the axioms of a vector space (A1)-(A4), (M1-M2),

(D1), (D2) are satisfied. The constantly zero random variable 0(ω) = 0 and the indicator
random variable IΩ(ω) can be thought of as the zero and identity vectors in this vector
space.

3.3.1 Inner Products.

In Euclidean geometry, the angle between two vectors is specified by their dot product,

which is itself formalized by the abstract concept of inner products.

Definition 3.5. (Inner Product). An inner product on the real vector space V is a pairing

that takes two vector v,w ∈ V and produces a real number 〈v,w〉 ∈ R. The inner product

is required to satisfy the following three axioms for all u, v,w ∈ V and scalars c, d ∈ R.

(i) Bilinearity:

〈cu+ dv,w〉 = c 〈u,w〉+ d 〈v,w〉 (3.14)

〈u, cv+ dw〉 = c 〈u, v〉+ d 〈u,w〉 (3.15)

(ii) Symmetry:

〈v,w〉 = 〈w, v〉 (3.16)

(iii) Positive Definiteness:

〈v, v〉 > 0 whenever v 6= 0 (3.17)

〈v, v〉 = 0 whenever v = 0 (3.18)

Definition 3.6. (Norm). A norm on a real vector space V is a function ‖·‖ : V → R

satisfying :

(i) Positive Definiteness.

‖v‖ ≥ 0 (3.19)

and

‖v‖ = 0 if and only if v = 0 (3.20)

(ii) Scalar multiplication.
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‖αv‖ = |α| ‖v‖ (3.21)

(iii) Triangle Inequality.

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (3.22)

As mentioned earlier, we can define the p-norm of a random variable as :

‖X‖p = (E|X|p)1/p

(i) Positive semi-definiteness: Since |X| is a non-negative random variable, |X|p ≥ 0 and
the expectation of a non-negative random variable is also non-negative. Hence, (E|X|p)1/p ≥
0. Moreover, ‖X‖p = 0 implies that E|X|p = 0. From property (iv) of expectations,

X = 0.

(ii) Scalar-multiplication: We have:

‖cX‖p = (E|cX|p)1/p

= (|c|p)1/p (E|X|p)1/p

= |c| · ‖X‖p

(iii) Triangle Inequality. This followed from the Minkowski’s inequality.

The space of all random variables defined on (Ω,F ,P) such that ||X||p < ∞ is finite is

called the Lp space.

3.3.2 Orthogonal Matrices.

Definition 3.7. (Orthogonal Matrix). Let A be an n× n square matrix. We say that the
matrix A is orthogonal, if its transpose is equal to its inverse.

A′ = A−1

This may seem like an odd property to study, but the following theorem explains why it is

so useful. Essentially, an orthogonal matrix rotates (or reflects) vectors without distorting

angles or distances.
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Proposition 3.1. For an n× n square matrix A, the following are equivalent:

(1) A is orthogonal. That is, A′A = I .

(2) A preserves norms. That is, for all x,

‖Ax‖ = ‖x‖

(3) A preserves inner products, that is, for every x, y∈ Rn:

(Ax) · (Ay) = x · y

Proof. We have:

‖Ax‖2 = (Ax)
′
(Ax)

= x′(A′A)x

= x′Ix

= x′x

= ||x||2

Consequently, ||Ax|| = ||x||. The matrix A preserves norms. Thus, (1) implies (2).

Moreover, consider

||A(x+ y)||2 = (Ax+Ay) · (Ax+Ay)

= (Ax) · (Ax) + (Ax) · (Ay) + (Ay) · (Ax) + (Ay) · (Ay)
= ||Ax||2 + 2(Ax) · (Ay) + ||Ay||2 {x · y = y · x}
= ||x||2 + 2(Ax) · (Ay) + ||y||2 {A preserves norms}

But, ||A(x+ y)||2 = ||x+ y||2 = ||x||2 + 2x · y+ ||y||2. Equating the two expressions,
we have the desired result. Hence, (2) implies (3).

Lastly, if A preserves inner products, we may write:

〈Ax, Ax〉 = 〈x, x〉
(Ax)

′
(Ax) = x′x

x′A′Ax = 0

Since x 6= 0, it must be true that x′A′A − x′ = 0. Again, since x′ 6= 0, it follows that

A′A− I = 0.
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Theorem 3.9. If q1, q2, . . . , qk ∈ V be mutually orthogonal elements, such that qi 6= 0 for all i,
then q1, q2, . . . , qk are linearly independent.

Proof. Let

c1q1 + c2q2 + . . .+ ckqk = 0

Since 〈qi, qi〉 = 1 and 〈qi, qj〉 = 0 where i 6= j, we can take the inner product of the
vector (c1q1 + c2q2 + . . . + ciqi + . . . + ckqk) with qi for each i = 1, 2, 3, . . . , k.
It results in ci||qi||2 = 0. Since qi 6= 0, ||qi||2 > 0. So, ci = 0. We conclude that
c1 = c2 = . . . = ck = 0. Consequently, q1, q2, . . . , qk are linearly independent.

Theorem 3.10. Let Q =
[
q1 q2 . . . qn

]
be an n × n orthogonal matrix. Then,

{q1, . . . , qn} form an orthonormal basis for Rn.

Proof. We have Qei = qi. Consequently,

〈qi, qi〉 = q′iqi

= (Qei)
′(Qei)

= e′iQ
′Qei

= e′iIei

= e′iei

= 1

Assume that i 6= j. We have:

〈qi, qj〉 = q′iqj

= e′iQ
′Qej

= e′iej

= 0

From theorem (3.9), {q1, . . . , qn} are linearly independent and hence form an orthonor-

mal basis for Rn.

3.3.3 Quadratic Forms.

An expression of the form:

x′Ax
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where x is a n× 1 column vector and A is an n× n matrix is called a quadratic form in x

and

x′Ax =

n∑
i=1

n∑
j=1

aijxixj

If A and B are n× n and x, y are n-vectors, then

x′(A+B)y = x′Ay+ x′By

The quadratic form or the matrix A is called positive definite if:

x′Ax > 0 whenever x 6= 0

and positive semidefinite if:

x′Ax ≥ 0 whenever x 6= 0

Letting ei be the unit vector with it’s ith coordinate vector 1, we have:

e′iAei = [ai1ai2 . . . aii . . . ani]



0
0
...

1
...

0


= aii

3.3.4 Eigenthingies and diagonalizability.

Let V andW be finite dimensional vector spaces with dim(V ) = n and dim(W ) = m.
A linear transformationT : V → W , is defined by its action on the basis vectors. Suppose:

T (vj) =

n∑
i=1

aijwi
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for all 1 ≤ i ≤ m.

Then, the matrix A = [T ]BW

BV
of the linear transformation is defined as:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


Definition 3.8. A linear transformation T : V → V is diagonalizable if there exists

an ordered basis B = {v1, . . . , vn} for V so that the matrix for T with respect to B is

diagonal. This means precisely that, for some scalars λ1, λ2, . . . , λn, we have:

T (v1) = λ1v1

T (v2) = λ2v2

...

T (vn) = λnvn

In other words, if A = [T ]B , then we have:

Avi = λivi

Thus, if we let P be the n × n matrix whose columns are the vectors v1, v2, . . . , vn and
Λ be the n× n diagonal matrix with diagonal entries λ1, λ2, . . . , λn, then we have:

A
[
v1 v2 . . . vn

]
=
[
v1 v2 . . . vn

]


λ1

λ2

. . .

λn


AP = PΛ

A = PΛP−1

There exists a large class of diagonalizable matrices - the symmetric matrices. A square

matrix A is symmetric, if A = A′.

Definition 3.9. Let T : V → V be a linear transformation. A non-zero vector v ∈ V is

called the eigenvector of T , if there is a scalar λ so that T (v) = λv. The scalar λ is called
the eigenvalue of T .
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Lemma 3.1. Let A be an n× n matrix, and let λ be any scalar. Then,

E(λ) = {x ∈ Rn : Ax = λx} = ker(A− λI)

is a subspace of Rn. Moreover, if E(λ) 6= {0} if and only if λ is an eigenvalue, in which case we call

E(λ) the λ-eigenspace of the matrix A.

Proof. We know that, E(λ) is a subset of Rn. Moreover, if u, v ∈ E(λ) , then A(c1u +
c2v) = c1Au + c2Av = λ(c1u + c2v). Consequently, c1u + c2v ∈ E(λ). Thus, E(λ)
is a subspace of Rn.

Moreover, by definition, λ is an eigenvalue of A precisely when x 6= 0 vector in E(λ).
This closes the proof.

Theorem 3.11. Let A be a n× n square matrix. If A is a singular matrix, then detA = 0.

Proof. By definition, a square matrix is said to be non-singular, if it can be reduced to an

upper triangular formwith all non-zero elements on the diagonal - the pivots, by elementary

row operations. A singular matrix is such that it’s echelon form has a row of zeroes, and

its row vectors are linearly dependent and detA = 0.

Theorem 3.12. Let A be a n × n square matrix. Then, λ is an eigenvalue of A if and only if

det(A− λI) = 0.

Proof. λ is an eigenvalue of A, if and only, the homogenous system of linear equations

(A − λI)x = 0 has non-trivial solutions. Consequently, the only possibility is that there

are one more free variables (more variables than the number of equations). In other words,

(A− λI) must be a singular matrix and det(A− λI) = 0.

Example 3.2. Let’s find the eigenvalues and eigenvectors of the matrix

A =

 1 2 1
0 1 0
1 3 1


We begin by computing

det(A− λI) =

 1− λ 2 1
0 1− λ 0
1 2 1− λ


= (1− λ)(1− λ)2 − (1− λ)

= (1− λ)[(1− λ)2 − 1)]

= −λ(1− λ)(2− λ)
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Thus, the eigenvalues of A are λ = 0, λ = 1 and λ = 2.

We find the respective eigenspaces:

1) Fix λ = 0. We see that:

 1 2 1
0 1 0
1 3 1

 x1

x2

x3

 =

 0
0
0


The augmented matrix [A|b] is :  1 2 1 | 0

0 1 0 | 0
1 3 1 | 0


R3 −R1, R3 −R2 and R1 − 2R2 leaves us with: 1 0 1 | 0

0 1 0 | 0
0 0 0 | 0


So, x1 + x3 = 0 and x2 = 0. Here, x3 is a free variable. Thus,

E(0) = {α(1, 0,−1)|α ∈ R}

2) Fix λ = 1. We see that:

 0 2 1
0 0 0
1 3 0

 x1

x2

x3

 =

 0
0
0


Thus, 2x2+x3 = 0 and x1+3x2 = 0. Here x3 is a free variable. Let x3 = −2α. Then,
x2 = α and x1 = −3α. Consequently,

E(1) = {α(−3, 1,−2)|α ∈ R}

3) Fix λ = 3. We see that:

 −1 2 1
0 −1 0
1 3 −1

 x1

x2

x3

 =

 0
0
0



64



The augmented matrix [A|b] is :

 −1 2 1 | 0
0 −1 0 | 0
1 3 −1 | 0


R3 +R1, R3 + 5R2 followed by R1 + 2R2 gives: −1 0 1 | 0

0 −1 0 | 0
0 0 0 | 0


Thus, x2 = 0 and x1 − x3 = 0. Here x3 is the free variable. Hence,

E(2) = {α(1, 0, 1) : α ∈ R}

Clearly, there exists a basis B = {(1, 0,−1), (−3, 1,−2), (1, 0, 1)} with respect to which
the matrix of T is diagonal. Hence, A is diagonalizable.

Judging from the previous example, it appears that when an n × n square matrix has n
distinct eigen values, the corresponding eigenvectors form a linearly independent set and

will therefore give a diagonalizing basis. Let’s begin with a slightly stronger statement.

Theorem 3.13. Let T : V → V be a linear transformation. Suppose v1, v2, . . . , vk are eigen-

vectors of T corresponding to the distinct eigenvalues λ1, λ2, . . . , λk . Then, {v1, v2, . . . , vk} is a

linearly independent set of vectors.

Proof. Let m be the largest number between 1 and k (inclusive) so that {v1, . . . , vm} is
linearly independent. We proceed by contradiction. We want to seem = k. Assume that
m < k. Then, we know that {v1, . . . , vm} is linearly independent and {v1, . . . , vm, vm+1}
is linearly dependent. Thus, vm+1 = c1v1 + c2v2 + . . .+ cmvm such that atleast one of

c1, c2, . . . , cm are non-zero. Then, using repeatedly the fact that T (vi) = λivi:

0 = (T − λm+1I)vm+1 = (T − λm+1I)(c1v1 + . . .+ cmvm)

= c1 (T v1 − λm+1Iv1) + c2 (T v2 − λm+1Iv2) + . . .+ cm (T vm − λm+1Ivm)

= c1(λ1 − λm+1)v1 + c2(λ2 − λm+1)v2 + . . .+ cm(λm − λm+1)vm

Sinceλi 6= λm+1 for i = 1, 2, 3, . . . ,m and since {v1, v2, . . . vm} is linearly independent,
the only other possibility is c1 = c2 = . . . = cm = 0. But, this contradicts the fact that
vm+1 is an eigenvector and vm+1 6= 0. Thus, it cannot happen thatm < k. Consequently,
m = k.
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What is underlying this formal argument is the observation that: if v ∈ E(λ) ∩ E(µ),
then T v = λv and T v = µv. Hence, if λ 6= µ, then v = 0. That is, if λ 6= µ, we have
E(λ) ∩ E(µ) = {0}.

Corollary 3.1. Suppose V is an n-dimensional vector space and T : V → V has n distinct

eigenvalues. Then T is diagonalizable.

Proof. The set of n corresponding eigenvectors must be linearly independent and hence
form a basis for V . The matrix of T with respect to the eigenbasis is always diagonal.

The converse of this statement is not true. There are many diagonalizable matrices with

repeated eigen-values.

Definition 3.10. Let λ be an eigenvalue of a linear transformation. The algebraic mul-
tiplicity of λ is its multiplicity as a root of the characteristic polynomial p(t) that is, the
highest power of t− λ dividing p(t). The geometric multiplicity of λ is the dimension of
the eigenspace E(λ).

Proposition 3.2. Let λ be an eigenvalue of algebraic multiplicity m and geometric multiplicity d.
Then, the geometric multiplicity is always bounded by the algebraic multiplicity, and 1 ≤ d ≤ m.

Proof. Suppose λ is the eigenvalue of the linear transformation T . Then, d = dimE(λ) ≥
1 by definition. Now, choose a basis {v1, v2, . . . , vd} for E(λ) and extend it to a basis
B = {v1, v2, . . . , vn} for V . Then, the matrix of T with respect to B is of the form

A =

[
λId B

0(n−d)×d C

]

The characteristic polynomial p(t) of the matrix A is given by:

p(t) = det(A− tI)

= det((λ− t)Id) · det(C − tI)

= (λ− t)d · det(C − tI)

Since the characteristic polynomial does not depend on the choice of basis, the algebraic

multiplicity of λ is atleast d.

Lemma 3.2. (Lagrange Multipliers) Suppose f, g : Rn → R are scalar-valued C1 functions - that

is partial derivatives ∂xi
in all variables are continuous. Let S = {x ∈ Rn|g(x) = c} denote the

level set of g at height c. Then if f |S (the restriction of f to S) has an extremum point x0 in S such

that ∇g(x0) 6= 0, there exists a scalar λ such that

∇f(x0) = λ∇g(x0) (3.23)
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Proof. Let’s visualize the situation for the case n = 3, where the constraint equation
g(x, y, z) = c defines a surface S in R3.

Thus, suppose that x0 is an extremumof f restricted toS. We consider a further restriction
of f - to a curve lying in S and passing through x0. Let x(t) = (x(t), y(t), z(t)) be the
parametric equation of one such arbitrary path x : I ⊆ R → R3 lying inS with x(t0) = x0
for some t0 ∈ I . Then, the restriction of f to x can be written as a function of a single
variable t. That is:

F (t) := f(x(t))

Because x0 is an extremum of f on the whole of S, it is also an extremum on the path x.

Since F is a differentiable function of t, by the interior-extremum theorem, it follows that

F ′(t0) = 0. The chain rule implies that:

F ′(t) = ∇f(x) · x′(t)

Evaluating at t = t0, we have:

F ′(t0) = 0 = ∇f(x(t0)) · x′(t0)

Thus, ∇f(x(t0)) is perpendicular to any curve in S passing through x0; that is ∇f(x0)
is normal to S at x0. We’ve already seen previously that the gradient vector ∇g(x0) is
also normal to S at x0. Since the normal direction to the level S is uniquely determined,
we must conclude that ∇f(x0) and ∇g(x0) are parallel vectors. Therefore, there exists a
scalar λ such that:

∇f(x0) = λ∇g(x0)

3.3.5 The Gram-Schmidt Process.

The advantage of using an orthonormal basis is, that the coordinates of any vector are

explicitly given as inner products. Let {u1, u2, . . . , un} be an orthonormal basis of Rn.

And let v = c1u1 + . . .+ cnun be an arbitrary vector. Then we have:

ci = v · ui
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Moreover, the magnitude (norm) of the vector is given by the Pythagorean formula:

‖v‖22 = 〈v, v〉
= c21 + c22 + . . .+ c2n

Once we are convinced of the utility of orthogonal and orthonormal bases, a natural ques-

tion arises: how can we construct them? A practical algorithm was discovered Pierre-

Simon Laplace in the eighteenth century. Today, the algorithm is known as the Gram-

Schmidt process, after its rediscovery by Gram and twentieth century mathematician Schmidt.

LetW be a finite dimensional vector space, such that dimW = n. We assume that, we
already know some basis {w1, . . . ,wn} ofW , where n = dimW . Our goal is to use this

information to construct an orthogonal basis v1, v2, . . . , vn.

We will construct the orthogonal basis one-by-one. Since initially, we are not worrying

about normality, there are no conditions on the first orthogonal basis element v1, so there

is no harm in choosing :

v1 = w1

Note that, v1 6= 0, since w1 appears in the original basis. Starting with w2, the second

basis vector v2 must be orthogonal to the first: 〈v2, v1〉 = 0.

cv1

v1

w2

w2 − cv1

Figure. Resolving the vector w2 into two components (1) along u1 and (2) perpendicular

to u1.

Let us try to arrange this, by subtracting a suitable multiple of v1, and set:

v2 = w2 − cv1
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The orthogonality condition

0 = 〈v2, v1〉
= (w2 − cv1) · v1
= w2 · v1 − c ‖v1‖2

c =
w2 · v1
‖v1‖2

and therefore

v2 = w2 −

(
w2 · v1
‖v1‖2

)
v1

The linear independence of v1 = w1 and w2 ensures that v2 6= 0.

Next, we construct:

v3 = w3 − c1v1 − c2v2

by subtracting suitable multiples of the first two orthogonal basis elements from w3. We

want v3 to be orthogonal to both v1 and v2. Since we already arranged that v1·v2 = 0,
this requires:

0 = v3 · v1 = (w3 · v1)− c1 ‖v1‖2

0 = v3 · v2 = (w3 · v2)− c2 ‖v2‖2

And hence:

c1 =
w3 · v1
‖v1‖2

c2 =
w3 · v2
‖v2‖2

Therefore the next orthogonal basis vector isw given by the formula:

v3 = w3 −
w3 · v1
‖v1‖2

v1 −
w3 · v2
‖v2‖2

v2
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Since v1 and v2 are linear combinations of w1 and w2, we must have that v3 6= 0, since

otherwise this would imply that w3 can be written as a linear combination of w1 and w2

making them linearly dependent.

Continuing in the samemanner, suppose we have already constructed the mutually orthog-

onal vectors v1, . . . , vk−1 as linear combinations of w1, . . . ,wk−1. The next orthogonal

basis element vk will be obtained from wk by subtracting a suitable linear combination

of the previous orthogonal basis elements. In this fashion we establish the general Gram-

Schmidt formula -

vk = wk −
k−1∑
j=1

wk · vj
‖vj‖2

vj (3.24)

If we are after an orthonormal basis u1, . . . , un we merely normalize the resulting orthog-
onal basis vectors, setting uk = vk

‖vk‖ .

3.3.6 Modifications of the Gram-Schmidt process.

With the basic Gram-Schmidt algorithm now in hand, it is worth looking at a couple of

reformulations that have both practical and theoretical advantages. The first can be used

to construct orthonormal basis vectors u1, u2, . . . , un directly from the basisw1, . . . ,wn.

We begin by replacing each orthogonal basis vector in the basic Gram-Schmidt formula

(3.24) by its normalized version uj = vj/ ‖vj‖. The original basis vectors can be expressed
in terms of the orthonormal basis via a triangular system.

w1 = r11u1

w2 = r12u1 + r22u2

w3 = r13u1 + r23u2 + r33u3

...

wn = r1nu1 + r2nu2 + r3nu3 + . . .+ rnnun

(3.25)

The coefficients rij can, in fact, be computed directly from these formulas. Indeed taking,
the inner product of the equation for wj with the orthonormal basis vector ui for i ≤ j,
we obtain in view of the orthonormality constraints:

wj · ui = r1ju1 · ui + . . .+ rijui · ui + . . .+ rjjuj · ui
= rij

and hence:

rij = 〈wj , ui〉 (3.26)
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On the other hand, we have:

‖wj‖2 = ‖r1ju1 + r2ju2 + . . .+ rjjuj‖2

= r21j + r22j + . . .+ r2jj
(3.27)

The pair of equations (3.26) and (3.27) can be rearranged to devise a recursive procedure to

compute the orthonormal basis. We begin by setting r11 = ‖w1‖ and so u1 = w1/r11. At
each subsequent stage, j ≥ 2, we assume that we have already constructed u1, . . . , uj−1.

We then compute

rij = 〈wj , ui〉 for each i = 1, 2, . . . , j − 1 (3.28)

We obtain next the orthonormal basis vector uj by computing

rjj =
√
‖wj‖2 − r21j − r22j − . . .− r2j−1,j

uj =
wj − r1ju1 − r2ju2 − . . .− rj−1,juj−1

rjj

(3.29)

3.3.7 The QR Factorization.

The Gram-Schmidt procedure for orthonormalizing bases of Rn can be reinterpreted as a

matrix factorization.

Let w1, . . . ,wn be a basis of R
n, and let u1, . . . , un be the corresponding orthonormal

basis that results from any one of the implementations of the Gram-Schmidt process. We

assemble both sets of column vectors to form non-singular n× n matrices:

A =
[
w1 w2 . . . wn

]
, Q =

[
u1 u2 . . . un

]
Since the ui form an orthonormal basis, Q is an orthogonal matrix. In view of the matrix

multiplication formula, the Gram-Schmidt equations (3.25) can be recast into an equivalent

matrix form:

A =
[
u1 u2 . . . un

]


r11 r12 r13 . . . r1n
r22 r23 . . . r2n

r33 . . . r3n
. . .

. . . rnn


= QR

Since the Gram-Schmidt algorithm works on any basis, the only requirement on the matrix

A is that it’s columns are linearly-independent and form a basis of Rn, and henceA can be
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any non-singular matrix. We have therefore established the celebrated QR-factorization
of non-singular matrices.

Theorem 3.14. Every non-singular matrix A can be factored, A = QR into the product of an

orthogonal matrix Q and an upper triangular matrix R.

3.3.8 Numerically stable implementation of QR-Factorization.

We can treat all vectors simultaneously instead of sequentially and compute in the j = 1st
iteration:

u1 = w1/r11

w
(2)
2 =

(
w

(1)
2 −

〈
w

(1)
2 , u1

〉
u1

)
w

(2)
3 =

(
w

(1)
3 −

〈
w

(1)
3 , u1

〉
u1

)
...

w(2)
n =

(
w(1)

n −
〈
w(1)

n , u1

〉
u1

)
Note that, the vectors w

(2)
2 ,w

(2)
3 , . . . ,w

(2)
n are orthogonal to u1.

In the j = 2nd iteration, we compute:

u2 = w
(2)
2 /r22

w
(3)
3 =

(
w

(2)
3 −

〈
w

(2)
3 , u2

〉
u2

)
w

(3)
4 =

(
w

(2)
4 −

〈
w

(2)
4 , u2

〉
u2

)
...

w(3)
n =

(
w(2)

n −
〈
w(2)

n , u2

〉
u2

)
Sincew

(2)
2 was orthogonal to u1, u2must also be orthogonal to u1. Further,w

(3)
3 , . . . ,w

(n)
3

are orthogonal to both u1, u2.

In particular, in the jth iteration we compute:
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uj = w
(j)
j /rjj

w
(j+1)
j+1 =

(
w

(j)
j+1 −

〈
w

(j)
j+1, uj

〉
uj

)
w

(j+1)
j+2 =

(
w

(j)
j+2 −

〈
w

(j)
j+2, uj

〉
uj

)
...

w(j+1)
n =

(
w(j)

n −
〈
w(j)

n , uj

〉
uj

)
We can summarize the above steps as follows. We iterate j = 1 to n. For j = 1, we start

with the initial basis w
(1)
k = wk , and set u1 = w

(1)
1 /r11.

In the jth iteration, we set uj = w
(j)
j /rjj and for all k = j + 1 to n, we let w

(j+1)
k =

w
(j)
k −

〈
w

(j)
k , uj

〉
uj . Also, we set rjk =

〈
w

(j)
k , uj

〉
.

Listing 1: QR Factorization

#include <iostream>
#include <Eigen/Dense>
#include <cmath>

using Eigen::MatrixXd;

MatrixXd QRFactorization(MatrixXd& A)
{

const int dimSize{ A.rows() };

MatrixXd R(dimSize, dimSize);

//We proceed column-wise and iteratively build the orthonormal
vectors u_0, u_1, ..., u_{n-1}

for (int j{ 0 }; j < dimSize; ++j)
{

// The scalar r_jj = ||w_j^(j)||
for (int i{ 0 }; i < dimSize; ++i)
{

R(j, j) += A(i, j) * A(i, j);
}
R(j, j) = sqrt(R(j, j));

// The vector u_j = w_j^(j)/r_jj
for (int i{ 0 }; i < dimSize; ++i)
{

A(i, j) = A(i, j) / R(j, j);
}

// for all k=j+1 to n-1, this loop computes the vectors:
// w_k^(j+1) = w_k^(j) - <w_k^(j),u_j>u_j
for (int k{ j + 1 }; k < dimSize; ++k)
{

//this loop computes the inner product of the vector w_k
with u_j
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double sum{ 0 };
for (int i{ 0 }; i < dimSize; ++i)
{

sum += A(i, k) * A(i, j);
}

R(j, k) = sum;

for (int i{ 0 }; i < dimSize; ++i)
{

A(i, k) = A(i, k) - sum * A(i, j);
}

}
}

}

3.3.9 Gram Matrices.

Symmetric matrices whose entries are given by the inner products of elements of an inner

product space are called Gram matrices, after the Danish mathematician Jorgen Gram.

Definition 3.11. Let V be an inner product space, and let v1, . . . , vn ∈ V . The associated
Gram matrix

K =


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉


is the n× n symmetric matrix whose entries are the inner-products between the selected
vector space elements.

Theorem 3.15. All Gram matrices are positive semi-definite.

Proof. Let K be an arbitrary Gram matrix. To prove the positive semi-definiteness of K ,
we need to examine the associated quadratic form:

q(x) = x′Kx

=

n∑
i=1

n∑
j=1

kijxixj

But, kij = 〈vi, vj〉. Substituting the values for the matrix entries, we obtain:
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q(x) =

n∑
i=1

n∑
j=1

〈vi, vj〉xixj

For intuition, let’s choose n = 2. The quadratic form becomes:

q(x) = 〈v1, v1〉x2
1 + 〈v1, v2〉x1x2 + 〈v2, v1〉x2x1 + 〈v2, v1〉x2

2

= 〈x1v1 + x2v2, x1v1 + x2v1〉 {Bi-linearity of inner products}

= ‖x1v1 + x2v2‖2

Therefore, we can write the original quadratic form as a single inner product:

q(x) =

〈
n∑

i=1

xivi,

n∑
j=1

xjvj

〉

=

∥∥∥∥∥
n∑

i=1

xivi

∥∥∥∥∥
2

= ‖v‖2 {Norm ‖·‖ is positive semi-definite}
≥ 0

Moreover,

3.3.10 Positive Definiteness.

Gram matrices furnish us with an almost inexhaustible supply of positive semi-definite

matrices. However, we still do not know how to test whether a given symmetric matrix is

positive definite.

From elementary school, we recall the algebraic technique known as completing the square,

first arising in the derivation of the formula for the solution to the quadratic equation

q(x) = ax2 + 2bx+ c = 0 (3.30)

The idea is to combine the first two terms in the equation (3.30) to form a perfect square

and thereby rewrite the quadratic function in the form :
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q(x) = a

[
x2 + 2

b

a
x+

c

a

]
= a

[
x2 + 2x · b

a
+

(
b

a

)2

+
c

a
−
(
b

a

)2
]

= a

[(
x+

b

a

)2

+
ac− b2

a2

]

As a consequence,

(
x+

b

a

)2

=
b2 − ac

a2

The familiar quadratic formula:

x =
−b±

√
b2 − ac

a

follows by taking the square root on both sides and then solving for x.

We can perform the same kind of manipulation on a homogenous quadratic form:

q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 (3.31)

In this case, provided a 6= 0, completing the square amounts to writing:

q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2

= a

[
x2
1 + 2x1 ·

b

a
x2 +

(
b

a
x2

)2

+ cx2
2 −

b2

a2
x2
2

]

= a

[(
x1 +

b

a
x2

)2

+
ac− b2

a2
x2
2

]

= ay21 +
ac− b2

a
y22

(3.32)

The net result is to re-express q(x1, x2) as a simpler sum of squares of the new variables:

y1 = x1 +
b

a
x2, y2 = x2 (3.33)
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It is not hard to see that the final expression in (3.32) is positive definite, as a function of

y1 and y2 if and only if both coefficients are positive:

a > 0,
ac− b2

a
> 0 (3.34)

Our goal is to adapt this simple idea to analyse the positive semi-definiteness of quadratic

forms depending on more than two variables. To this end, let us write the quadratic form

identity in the matrix form. The original quadratic form in (3.31) can be written as:

q(x) = x′Kx

=
[
x1 x2

] [ a b
b c

] [
x1

x2

]
Similarly, the right hand side of (3.32) can be written as:

q̂(y) = y′Dy, where D =

[
a 0

0 ac−b2

a

]
, y =

[
y1
y2

]
(3.35)

Anticipating the final result, the equations (3.33) connecting x and y can themselves be

written in the matrix form as:

y = L′x or

[
y1
y2

]
=

[
x1 +

b
ax2

x2

]
, where L′ =

[
1 0
b/a 1

]
(3.36)

Substituting yinto (3.35), we obtain:

y′Dy = (L′x)′D(L′x) = x′LDL′x = x′Kx, where K = LDL′ (3.37)

We are thus led to the realization that completing the square is the same as the LDL′

factorization of a symmetric matrixK .

From basic algebra, we know that, ifA is a non-singular matrix, with all it’s pivot elements

a
(k)
kk non-zero in the Gaussian elimination process, then A = LDU where L and U are

lower and upper uni-triangular matrices andD is a diagonal matrix consisting of the pivots

of A. If the matrix is symmetric, then it admits the unique factorization LDL′.

The identity (3.37) is therefore valid for all real symmetric matrices that are non-singular

and can be reduced to an upper triangular matrix by performing elementary row operations

(without row interchanges). It also shows how to write the associated quadratic form as a

sum of squares:

q(x) = x′Kx = y′Dy = d1y
2
1 + d2y

2
2 + . . .+ dny

2
n where y = L′x (3.38)
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The coefficients di are the diagonal entries ofD, which are the pivots ofK . The diagonal
quadratic form is positive definite, y′Dy > 0 for all y 6= 0 if and only if, when performing

the Gaussian elimination process, all the pivots are positive. We can now add this to our

list of standard results.

Theorem 3.16. (Positive Definiteness) Let K be a n × n real symmetric positive definite (SPD)

matrix. Then the following statements are equivalent.

(i) K is non-singular and can be reduced to an upper triangular matrix by performing elementary row

operations (without row permutations), and it has positive pivot elements when performing Gaussian elim-

ination.

(ii)K admits a factorizationK = LDL′, whereD = diag(d1, . . . , dn) such that di > 0 for all

i = 1, 2, 3, . . . , n.

3.3.11 Cholesky Factorization.

The identity (3.37) shows us how to write an arbitrary regular quadratic form q(x) as linear
combination of squares. We can push this result slightly further in the positive definite

case. Since each pivot di is positive, we can write the quadratic form as a sum of squares:

d1y
2
1 + d2y

2
2 + . . .+ dny

2
n = (

√
d1y1)

2 + (
√
d2y2)

2 + . . .+ (
√
dnyn)

2

= z21 + z22 + . . .+ z2n

where zi =
√
diyi. In the matrix form, we are writing:

q̂(y) = y′Dy

= z′z

= ‖z‖2

where z = Sy, with S = diag(
√
d1,

√
d2, . . . ,

√
dn). Since D = S2, the matrix S

can be thought of as a square root of the diagonal matrix D. Substituting back into the
equationK = LDL′, we deduce the Cholesky factorization:

K = LDL′

= LSS′L′

= LS(LS)′

= MM ′

of a positive definite matrix, first proposed by the early twentieth-century French geogra-

pher Andrew Louis Cholesky for solving problems in geodetic surveying. Note that,M is

a lower triangular matrix with all positive diagonal entries, namely the square roots of the

pivots: mii =
√
di.
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Example 3.3. Let the matrix K =

 1 2 −1
2 6 0
−1 0 9

. Let KX = I . We consider the

augmented matrix
[
K | I

]
. Performing Gaussian elimination, we have:

 1 2 −1 | 1 0 0
2 6 0 | 0 1 0
−1 0 9 | 0 0 1


The pivot element a

(1)
11 = 1. Performing R2 = R2 − 2R1and R3 = R3 +R1, the above

system is row-equivalent to:

 1 2 −1 | 1 0 0
0 2 2 | −2 1 0
0 2 8 | 1 0 1


The pivot element a

(2)
22 = 2. Performing R3 = R3 − R2, the above system is row-

equivalent to:

 1 2 −1 | 1 0 0
0 2 2 | −2 1 0
0 0 6 | 3 −1 1


The pivot element a

(3)
33 = 6. We have now reduced the system to the form

[
DU | C

]
,

where U is an upper uni-triangular matrix. Thus, Gaussian Elimination produces the fac-

tors:

L =

 1 0 0
2 1 0
−1 1 1

 , D =

 1 0 0
0 2 0
0 0 6

 , LT =

 1 2 −1
0 1 1
0 0 1


Thus,

M = LS =

 1 0 0
2 1 0
−1 1 1

 1 0 0

0
√
2 0

0 0
√
6

 =

 1 0 0

2
√
2 0

−1
√
2

√
6


andK = MM ′.

We conclude our discussion by observing the following:

Lemma 3.3. If a square matrix K is SPD, it admits a Cholesky factorization of the form K =
MMT .
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Example 3.4. Prove that, if K is real SPD(symmetric positive definite matrix), then the

diagonal elements ofK are positive.

Proof. Since K is real SPD, K admits a factorization K = LLT . Since the diagonal

element (j, j) is the inner product of the j-th row of L and the j-th column of LT , we

have:

kjj =

n∑
m=1

ljml′mj

But, ljm = l′mj , since L =
(
LT
)T

. Hence, kjj is a sum of squares. Further, since

the diagonal elements of L, that is, all elements ljj are strictly positive, the sum kjj =
l2j1+. . .+l2jj+. . .+l2jn > 0. Consequently, the diagonal elements ofK are positive.

3.3.12 Cholesky Factorization Algorithm.

We adopt the commonly used notation where Greek lower-case letters refer to scalars,

lower-case letters refer to (column) vectors and upper case letters refer to matrices. The ?
refers to a part of A that is neither stored nor updated. By substituting these partitioned

matrices into A = LL′ we find that:

[
α11 aT21
a21 A22

]
=

[
0

l21 L22

] [
λ11 lT21
0 LT

22

]
=

[
λ2
11 ?

λ11l21 l21l
T
21 + L22L

T
22

]
so that :

a11 = λ2
11 ?

a21 = λ11l21 A22 = l21l
T
21 + L22L

T
22

and hence:

λ11 =
√
a11 ?

l21 = a21/λ11 L22 = Cholesky(A22 − l21l
T
21)

The last equality is clever. Essentially, ifA22 = l21l
T
21−L22L

T
22, wemust have: L22L

T
22 =

A22 − l21l
T
21. So, to find L22, we recursively perform the cholesky factorization of the

matrix A22 − l21l
T
21. These equalities motivate the following block algorithm:

1. Partition A =
α11 ?
a21 A22

.

2. Overwrite α11 := λ11 =
√
α11.

3. Overwrite a21 := l21 = a21/λ11.

4. Overwrite A22 := A22 − l21l
T
21.
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5. Continue with A = A22.

We can also implement a serial algorithm by multiplying out the matrices:


a11 a21 a31 a41
a21 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44

 =


l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44




l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44



=


l211 0 0 0

l21l11 l221 + l222 0 0
l31l11 l31l21 + l32l22 l231 + l232 + l233 0
l41l11 l41l31 + l42l32 l41l31 + l42l32 + l43l33 l241 + l242 + l243 + l244


We can thus solve for the elements of the matrix L, column-by-column. The expressions
for ljj and lij in general, are given by:

ljj =

√√√√ajj −
j−1∑
k=1

l2jk

lij =
1

ljj
(aij −

j−1∑
k=1

lik · ljk), ∀i > j

Listing 2: Cholesky Factorization

#include <iostream>
#include <Eigen/Dense>
#include <cmath>

using Eigen::MatrixXd;

// Cholesky-Crout algorithm starts from the upper-left corner of the
matrix L and proceeds

// to calculate matrix column by column
MatrixXd choleskyDecomposition(const MatrixXd& A)
{

MatrixXd L = MatrixXd::Zero(A.rows(), A.cols());

for (int j{ 0 }; j < A.cols(); ++j)
{

double sum{ 0.0 };
for (int k{ 0 }; k < j; ++k)
{

sum += L(j, k) * L(j, k);
}
L(j, j) = sqrt(A(j, j) - sum);

for (int i{ j + 1 }; i < A.rows(); ++i)
{
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double sum{ 0.0 };
for (int k{ 0 }; k < j; ++k) {

sum += L(i, k) * L(j, k);
}

L(i, j) = (A(i, j) - sum)/L(j,j);
}

}

return L;
}

int main()
{

MatrixXd K(3, 3);

K << 4, 12, -16,
12, 37, -43,
-16, -43, 98;

MatrixXd L = choleskyDecomposition(K);

std::cout << "The SPD(Symmetric Positive Definite) matrix K is : "
<< std::endl;

std::cout << K << std::endl;
std::cout << "The Cholesky Decomposition of K into K=LL\' yields L 

:" << std::endl;
std::cout << L << std::endl;

return 0;
}

3.3.13 Eigen-decomposition of real symmetric matrices.

We review couple of lemmas from basic algebra, which we shall need in the main result.

Lemma 3.4. Every linearly independent sequence can be extended to a basis.

Let V be a finite-dimensional vector space and let l1, l2, . . . , lnbe linearly independent. Then, there

exists a basis of V containing l1, l2, . . . , ln.

Proof. LetL = l1, l2, . . . , ln. SinceV is finite-dimensional, there exist elements v1, v2, . . . , vm
of V such that they span V .

Define a sequence of sequences of the elements of V as follows. Set L0 = L and for

i ≥ 0, define:

Li+1 =

{
Li if vi ∈ span(Li)

Li, vi+1 otherwise

Here, Li, vi+1 just means take the sequence Li and add vi+1 on to the end.
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Note that in either case, vi+1 ∈ span(Li+1) and also that L0 ⊆ L1 ⊆ . . . ⊆ Lm.

By construction, each sequence Li is linearly independent and in particular Lm is lin-

early independent. Furthermore, span(Lm) contains {v1, . . . , vm} and therefore con-
tains span(Lm) = V . Therefore,Lm is a basis for V containingL . This completes the
proof.

Lemma 3.5. (EMHE) Every matrix has an (atleast one) eigenvalue, and a corresponding eigenvector.

Proof. This is just the Fundamental Theorem of Algebra(FTA), but it’s still worth enumer-

ating as a theorem.

Let A ⊆ Cn×n and the scalar field F = C.

Let v be any non-zero vector in Cn. Consider the list L = v, Av, A2v, . . . , Anv. There

are n + 1 vectors in the list, so they must be linearly dependent. There exists scalars
a0, a1, . . . , an from C not all zero, such that:

a0v+ a1Av+ a2A
2v+ . . .+ anA

nv = 0

By FTA, the polynomial equation of degree n:

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n = 0

has n linear factors

p(x) = (x− λ1)(x− λ2) · · · (x− λn) = 0

where λi ∈ C, i = 1, 2, . . . , n.

Putting it all together,

p(A)v = 0 = a0v+ a1Av+ a2A
2v+ . . .+ anA

nv

= (a0 + a1A+ a2A
2 + . . .+ anA

n)v

= (A− λ1I)(A− λ2I) · · · (A− λnI)v

This shows that the composition of the factors has a non-trivial nullspace. ker((A −
λ1I)(A − λ2I) · · · (A − λnI)) 6= {0}. So, atleast one of the factors must fail to be
injective. There exists λi, such that (A − λi)v = 0 such that v 6= 0. Thus, A has atleast

one eigenvalue and a corresponding eigenvector.
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Theorem 3.17. (Spectral Theorem) Every real symmetric matrix is diagonalizable.

Let A be a symmetric n× n real matrix. Then,

1) The eigenvalues of A are real.

2) There exists an orthonormal basis {q1, q2, . . . , qn} forRn consisting of the eigenvectors ofA. That

is, there is an orthogonal matrix Q so that Q−1AQ = Λ is diagonal.

Proof. (I) Before we get to the proof, note that for any square matrix A, we have:

〈Ax, y〉 = x′A′y

= 〈x, A′y〉

Since for a symmetric matrix A, we have, A = A′, it follows that:

〈Ax, y〉 = 〈x, Ay〉

Or using the dot-product notation, we could write:

(Ax) · y = x · (Ay)

Suppose v 6= 0 be a non-zero vector in Rn such that there exists a complex scalar λ,
satisfying:

Av = λv (3.39)

We can therefore write:

(Av) · v = (λv) · v = λ(v · v) (3.40)

Alternatively,

(Av) · v = v · (Av) (3.41)

We can now take the complex conjugate of the (3.39) equation. Remember thatA is a real

matrix so A = A. Thus, we have the conjugated version of the eigen-value equation:

(Av) = Av = Av = (λv) = λv

84



In equation (3.40), if we replace the second vector v with its conjugate, v, we get:

(Av) · v = λ(v · v) (3.42)

In equation (3.41), if we replace the second vector v with its conjugate, v, we get:

(Av) · v = v · (Av) = v · (λv) = λ(v · v) (3.43)

Now, since v is an eigenvector, it cannot be the zero vector.

Without loss of generality, if v = (v1, . . . , vn), then v · v = |v1|2 + . . . + |vn|2 6= 0, so
v · v 6= 0.

The two expressions for (Av) · v are equal, so (λ − λ)(v · v) = 0. But, (v · v) 6= 0, so
λ = λ. Therefore, λ ∈ R.

(II) We proceed by mathematical induction on n.

For n = 1, any 1× 1 symmetric matrix is already diagonal. Since A and v ∈ V are both

scalars, Av = λv where λ = A. Thus, we can pick any non-zero scalar v to form a basis

of R. And we can write, A = P−1ΛP , where P = I and Λ = A.

Induction hypothesis: Every k×k symmetric matrix is diagonalizable for k = 1, 2, 3, . . . , n−
1. If C is a real symmetric matrix of size k × k, then there exists an orthogonal matrix R
such that R−1CR is diagonal.

By lemma (3.5), the square matrix A has atleast one eigenvalue. Suppose λ1 is an eigen-

value of the matrix A. By part (I), we know that λ1 ∈ R. Choose a unit vector q1 that

is an eigenvector with eigenvalue λ1. (Obviously, this is no problem. We can pick an

eigenvector and then make it a unit vector by dividing by it’s length.)

By lemma (3.4), we can extend this to a basis {q1,w2, . . . ,wn} of V . By the Gram-
Schmidt orthogonalization algorithm, given the basis {q1,w2, . . . ,wn}, we can find a
corresponding orthonormal basis {q1, q2, . . . , qn} of V .

Now, we huddle these basis vectors together as column-vectors of a matrix and formulate

the matrix P .

P =
[
q1 q2 . . . qn

]
By definition, P is an orthogonal matrix.

Let

B = P−1AP

We are interested to show that B is diagonal.
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Step I. B is symmetric.

We have:

BT = (P−1AP )T

= (PTAP )T {P−1 = PT }
= PTAT (PT )T

= PTATP

= PTAP {A is symmetric}
= B

We are now going to try and write B in the block form to try to see the structure that this

matrix must have and hope that it looks like, it is going to be diagonal.

Step II. The structure of B.

The way we do this, is to consider the matrixB post-multiplied by e1. ConsiderBe1. This

should actually give us the first column of B. Now, we also know that B = PTAP . So,
we could actually say, well,

PTAPe1 = PTAq1

Now, remember that q1 is the normalized eigenvector corresponding to the eigenvalue

λ1. So, Aq1 = λ1q1. That means, this is equal to:
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PTAq1 = PTλ1q1

= λ1P
tq1

= λ1


qT1
qT2
...

qTn

 q1

= λ1


qT1 q1
qT2 q1
...

qTnq1



= λ1


1
0
...

0



=


λ1

0
0
0


This is the first column of the matrix B. Since B = BT , the first row should also be

[
λ1 0 0 0

]
So, we can write the matrix B in the form:

B =

[
λ1 O
O C

]

The first row and the first column are satisying the need to be diagonal.

Step III.

We know that C is a n− 1× n− 1 symmetric matrix. By the inductive hypothesis, C is

diagonalizable and further there exists an orthogonal matrix R, such that R−1CR = D
where D is diagonal.

Define the matrix Q as:

Q := P

[
1 01×n−1

0n−1×1 R

]
(3.44)
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Our claim is that Q is orthogonal and Q−1AQ is diagonal.

(i) We have:

Q−1 =

[
1 01×n−1

0n−1×1 R−1

]
P−1 {Reverse order law}

=

[
1 01×n−1

0n−1×1 RT

]
PT {P and R are orthogonal}

But,

QT =

[
1 01×n−1

0n−1×1 RT

]
PT

So,

QT = Q−1

Thus, Q is orthogonal.

(ii) Well, let’s compute Q−1AQ.

Q−1AQ = QTAQ {Q is orthogonal}

=

[
1 01×n−1

0n−1×1 RT

]
PTAP

[
1 01×n−1

0n−1×1 R

]
=

[
1 01×n−1

0n−1×1 RT

]
B

[
1 01×n−1

0n−1×1 R

]
=

[
1 01×n−1

0n−1×1 RT

] [
λ1 01×n−1

0n−1×1 C

] [
1 01×n−1

0n−1×1 R

]
=

[
λ1 01×n−1

0n−1×1 RTC

] [
1 01×n−1

0n−1×1 R

]
=

[
λ1 01×n−1

0n−1×1 RTCR

]
Since RTCR is diagonal, it follows that Q−1AQ is diagonal. This closes the proof.

3.4 Covariance and MGF of random variables.

Definition 3.12. If (X,Y ) is a random vector, then the covariance of (X,Y ) is given by:

Cov(X,Y ) = E [(X − EX) (Y − EY )] = E [XY ]− E [X] · E [Y ] (3.45)
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3.4.1 Expected value of a random matrix.

Suppose our random experiment is modeled by the probability space (Ω,F ,P). We can
define the expected value of a random matrix in a component-wise manner.

Suppose that X is anm× n matrix of real-valued random variables, whose (i, j) entry is
denoted by Xij . Equivalently, X is a randomm× n matrix. The expected value E(X) is
defined to be them× n matrix whose (i, j) entry is EXij , the expected value of Xij .

Many of the basic properties of expected value of random variables have analogous results

for expected values of random matrices/vectors. If X and Yare randomm× n matrices,
the linearity property holds: E(X + Y) = EX + EY. Similarly, if X is a n × p random
matrix and a is a constant m × n matrix, the constant factor can be pulled out of the
expectation. E [aX] = aE [X].

3.4.2 Covariance Matrices.

Definition 3.13. Suppose that X is a random vector in Rm and Y is a random vector in

Rn. The covariance matrix of X and Y is them× n matrix Cov(X,Y) whose (i, j) entry
is Cov(Xi, Yj).

Definition 3.14. Let X = (X1, . . . , Xn) be a random vector in R
n. Then the covariance

matrix of X, denoted by Σ is the n× n matrix, whose (i, j) entry is Cov(Xi, Xj).

Theorem 3.18. Let (X,Y ) be random variables. Cov(X,Y ) has the following properties:

(i) Cov(X,X) = V ar(X)

(ii) Cov(X,Y ) = Cov(Y,X)

(iii) Cov(X, c) = 0

(iv) Scaling property: Cov(aX, Y ) = aCov(X,Y )

(v) Bi-linearity:

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)

Cov(X, cY + dZ) = cCov(X,Y ) + dCov(X,Z)

(vi) V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

SinceCov(X,−Y ) = −Cov(X,Y ), it follows thatV ar(X−Y ) = V ar(X)+V ar(−Y )+
2Cov(X,−Y ) = V ar(X) + V ar(Y )− 2Cov(X,Y )

V ar(X1 +X2 + . . .+Xn) =
∑n

i=1 V ar(Xi) +
∑n

i=1

∑n
j=1 Cov(Xi, Xj)

Theorem3.19. LetX = (X1, X2, . . . , Xn) be a random vector with mean vectorµ = (µ1, µ2, . . . , µn)
and n× n covariance matrix Σ. Then, Σ is positive semi-definite.

Proof. We have:
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Σ =


E(X1 − µ1)(X1 − µ1) E(X1 − µ1)(X2 − µ2) . . . E(X1 − µ1)(Xn − µn)
E(X2 − µ2)(X1 − µ1) E(X2 − µ2)(X2 − µ2) . . . E(X2 − µ2)(Xn − µn)

...
...

. . .
...

E(Xn − µn)(X1 − µ1) (Xn − µn)(X2 − µ2) . . . (Xn − µn)(Xn − µn)



= E




X1 − µ1

X2 − µ2

...

Xn − µn

 [ X1 − µ1 X2 − µ2 . . . Xn − µn

]


= E [(X− µ)(X− µ)′]

Let a be an arbitrary(not random) vector in Rn. Then,

a′Σa = a′E [(X− µ)(X− µ)′] a

= E [a′(X− µ)(X− µ)′a]

= E
[
((X− µ)′a)

′
((X− µ)′a)

]
= E[(X− µ)′a]2

≥ 0

Consequently, Σ is a positive semi-definite matrix.

Definition 3.15. The MGF of a random variable X on (Ω,F ,P) is the function on R
defined by:

MX(t) = E
[
etX
]

Example 3.5. The MGF of a standard Gaussian random variable given by:

MZ(t) = E
[
etZ
]

=

∫ ∞

−∞
etzφ(z)dz

=
1√
2π

∫ ∞

−∞
etze−z2/2dz

We can complete the square in the exponent as follows:
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exp

(
tz − z2

2

)
= exp

[
−1

2

(
z2 − 2tz + t2 − t2

)]
= exp

[
−1

2
(z − t)

2
+

t2

2

]

So,

MZ(t) =
et

2/2

√
2π

∫ ∞

−∞
e−(z−t)2/2dz

=
et

2/2

√
2π

√
2π

= et
2/2

Differentiating with respect to t, we have:

M ′
Z(t) = tet

2/2

M ′′
Z(t) = et

2/2 + t2et
2/2

M
(3)
Z (t) = 3tet

2/2 + t3et
2/2

M
(4)
Z (t) = 3et

2/2 + 6t2et
2/2 + t4et

2/2

So, the mean of the standard gaussian random variable isM ′
Z(0) = 0, the second moment

and variance of a standard gaussian random variable is M ′′
Z(0) = 1. The skewness of

the standard gaussian random variable is M
(3)
Z (0) = 0, while the kurtosis of a standard

gaussian random variable isM
(4)
Z (t) = 3.

Definition 3.16. (Joint Moment Generating Function (MGF)). The joint MGF of a random

vector X = (X1, X2, . . . , Xn) on (Ω,F ,P) is the function defined on Rn by:

MX(t) = E
[
exp
(
tTX

)]
= E [exp (t1X1 + t2X2 + . . .+ tnXn)] (3.46)

The following result will be stated without proof. It will be useful when studying Gaussian

vectors.

Proposition 3.3. Let (Ω,F ,P) be a probability space. Two random vectors X and Y that have

the same moment generating function have the same distribution.

Example 3.6. Consider (X,Y ) a random vector with value in R2 such thatX and Y are

IID with standard Gaussian distribution. Then, the joint PDF is:
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f(x, y) =
1√
2π

e−x2/2 × 1√
2π

e−y2/2 =
1√
2π

e−(x2+y2)/2

The moment generating function is obtained by independence:

M(X,Y )(t1, t2) = E[et1X+t2Y ]

= E
[
et1X · et2Y

]
= E

[
et1X

]
· E
[
et2X

]
= et

2
1/2 · et

2
2/2

= e(t
2
1+t22)/2

More generally, we can consider n IID random variables with standard Gaussian distribu-

tion. We then have the joint PDF:

f(x1, x2, . . . , xn) =
e−(x2

1+x2
2+...+x2

n)/2

(2π)n/2

In order to work with random vectors, we frequently use the change-of-variables theorem

from vector calculus.

Theorem 3.20. If f : R2 → R and T(x1, x2) = (x1(y1, y2), x2(y1, y2)) is a linear

transformation that maps the domain D∗to D, then we have:

∫ ∫
D

f(x1, x2)dx1dx2 =

∫ ∫
D∗

f(x1(y1, y2), x2(y1, y2))

∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣ dy1dy2
Corollary 3.2. If X1, X2 have the joint density function f , and T is any linear transformation, then

the pair (Y1, Y2) = T (X1, X2) has the density function:

f(Y1,Y2)(y1, y2) = f(x1(y1, y2), x2(y1, y2))

∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣
Example 3.7. (Computations with random vectors). Let (X,Y ) be two IID standard Gaussian
random variables. We can think of (X,Y ) as the random point in R2 with x-coordinate
X and y-coordinate Y .

First off, let’s compute the probability that the point (X,Y ) is in the unit disc D =
{(x, y)|x2 + y2 = 1}. The probability is given by the double integral:
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P ((X,Y ) ∈ D) =

∫ ∫
D

1

2π
e−(x2+y2)/2dxdy

=

∫ +1

−1

∫ +
√
1−x2

−
√
1−x2

1

2π
e−(x2+y2)/2dxdy

We apply the linear transformation T : R2 → R2,

T(r, θ) = (x, y) = (r cos θ, r sin θ)

The Jacobian
∂(x,y)
∂(r,θ) is given by:

∂(x, y)

∂(r, θ)
= det

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣
= r(cos2 θ + sin2 θ)

= r

We need to identify the region D∗ that T maps in a one-to-one fashion to D. We have:

D∗ = {(θ, r)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1}

Thus, D∗ is a rectangular region. We can write our double integral as:

P ((X,Y ) ∈ D) =
1

2π

∫ 2π

0

∫ 1

0

e−r2/2rdrdθ

=
1

2π

∫ 2π

0

∫ 1/2

0

e−ududθ

=
1

2π

∫ 2π

0

−
[
e−u

]1/2
0

dθ

=
1

2π

∫ 2π

0

(1− e−1/2)dθ

= (1− e−1/2)
1

2π

∫ 2π

0

dθ

= (1− e−1/2)
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Consider now the random variableR = (X2+Y 2)1/2 giving the random distance of the
point to the origin. Let’s compute E[R]. Now, R is a function of the random variables

(X,Y ). Hence, by LOTUS, we must have:

E [R] =

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)1/2f(X,Y )(x, y)dxdy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)1/2e−(x2+y2)/2dxdy

Again by transforming to the polar coordinates, we have:

E [R] =
1

2π

∫ 2π

0

∫ ∞

0

re−r2/2rdrdθ

=
1

2π

∫ 2π

0

∫ ∞

0

r2e−r2/2drdθ

By the product rule, the inner integral can be simplified as follows:

u dv

r re−r2/2dr

1 −e−r2/2

We have:

∫ ∞

0

udv = uv|∞0 −
∫ ∞

0

vdu

= −re−r2/2
∣∣∣∞
0

+

∫ ∞

0

e−r2/2dr

= 0 +

√
2π

2

So, the desired expectation is:

E[R] =

√
2π

2
· 1

2π

∫ 2π

0

dθ =

√
π

2

More generally, the CDF of R is given by:

P(R ≤ r) = P ((X,Y ) ∈ D)
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where D = {(x, y)|x2 + y2 ≤ r2}. We know that, the probability of a random vector

lying in a domain D is given by:

P((X,Y ) ∈ D) =

∫ ∫
D

fX,Y (x, y)dxdy

=

∫ ∫
D

1

2π
e−(x2+y2)/2dxdy

Again transforming to the Polar coordinates, we have:

P((X,Y ) ∈ D) =
1

2π

∫ 2π

0

∫ r

0

re−r2/2drdθ

=
1

2π

∫ 2π

0

−
[
e−r2/2

]r
0
dθ

= (1− e−r2/2)

Taking the derivative with respect to r, we get that the PDF of the R is:

fR(r) = re−r2/2

Consider now the random angle that the point (X,Y ) makes with the x-axis. That is,
the random variable Θ = arctan Y

X . It is not hard to compute the joint PDF of (R,Θ).
Define D = {(x, y)|x2 + y2 ≤ r2, y

x ≤ tan θ}.

We have:

P(R ≤ r,Θ ≤ θ) =

∫ ∫
D

1

2π
e−(x2+y2)/2dxdy

=

∫ θ

0

∫ r

0

1

2π
re−r2/2drdθ

=
= (1− e−r2/2)θ

2π

And the joint PDF is just f(R,Θ)(r, θ) =
1
2π re

−r2/2. In particular, the variables (R,Θ)
are independent since the joint the PDF is the product of the marginals. Θ is uniformly

distributed on [0, 2π] and has PDF fΘ(θ) =
1
2π .
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3.4.3 The Box-Mueller Method.

The above example gives an interesting method to generate a pair of IID standard Gaus-

sian random variables. This is called the Box-Mueller method. Let U1 and U2be two

independent uniform random variables on [0, 1]. Define the random variables (Z1, Z2)
as follows:

Z1 =
√
−2 logU1 cos(2πU2)

Z2 =
√
−2 logU1 sin(2πU2)

The CDF of the random variable R defined above is:

u = 1− e−r2/2

Expressing r in terms of u, we have:

e−r2/2 = 1− u

−r2

2
= log(1− u)

r2 = −2 log(1− u)

r =
√

−2 log(1− u)

By probability integral transform, we know that if U ′
1 is a Uniform[0, 1] random variable,

then the random variable F−1
X (U ′

1) has the CDF FX . By symmetry, U1 := 1 − U ′
1 is

also uniformly distributed on [0, 1]. Thus, the random variable
√
−2 logU1 has the same

distribution as R.

The CDF of the random variable Θ defined above is:

FΘ(θ) =
θ

2π

So, if U2 is a uniform random variable, then the random variable 2πU2 has the same

distribution as Θ in the discussion above.

As seen in the example above, if R and Θ are independent and their marginal CDFs are

FR(r) = 1 − e−r2/2 and FΘ(θ) = θ
2π , we know that the random variables defined by

X = R cosΘ and Y = R sinΘ are IID standard normal random variables.

More formally, we are making the transformation:
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T (X,Y ) = (R(X,Y ),Θ(X,Y )) =

(√
X2 + Y 2, arctan

(
Y

X

))
So, the density function of the pair (X,Y ) is given :

f(X,Y )(x, y) = f(R,Θ)(r, θ) ·

∣∣∣∣∣ ∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣
=

1

2π
re−r2/2

∣∣∣∣∣
x√

x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

∣∣∣∣∣
=

1

2π

√
x2 + y2 · e−(x2+y2)/2 · 1√

x2 + y2

=
1

2π
e−(x2+y2)/2

Hence, X and Y are IID standard Gaussian random variables.

3.5 Gaussian Vectors.

Definition 3.17. A n-dimensional random vector X = (X1, X2, . . . , Xn) is said to be
jointly Gaussian if and only if for all real vectors t = (t1, . . . , tn), the linear combination
tTX = t1X1 + t2X2 + . . .+ tnXn of (X1, X2, . . . , Xn) is a Gaussian random variable.

As a simple consequence of the above definition, if (X1, . . . , Xn) is Gaussian, then setting
ti = 1 and tj = 0 for all i 6= j, we have that each Xi is also Gaussian.

An equivalent definition can also be stated in terms of the joint MGF since an MGF

uniquely characterizes the distribution of a random variable. Before introducing the sec-

ond definition, we first make two important observations about the mean and variance of

a linear combination of random variables.

First, the mean of a linear combination of random variables is:

E[a1X1 + a2X2 + . . .+ anXn] = a1EX1 + . . .+ anEXn = aTEX

where EX is the mean vector. The variance is obtained with a short calculation using the
linearity of expectations:

V ar(a1X1 + . . .+ anXn) =

n∑
i=1

n∑
j=1

aiajCov(Xi, Xj)

= aTΣa

where Σ is the covariance matrix of X.
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Proposition 3.4. A random vector X = (X1, X2, . . . , Xn) is Gaussian if and only if the moment

generating function of X is:

E
[
exp
{
tTX

}]
= exp

[
tTµ+

1

2
tTΣt

]
(3.47)

where µ is the mean vector and Σ is the covariance matrix of X.

Proof. By the definition of joint MGF:

MX(t) = E
[
exp
{
tTX

}]
= E [exp {t1X1 + . . .+ tnXn}] (3.48)

But, we know that t1X1+ . . .+ tnXn is a Gaussian random variable with mean µ = tTµ
and variance σ2 = tTΣt.

The MGF of a univariate Gaussian random variable is :

MX(s) = E[exp(sX)] = exp(µs+
σ2s2

2
)

At s = 1, we have:

MX(1) = E[exp(X)] = exp(µ+
σ2

2
) (3.49)

Thus, if X = t1X1 + . . .+ tnXn then it follows that:

E [exp (t1X1 + . . .+ tnXn)] = exp

[
tTµ+

1

2
tTΣt

]

But from (3.48), this is the joint MGF of X. This closes the proof.

Proposition 3.5. Let X = (X1, . . . , Xn) be a Gaussian vector. Then, the covariance matrix is

diagonal, if and only if the random variables are independent.

Proof. (=⇒) direction.

We are given that the covariance matrix is diagonal. Our proposition is that the random

variables are independent.

Remember, that if X1 and X2 are independent random variables, Cov(X1, X2) = 0.
But, the converse is not true. We use the MGF of the random vector X, to prove this

claim.

We have:
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MX(t) = exp

[
tTµ+

1

2
tTΣt

]

Since Σ = Diag(σ2
1 , . . . , σ

2
n), we can express:

tTΣt = t21σ
2
1 + t22σ

2
2 + . . .+ t2nσ

2
n

So:

MX(t) = exp

[
t1µ1 +

σ2
1t

2
1

2

]
· · · exp

[
tnµn +

σ2
nt

2
n

2

]
= MX1(t1) · · ·MXn(tn)

Consequently, the MGF can factored into a product of the MGFs of X1, . . . , Xn. Thus,

X1, X2, . . . , Xn are independent random variables.

(⇐=) direction.

This direction is trivial. We are given that the random variables are independent. Then,

Cov(Xi, Xj) = 0 for all i 6= j. So, the covariance matrix is diagonal.

Before writing the joint PDF of a Gaussian vector in terms of the mean vector and the

covariance matrix, we need to introduce the important notion of degenerate vector. We

say a Gaussian vector is degenerate if its covariance matrix Σ is singular, detΣ = 0.

Example 3.8. Consider (Z1, Z2, Z3) IID standard Gaussian random variables. We de-

fineX = Z1 + Z2 + Z3, Y = Z1 + Z2 andW = Z3. Clearly, (X,Y,W ) is a Gaussian
vector. It has 0 mean and covariance:

 3 2 1
2 2 0
1 0 1


It is easy to check that detΣ = 3·2−2·2+1·(−2) = 0. Thus, (X,Y,W ) is a degenerate
Gaussian vector.

The above example is helpful to illustrate the notion. Note that we have the linear relation

X − Y − W = 0 between the random variables. Therefore, the random variables are

linearly dependent. In other words, one vector is redundant, say X , in the sense that its
value can be recovered from others for any outcome. The relation between degeneracy

and linear dependence is general.
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Lemma 3.6. Let X = (X1, X2, . . . , Xn) be a Gaussian vector. Then, X is degenerate if and

only if the coordinates are linearly dependent. That is, there exists c1, c2, . . . , cn, not all zero, such that
c1X1 + c2X2 + . . .+ cnXn = 0 with probability one.

Proof. (=⇒) direction.

We are given that the vectorX is degenerate. This implies that detΣ = 0 and the columns
of Σ are linearly dependent. Σ is non-singular.

TODO.

We are now ready to state the form of the PDF of Gaussian vectors.

Definition 3.18. (Joint PDF of Gaussian vectors). Let X = (X1, X2, . . . , Xn) be a
non-degenerate Gaussian vector with mean vector µ and covariance matrix Σ, written
N(µ,Σ). Then the joint density of X is given by the PDF:

f(x1, . . . , xn) =
1√

(2π)n| detΣ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.50)

where x ∈ Rn and Σ is PSD (Positive symmetric definite).

Example 3.9. Consider a Gaussian vector (X1, X2) of mean 0 and covariance matrix

Σ =

[
2 1
1 2

]
. The inverse of Σ can be found out as follows.

We consider the augmented matrix [Σ|I].

[
2 1 | 1 0
1 2 | 0 1

]
Performing R1 = 1/2R1, the above system is row equivalent to:

[
1 1

2 | 1
2 0

1 2 | 0 1

]
Performing R2 = R2 −R1, the above system is row equivalent to:

[
1 1

2 | 1
2 0

0 3
2 | − 1

2 1

]
Peforming R2 = 2

3R2, the above system is row equivalent to:

[
1 1

2 | 1
2 0

0 1 | − 1
3

2
3

]
Performing R1 = R1 − 1

2R2, the above system is row equivalent to
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[
1 0 | 2

3 − 1
3

0 1 | − 1
3

2
3

]

So, Σ−1 =

[
2/3 −1/3
−1/3 2/3

]
and detC = 3. By doing matrix operations, the joint

PDF of (X1, X2) is:

f(X1,X2)(x1, x2) =
1√

(2π)2 · 3
exp

(
−1

2

[
x1 x2

] [ 2/3 −1/3
−1/3 2/3

] [
x1

x2

])
=

1

2π
√
3
exp

(
−1

2

[
2/3x1 − 1/3x2 −1/3x1 + 2/3x2

] [ x1

x2

])
=

1

2π
√
3
exp

(
−1

3
x2
1 +

1

3
x1x2 −

1

3
x2
2

)
We will not prove proposition (3.18) yet. Instead, we will take a short detour and de-

rive it from a powerful decomposition of Gaussian vectors as a linear combination of IID

Gaussians. The decomposition is the generalization of making a random variable standard.

Suppose X is Gaussian with mean 0 and variance σ2.Then, we can write it as X = σZ ,
where Z is a standard normal random variable. (This makes sense even whenX is degen-

erate that is σ2 = 0). If σ2 6= 0, then we can reverse the relation to get:

Z =
X

σ

We generalize this procedure to Gaussian vectors.

Proposition 3.6. (Decomposition into IID). Let X = (X1, X2, . . . , Xn) be a Gaussian vector

of mean 0 and n×n covariance matrix C . If X is non-degenerate, there exists n IID gaussian random

variables Z1, Z2, . . . , Zn and an invertible n× n matrix A such that:

X = AZ, Z = A−1X (3.51)

The choice of Zs and thus the matrix A is generally not unique as the following simple

example shows:

Example 3.10. Consider the Gaussian vector (X1, X2) given by:

X1 = Z1 + Z2

X2 = Z1 − Z2

where Z1, Z2 are IID standard gaussians.
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The matrix A =

[
1 1
1 −1

]
. The covariance matrix of X is

[
2 0
0 2

]
. Since, the

covariance matrix is diagonal, by proposition (3.5), the random variables X1 and X2 are

independent.

Another choice of decomposition is simplyW1 = X1/
√
2 andW2 = X2/

√
2.

Proof of proposition 3.6.

Proof. This is done using the same Gram-Schmidt procedure as for Rn. The idea is to

take the variables one-by-one and subtract the components in the directions of the previ-

ous ones using covariance. The lemma (3.6) ensures that no random variables are linear

combinations of the others.

To start, we take Z1 = X1√
C11

. Clearly, Z1 is a standard normal random variable.

Then, we define Z ′
2 as:

Z ′
2 = X2 − E [X2Z1]Z1

And let

Z2 =
Z ′
2√

V ar(Z ′
2)

Firstly, sinceX2 andZ1 areGaussian random variables, it follows thatZ2 is also aGaussian

random variable. Moreover, E[Z2] =
1√

V ar(Z′
2)
·E[X2] = 0 and V ar(Z2) = 1. Further:

Cov(Z1, Z
′
2) = Cov(Z1, X2 − E [X2Z1]Z1)

= Cov(Z1, X2)− E [X2Z1]V ar(Z1)

= E [X2Z1]− E [X2Z1] (1)

= 0

Thus, Z2 is independent Gaussian with mean 0 and variance 1.

In the same way, we take Z3 to be:

Z ′
3 = X3 − E(X3, Z2)Z2 − E(X3, Z1)Z1

and
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Z3 =
Z ′
3√

V ar(Z ′
3)

Again, its easy to check that Z ′
3 is independent of Z2 and Z1. As above, we define Z3 to

be Z ′
3 divided by the square root of variance. This procedure is carried on until we run

out variables. Not that since C is non-degenerate, none of the variances of the Z ′
i will be

zero, and therefore they can be standardized.

The covariance matrixC of the Gaussian vector X with mean vectorµ = 0 can be written

in terms of A. Write A = (aij) for the (i, j)th entry of the matrix A. By the relation
X = AZ , we have:

Cov(Xi, Xj) = E(XiXj)

= E

[(
n∑

k=1

aikZk

)(
n∑

l=1

ajlZl

)]

= E

 n∑
k=1

aikajkZ
2
k +

∑
k 6=l

aikajlZkZl


Now, we know that:

E(Zk · Zl) =

{
1 if k = l

0 otherwise

So, the expectation simplifies to:

Cov(Xi, Xj) = E

[
n∑

k=1

aikajkZ
2
k

]

=

n∑
k=1

aikajk

= (AAT )ij

Thus, we have:

C = AAT
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Thus, the covariance matrix C of a Gaussian vector X admits a Cholesky Factorization of

the form, C = AAT and therefore, C is SPD(symmetric positive definite). For applica-

tions and numerical simulations, it is important to get the matrix A from the covariance

matrix C . This decomposition is an exact analogue of the decomposition of a vector in
R3 written as a sum of orthonormal basis vectors. In particular, the condition of being

non-degenerate is equivalent to linear independence.

Proof of proposition 3.18

Proof. Without the loss of generality assume that µ = (0, . . . , 0). Otherwise, we just need
to subtract it from X. We use the decomposition in proposition (3.6). First note that,

since C = AAT , the determinant of C is:

C = AAT

so the determinant of C of C is:

detC = detA · detAT

= detA · detA

= (detA)
2

In particular, since X is non-degenerate, we have that detC 6= 0, so detA 6= 0. Thus,
A is invertible. We also have by the decomposition that there exist IID Gausian random

variables Z such that X = AZ . Now, the event {X ∈ B} = {AZ ∈ B} = {Z ∈
A−1B}. So,

P (X ∈ B) = P (Z ∈ A−1B)

But we know the joint density of n IID standard normal random variablesZ1, Z2, . . . , Zn.

Consequently, we have:

P (X ∈ B) =

∫
. . .

∫
A−1B

1

(2π)n/2
exp

[
−1

2
zT z

]
dz1 · · · dzn

because z = (z1, . . . , zn) and z
T z = z21 + . . . + z2n. It remains to do the change of

variable x = Az.

Let us define the map T as:

x = Az
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Then, the inverse map T−1 is:

z = A−1x

Since X is non-degenerate, A−1 exists and the right-hand side vector is well-defined. The

Jacobian
∂(z1,...,zn)
∂(x1,...,xn)

is:

∂(z1, . . . , zn)

∂(x1, . . . , xn)
= | det(A−1)| = 1

| detA|
=

1√
| detC|

Moreover, z ∈ A−1B is equivalent to x ∈ B. Further, zT z = (A−1x)T (A−1x) =
xT (A−1)T (A−1)x. Now, note that if C = AAT , by the reverse order law, C−1 =
(AT )−1(A−1) = (A−1)T (A−1). Consequently, zT z = xTC−1x.

P (X ∈ B) =

∫
. . .

∫
B

1√
(2π)n| detC|

exp

[
−1

2
xTC−1x

]
dx1 · · · dxn

Consequently, the joint density function of X is

fX(x) =
1√

(2π)n| detC|
exp

[
−1

2
xTC−1x

]

If X has a non-zero mean vector µ, then X′ = X− µ has a mean vector zero. Thus, the

joint density function becomes:

fX(x) =
1√

(2π)n| detC|
exp

[
−1

2
(x− µ)TC−1(x− µ)

]

We now explore three ways to find the matrixA in the decomposition of Gaussian vectors
of proposition (3.6). We proceed by example:

Example 3.11. (Cholesky by Gram-Schmidt). This is the method suggested by the proof

of proposition 3.6. It suffices to successively go through the X ’s by subtracting the pro-
jection of a given Xi onto the previous random variables. Consider the random vector

X = (X1, X2) with mean 0 and covariance matrix :
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C =

[
2 1
1 2

]
It is easy to check that X is non-degenerate, detC = 3. Take:

Z1 =
X1√
2

This is obviously a standard Gaussian random variable. For Z2, first consider:

Z ′
2 = X2 − E(X2Z1)Z1

It is straightforward to check that Z1 and Z
′
2 are jointly Gaussian. Z

′
2 is a linear combi-

nation of Z1 and X2, so Z
′
2 is Gaussian. Since all linear combinations of Z

′
2 and Z1 are

Gaussian, by definition, (Z1, Z
′
2) is jointly Gaussian. They are also independent, because:

E(Z1Z
′
2) = E[Z1(X2 − E(X2Z1)Z1)]

= E[Z1X2]− E(X2Z1)E(Z2
1 )

= E[Z1X2]− E(X2Z1) · 1
= 0

Note that:

Z ′
2 = X2 − E[X2Z1]Z1

= X2 − E
[
X2

X1√
2

]
X1√
2

= X2 −
1

2
E[X1X2]X1

= X2 −
1

2
X1

In particular, we have by linearity of expectations:

E[(Z ′
2)

2] = E[X2
2 −X1X2 +

1

4
X2

1 ]

= E(X2
2 )− E(X1X2) +

1

4
E(X2

1 )

= 2− 1 +
1

4
· 2

=
3

2
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To get a random variable of variance 1, that is a multiple of Z ′
2, we take Z2 =

Z′
2√
3/2

=√
2
3Z2 =

√
2
3X2 − 1√

6
X1. Altogether, we get :

Z1 =
X1√
2

Z2 = − 1√
6
X1 +

√
2

3
X2

We thus constructed two standard IID Gaussians from (X1, X2). In particular we have:

A−1 =

[ 1√
2

0

− 1√
6

√
2
3

]
, A =

[ √
2 0

1√
2

√
3
2

]

We can check that :

AAT =

[ √
2 0

1√
2

√
3
2

][ √
2 1√

2

0
√

3
2

]

=

[
2 1
1 2

]
= C

The probability of the event P (X1 > 2, X2 < 3) can be computed as follows:

P (X1 > 2, X2 < 3) = P

(
√
2Z1 > 2,

1√
2
Z1 +

√
3

2
Z2 < 3

)
Example 3.12. (Cholesky by solving a system of equations). Consider the same example

as above. Write A =

[
a b
c d

]
. Then the relation C = AAT yields:

[
a b
c d

] [
a c
b d

]
=

[
a2 + b2 ac+ bd
ac+ bd c2 + d2

]
=

[
2 1
1 2

]
and so we have the three equations:

a2 + b2 = 2

ac+ bd = 1

c2 + d2 = 2
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There are several solutions. One of them is a =
√
2, b = 0, c = 1√

2
and d =

√
3
2 .

Example 3.13. (Cholesky by diagonalization) This method takes advantage of the symmetry

of the covariance matrix. From the spectral theorem, we know that, if C is a symmetric

matrix, it is diagonalizable, it admits a factorization of the formQΛQ−1 whereQ is an or-

thogonal matrix. The entries ofΛ are the eigenvalues ofC . Furthermore, the eigenvectors
are orthogonal to each other.

Since C = AAT , we get:

C = QΛQT

⇐⇒ AAT = QΛQT

It suffices to take:

A = QΛ1/2

where Q is the matrix with the columns given by the eigenvectors of C and Λ1/2 is the

diagonal matrix with the square root of the eigenvalues on the diagonal.

Example 3.14. (IID Decomposition). LetX = (X1, X2, X3) be a Gaussian vector with
mean 0 and covariance matrix:

C =

 1 1 1
1 2 2
1 2 3


Let’s find a matrix A such that X = AZ for Z = (Z1, Z2, Z3) IID standard gaussians.

The vector is not degenerate since detC = 1 · (2 − 1) = 1. If we do a Gram-Schmidt
procedure, we get:

Z1 = X1

Z2 = (X2 −X1)

Z3 = X3 − (X2 −X1)−X1

= X3 −X2

Consequently, X1 = Z1, X2 = Z1 + Z2 and X3 = Z1 + Z2 + Z3. So, the matrix A is:

A =

 1 0 0
1 1 0
1 1 1


As we will see in the next section, this random vector corresponds to the position of the

Brownian motion at time 1, 2 and 3.
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3.6 Gaussian Processes.

In general, a stochastic process is an infinite collection of random variables on a probability

space (Ω,F ,P). The collection can be countable or uncountable. We aremostly interested
in the case, where the variables are indexed by time; for example

X = (Xt, t ∈ J )

where J can be a finite set, N or some uncountable set such as the closed interval [0, T ]
or [0,∞).

In the case whereJ = [0,∞) or [0, T ], the realization of the processX(ω) can be thought
of as a function of time for each outcome ω. This function t 7→ Xt(ω) is sometimes called
a path or the trajectory of the process. With this in mind, we can think of the process (X)t≥0

as a function-valued random variable as each outcome ω produces a function.

(a) For each t, X(t, ·) is a random variable.

(b) For each ω, X(·, ω) is a function (called a sample path)

For convenience, the random variable X(t, ·) will be written as X(t) or Xt. Thus a

stochastic process X(t, ω) can also be expressed as (X(t))t≥0 or simply X(t).

How can we compute the probabilities for a stochastic process? In other words, what

object captures it’s distribution? The most common way (there are others) is to use finite

dimensional distributions. The idea here is to describe the probabilities related to any finite

set of time. More precisely, the finite-dimensional distributions are given by:

P(Xt1 ∈ B1, Xt2 ∈ B2, . . . , Xtn ∈ Bn)

for any n ∈ N, any choice of t1, . . . , tn ∈ J , and any eventsB1, . . . , Bn inR. Of course,

for any fixed choice of t’s (Xt1 , . . . , Xtn) is a random vector as seen in the previous

section. The fact that we can control the probabilities for the whole random function

comes from the fact that we have the distributions of these vectors for any n and any
choice of t’s.

Some important types of stochastic processes include Markov processes, martingales and

Gaussian processes. We will encounter them along the way. Let’s start with Gaussian

processes.

Definition 3.19. A Gaussian process (Xt)t≥0 is a stochastic process whose finite dimen-

sional distributions are jointly Gaussian. In other words, for any n ∈ N and any choice of

t1 < . . . < tn we have that (Xt1 , Xt2 , . . . , Xtn) is a Gaussian vector. In particular, its
distribution is defined by the mean function m(t) = E(Xt) and the covariance function
C(s, t) = Cov(Xt, Xs).

As before, linear combinations of Gaussian processes remain Gaussian.
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Lemma 3.7. LetX(1), X(2), . . . , X(m) bem Gaussian processes on [0,∞) defined on the same
probability space. Then, any process constructed by taking linear combinations is also a Gaussian process:

a1X
(1) + . . .+ amX(m) =

(
a1X

(1)
t + . . .+ amX

(m)
t , t ≥ 0

)
Proof. It suffices to take a finite set of times t1 < t2 < . . . < tn. Let J = {t1, . . . , tn}

By definition, the random vector X
(i)
J is Gaussian.

Any linear combination of Gaussian vectors is a Gaussian vector, so

aT


X
(1)
J

X
(2)
J
...

X
(m)
J

 = a1X
(1)
J + . . .+ amX

(m)
J

= a1


X

(1)
t1

X
(1)
t2
...

X
(1)
tn

+ . . .+ am


X

(m)
t1

X
(m)
t2
...

X
(m)
tn



=


∑m

k=1 akX
(k)
t1∑m

k=1 akX
(k)
t2

...∑m
k=1 akX

(k)
tn


is also a Gaussian vector for any t1, . . . , tn. Hence, any linear combination of Gaussian
processes is a Gaussian process.

The most important example of a Gaussian process is Brownian motion.

Definition 3.20. (Standard Brownian motion or Wiener process). A stochastic process B(t, ω)
is called a Brownian motion if it satisfies the following conditions:

• P{ω : B(0, ω) = 0} = 1.

• For any 0 ≤ s < t, the random variable B(t)− B(s) is normally distributed with
mean 0 and variance t− s. That is for any a < b:

P{a ≤ B(t)−B(s) ≤ b} =
1√

2π(t− s)

∫ b

a

e−
x2

2(t−s) dx
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• B(t, ω) has independent increments, i.e. for any 0 ≤ t1 < t2 < . . . < tn, the
random variables :

B(t1), B(t2)−B(t1), B(t3)−B(t2), . . . , B(tn)−B(tn−1)

are independent.

• Almost all sample paths of B(t, ω) are continuous functions, that is,

P (ω | B(·, ω) is continuous) = 1

Example 3.15. (Sampling a Gaussian process using Cholesky decomposition). The IID

decomposition of proposition 3.6 is useful for generating a sample of theGaussian process.

(Xt)t∈[0,T ]. First, we need to fix the discretization or step-size. Take for example, a step

size of 0.01, meaning we approximate the process by evaluating the position at every 0.01.
This is given by the Gaussian vector:

(X j
100 ,

j = 1, 2, 3, . . . , 100T )

This Gaussian vector has covariance matrix C and a matrix A from the IID decomposi-

tion. Note that, we start with the vector at 0.01 and not 0. This is because in some cases
(like the standard Brownian motion) the value at time 0 is 0. Including it in the covariance
matrix would result in a degenerate covariance matrix. You can always add position 0 at
time 0 after performing the cholesky decomposition. It then suffices to sample 100T IID
standard Gaussian random variable Z = (Z1, Z2, . . . , Z100T ) and to apply the determin-
istic matrix A to the sample vector to get :

(X j
100

, j = 1, 2, . . . , 100T ) = AZ

Example 3.16. Simulating Brownian Motion. The goal of this project is to simulate

100 paths of Brownian motion on [0, 1] using a step-size of 0.01 using the Cholesky de-
composition.

(a) Construct the covariance matrix of (Bj/100)1≤j≤100 using a for-loop. Recall that for

a Brownian motion C(s, t) = s ∧ t with mean 0.

(b) The command numpy.linalg.cholesky in Python gives the Cholesky decomposi-
tion of the covariance matrix C . Use this to find the matrix A.

(c) Define a function whose output is a sample of N standard Gaussian random variables

and whose input is N .

(d) Use the above to plot n = 100 paths of the Brownian motion on [0, 1] with a step size
of 0.01. Do not forget B0!

Solution.
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Listing 3: Generating 100 paths of a standard brownian motion

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

sns.set_style("whitegrid")

# A generator for N standard gaussian random variables
def standardNormalGenerator(N):

return np.random.standard_normal(N)

# Produces 1 sample (path) of a gaussian process
# N : Number of time-steps
# A : The transformation that maps IID gaussians (Z_1,Z_2,...,Z_N) to a

gaussian vector (X_1,X_2,...,X_N)
# with covariance matrix C = AA'
def sampleGaussianProcess(A,N):

Z = standardNormalGenerator(N)
X = np.matmul(A,Z)
return X

# Produces `numOfPaths` paths of a standard brownian motion
# N : Number of time-steps, 1/N : step-size
def standardBrownianMotion(numOfPaths,N):

C = np.zeros((N,N))

for i in range(N):
for j in range(N):

s = (i+1)/N
t = (j+1)/N

C[i][j] = np.min([s,t])

A = np.linalg.cholesky(C)

B = []
for i in range(numOfPaths):

X = sampleGaussianProcess(A,N)
X = np.concatenate(([0], X), axis=0)
B.append(X)

return B

if __name__ == "__main__":

T = 1.0
N = 100

C = covarMatrix(N)
B = standardBrownianMotion(numOfPaths=100,covarianceMatrix=C,N=100)

plt.xlabel(r'$t$')
plt.ylabel(r'$B(t,\omega)$')
plt.grid(True)
plt.title(r'$100$ sample paths of a standard brownian motion')
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t = np.linspace(start=0,stop=1.0,num=101)
for n in range(100):

plt.plot(t,B[n])

plt.show()

t

B
(t
,ω

)
100 sample paths of a standard brownian motion

Example 3.17. (Brownian motion with a drift.) For σ > 0 (called the volatility or diffusion
coefficient) and µ ∈ R (called the drift), we define the process:

Xt = σBt + µt

where (Bt)t≥0 is a standard brownian motion. This is a Gaussian process, because it is a

linear transformation of a brownian motion, which is itself a Gaussian process by lemma

(3.7).

A straightfoward computation shows that:

E[Xt] = σE[Bt] + E[µt]
= µt

and if 0 ≤ s ≤ t,

E[XsXt] = E[(σBs + µs)(σBt + µt)]

= E[σ2BsBt + µtBs + µsσBt + µ2st]

= σ2s+ µ2st
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so,

Cov(Xs, Xt) = σ2s

Listing 4: Brownian motion with a drift

# Given a standard brownian motion, this function produces a
# brownian motion with drift = mu and diffusion coefficient=sigma
def brownianMotionWithDrift(mu,sigma,B_t):

numOfPaths = len(B_t)
N = len(B_t[0])
t = np.linspace(start=0,stop=1.0,num=N)

Y = []
for omega_i in range(numOfPaths):

X_t = sigma * B_t[omega_i] + mu * t
Y.append(X_t)

t

B
(t
,ω

)

Brownian motion with drift µ = 1.0, diffusion coeff σ = 1.0

Example 3.18. (Brownian Bridge). The Brownian bridge is a Gaussian process (Zt)t∈[0,1]

defined by the mean E[Zt] = 0 and covariance Cov(Zt, Zs) = s(1 − t) if 0 ≤ s ≤ t.
Note that by construction, Z0 = Z1 = 0. It turns out that if (Bt)t∈[0,1] is a standard

brownian motion on [0, 1], then the process

Zt = Bt − tB1, t ∈ [0, 1]

has the distribution of a Brownian bridge.
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Listing 5: Brownian bridge

def brownianBridge(B_t):
numOfPaths = len(B_t)
N = len(B_t[0])

t = np.linspace(start=0, stop=1.0, num=N)

Z = []
for omega_i in range(numOfPaths):

X = B_t[omega_i] - B_t[omega_i][N-1]* t
Z.append(X)

return Z

t

Z
(t
,ω

)

10 sample paths of Brownian Bridge on [0, 1]

Example 3.19. (Fractional Brownian Motion). The fractional Brownian motion (B
(H)
t )t≥0

with index 0 < H < 1 (called the Hurst Index), is the Gaussian process with mean 0 and
covariance

Cov(Ys, Yt) = E[B(H)
t , B(H)

s ] =
1

2
(t2H + s2H − |t− s|2H)

The case of H = 1/2 corresponds to the Brownian motion.

Listing 6: Fractional Brownian Motion

def fBM(H,numOfPaths,N):
# Initialize the covariance matrix
C = np.zeros((N,N))

for i in range(N):
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for j in range(N):
s = (i+1)/N
t = (j+1)/N

C[i][j] = 0.50 * (s**(2*H) + t**(2*H) - (np.abs(t - s))
**(2*H))

A = np.linalg.cholesky(C)

Y = []
for i in range(numOfPaths):

X = sampleGaussianProcess(A, N)
X = np.concatenate(([0], X), axis=0)
Y.append(X)

return Y

t

Y
(t
,ω

)

3 paths of fractional brownian motion with H = 0.1 on [0, 1]
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t

Y
(t
,ω

)

3 paths of fractional brownian motion with H = 0.5 on [0, 1]

t

Y
(t
,ω

)

3 paths of fractional brownian motion with H = 0.9 on [0, 1]

Example 3.20. (Ornstein-Uhlenbeck process). TheOrnstein-Uhlenbeck process (Yt)t≥0

starting at Y0 = 0 is the Gaussian process with mean E[Yt] = 0 and covariance:

Cov(Ys, Yt) =
e−2(t−s)

2
(1− e−2s), for s ≤ t

If the starting point Y0 is random, specifically Gaussian with mean 0 and variance 1/2,
then we have: EYt = 0 and
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Cov(Ys, Yt) =
e−2(t−s)

2
, for s ≤ t

The covariance only depends on the difference of the time! This means that the pro-

cess (Yt)t≥0 has the same distribution if we shift time by an amount a for any a ≥ 0:
(Yt+a)t≥0. Processes with this property are called stationary. As can be observed from the

figure below, the statistics of stationary processes do not change over time.

3.7 A Geometric Point of View.

Before turning to Gaussian processes in more detail, it is worthwhile to spend some time to

further explore the analogy between random variables in L2(Ω) and vectors inRn. We’ve

already seen earlier, how the space of all random variables form a vector space. We shall

now observe that L2 is a subspace of this vector space.

Definition 3.21. For a given probability space (Ω,F ,P), the space L2(Ω,F ,P) consists
of all random variables defined on (Ω,F ,P) such that:

[
E(X2)

]
< ∞

Such random variables are called square integrable.

In the same spirit, the space of integrable random variables is denoted by L1(Ω,F ,P).
We will see that any square-integrable random variable must be integrable. In other words,

L2(Ω,F ,P) is a subset of L1(Ω,F ,P). In particular, square integrable random variables

have a well-defined expectation. This means that, we can think of L2 as the set of all ran-

dom variables on a given probability space with finite variance. Clearly, random variables

on (Ω,F ,P) with the Gaussian distribution are in L2.

The space L2 is a vector space.

1) If X and Y are two random variables in L2, then the linear combination aX + bY is

also a random variable in L2. If u, v ∈ R, we know that :

(u− v)2 ≥ 0

u2 − 2uv + v2 ≥ 0

2uv ≤ u2 + v2

Setting u = aX and v = bY , we get:

2abXY ≤ a2X2 + b2Y 2

2abE(XY ) ≤ a2EX2 + b2EY 2
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Having established this upper bound for 2abE(XY ), we now proceed to show that aX+
bY belongs to L2. We have:

E[(aX + bY )2] = E(a2X2 + b2Y 2 + 2abXY )

= a2EX2 + b2EY 2 + 2abE(XY )

≤ a2EX2 + b2EY 2 + a2EX2 + b2EY 2

= 2a2EX2 + 2b2EY 2

Since X,Y ∈ L2, EX2 < ∞ and EY 2 < ∞. Hence, E[(aX + bY )2] is bounded.

2) The zero element of the linear space L2 is the constantly zero random variable X = 0
(with probability one).

Example 3.21. Consider (Ω,P(Ω),P) where Ω = {0, 1} × {0, 1}, P is the equiproba-
bility and P(Ω) is the power set of Ω i.e. all the subsets of Ω. An example of a random
variable isX = 21{(0,0)} where 1{(0,0)} is the indicator function of the event {(0, 0)}. In
other words,X takes the value 2 on the outcome (0, 0) and 0 for the other outcomes. Of
course, we can generalize this construction by taking a linear combination of multiples of

indicator random functions. Namely, consider the random variable:

X = a1{(0,0)} + b1{(1,0)} + c1{(0,1)} + d1{(1,1)}

for some fixed a, b, c, d ∈ R. Clearly, any random variable on this probability space can be

written in this form. Moreover, any random variable of this formwill have a finite variance.

Therefore, the space L2 in this example consists of random variables of the above form.

This linear space has dimension 4, since we can write any random variables as the finite

linear combination of the four indicator functions. In general, ifΩ is finite, the space L2 is

finite dimensional as a linear space, ifΩ is infinite, the space L2(Ω,F ,P)might be infinite
dimensional.

3.7.1 Norm in L2(Ω,F ,P).

Similar to Rn, the space L2(Ω,F ,P) has a norm or a length: for a random variable X in

L2, its norm ‖X‖2 is given by:

‖X‖2 =
[
EX2

]1/2
(3.52)

Note that this is very close in spirit to the length for the vector ‖x‖2 =
√
x2
1 + . . .+ x2

n

in Rn, since the expectation is heuristically a sum over the outcomes. We have already

seen that this definition satisfies the properties of a norm.

1) Positive Semi-Definite:
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If X is a random variable, then X2 ≥ 0. By monotonicity of expectations, EX2 ≥ 0.
Moreover, if EX2 = 0, then sinceX2 is a non-negative random variable,X2 = 0 almost
surely. It implies that X = 0 a.s.

2) Scalar multiplication.

If X is a random variable in L2, we have:

‖aX‖2 =
(
E[(aX)2]

)1/2
=
(
Ea2X2

)1/2
= |a|

(
EX2

)1/2
= |a| ‖X‖2

3) Triangle Inequality.

We have:

‖X + Y ‖22 = E[(X + Y )2]

= EX2 + EY 2 + 2EXY

= ‖X‖22 + ‖Y ‖22 + 2EXY

≤ ‖X‖22 + ‖Y ‖22 + 2E|XY | {∵ XY ≤ |XY |}

≤ ‖X‖22 + ‖Y ‖22 + 2
(
EX2

)1/2 (EY 2
)1/2 {Cauchy-Schwarz inequality}

= ‖X‖22 + ‖Y ‖22 + 2 ‖X‖2 ‖Y ‖2
= (‖X‖2 + ‖Y ‖2)

2

Thus, ‖X + Y ‖2 ≤ ‖X‖2 + ‖Y ‖2.

3.7.2 Inner-product in L2(Ω,F ,P).

Like Rn, the space L2 has a dot-product or scalar product between two elementsX,Y of

the space. It is given by:

〈X,Y 〉 = E(XY )

More generally, this operation is called the inner-product. It has the same properties as the

dot product in Rn.

1) Symmetric :
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We have:

E(XY ) = E(Y X)

2) Linearity:

E((aX + bY )Z) = aE(XZ) + bE(Y Z)

3) Positive semi-definite:

〈X,X〉 = EX2

Since X2 is a non-negative random variable, X2 ≥ 0 and by the monotonicity of expec-
tations EX2 ≥ 0.

Let X,Y ∈ L2(Ω,F ,P) and define X̂ = X − EX , Ŷ = Y − EY

|E(X̂Ŷ )| ≤ E|X̂Ŷ | ≤
(
EX̂2

)1/2 (
EŶ 2

)1/2
|E(X − EX)(Y − EY )| ≤

[
E(X − EX)2

]1/2 [E(Y − EY )2
]1/2

|Cov(X,Y )| ≤
√
V ar(X) ·

√
V ar(Y )

|Corr(X,Y )| ≤ 1

3.7.3 Projection of a random variable X on Y .

Consider the random variable

X⊥ = X − 〈X,Y 〉
‖Y ‖22

Y

= X − E(XY )

EY 2
Y

This random variable is uncorrelated to Y or orthogonal to Y , in the sense that it’s inner
product with Y is zero. We have:

〈
X⊥, Y

〉
= E(X⊥Y )

= E
[
XY − E(XY )

EY 2
Y 2

]
= EXY − E(XY )

EY 2
· EY 2

= 0
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YE[XY ]
E[Y 2] Y

X

X⊥

Figure. A representation of the decomposition of the random variable X in terms of its

projection on Y and the component X⊥ orthogonal to Y .

The random variable
E[XY ]
E[Y 2] Y is the random variable of the form tY , t ∈ R, that is closest

to X in the L2-sense. We will make this more precise when we define the conditional

expectation of a random variable shortly ahead. For now, we simply note that these con-

siderations imply the decomposition

X = X⊥ +
E[XY ]

E[Y 2]
Y

The random variable X⊥ = X − E[XY ]
E[Y 2] Y is the component of X orthogonal to Y . The

random variable:

ProjY (X) =
E[XY ]

E[Y 2]
Y

is called the orthogonal projection of the random variable X onto Y . Put another way,
this is the component ofX in the direction of Y . This is the equivalent of the orthogonal

projection of Rn of a vector w in the direction of v, given by
〈w,v〉
‖v‖2 v.

Example 3.22. Going back to example (3.21), let’s define the random variables Y =
21{(0,0)} + 1{(1,0)}andW = 1{(0,0)}. Then the orthogonal projection of Y ontoW is:

E(YW )

EW 2
W =

2P({0, 0}
P({0, 0})

W

=
2 · 1

4
1
4

W

= 2W
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The orthogonal decomposition of Y is simply :

Y = 2W + (Y − 2W )

The notion of norm induces a notion of distance between the random variables inL2 given

by ‖X − Y ‖2 = E[(X − Y )2]1/2. In particular, we see that the orthogonal projection
of Y onto X is the closest point from X amongst all multiples of Y . This is what the
proof of Cauchy-Schwarz inequality does. The L2 distance also gives rise to a notion of

convergence.

3.8 Borel-Cantelli Lemmas.

Lemma 3.8. (Borel-Cantelli Lemmas)

(a) (First Borel-Cantelli Lemma) Let {An} be a sequence of events such that the series
∑

n P(An)
converges to a finite value L. Then, almost surely, only finitely many An’s will occur.

(b) (Second Borel-Cantelli Lemma) Let {An} be a sequence of independent events such that
∑

n P(An)
diverges to ∞. Then, almost surely, infinitely many An’s will occur.

Fix a probability space (Ω,F ,P). Let A1, A2, A3, . . . be an infinite sequence of events
belonging to F . We shall often be interested in finding out how many of the An occur.

The event “An occurs infinitely often (An i.o.) is the set of all ω that belong to infinitely
many An’s.

Imagine that an infinite number of An’s occur. That is, (∀n)(∃m ≥ n)(s.t.Am occurs).
In other words:

{An infinitely often } ,
∞⋂

n=1

∞⋃
m=n

Am︸ ︷︷ ︸
Bn

(3.53)

Here, Bn is the event that atleast one of An, An+1, . . . occur. For that reason, Bn is

sometimes referred to as the n-th tail event. {An infinitely often } is the intersection of
all the Bn’s, so it is the event that all the Bn’s occur. Therefore, no matter how far I go,

no matter how big my n0 is, beyond that n0, atleast one of An0 , An0+1, . . . occurs.

Taking the complement of both sides in (3.53), we get the expression for the event that

An occurs finitely often.

{An finitely often } ,
∞⋃

n=1

∞⋂
m=n

AC
m︸ ︷︷ ︸ (3.54)

It means there exists an n, such that each of the further Ai’s fail to occur.

In order to prove the Borel-Cantelli lemmas, we require the following lemma.
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Lemma 3.9. If
∑∞

i=1 pi = ∞, then limn→∞
∏n

i=1(1− pi) = 0.

Proof. We know that:

ln(1 + x) ≤ x

So,

ln(1− pi) ≤ −pi
n∑

i=1

ln(1− pi) ≤ −
n∑

i=1

pi

0 ≤
n∏

i=1

(1− pi) ≤ e−
∑n

i=1 pi

Passing to the limit on both sides, as n → ∞, we have:

0 ≤ lim
n→∞

n∏
i=1

(1− pi) ≤ lim e−
∑n

i=1 pi = 0

By the squeeze theorem, the limit limn→∞
∏n

i=1(1− pi) exists and is equal to 0.

Consequently, the product series
∏n

i=1(1− pi) converges to 0.

Proof. (First Borel-Cantelli Lemma)

Our claim is that P(
⋂∞

n=1 Bn) = 0.

Whenever we see something like
⋂∞

n=1 Bn, we can think of invoking continuity of prob-

ability. It turns out that, Bn =
⋃

m≥n Am. So, B1 ⊇ B2 ⊇ B3 ⊇ . . ., that is the Bn’s

are nested decreasing sequence of sets. So, limBn =
⋂∞

n=1 Bn. So, by continuity of

probability measure:

P(
∞⋂

n=1

Bn) = lim
n→∞

P(Bn)

= lim
n→∞

P(
∞⋃

m≥n

Am)

≤ lim
n→∞

[P(An) + P(An+1) + . . .]

{ Union bound on probability}

= lim
n→∞

∞∑
i=n

P(Ai)
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We know that,
∑∞

n=1 P(An) converges to some finite value L, and the above expression
is the tail sum of a convergent series. The sequence of tail sums of a convergent series

always converges to 0. Thus,

0 ≤ P(
∞⋂

n=1

Bn) ≤ 0

so it follows that

P{An i.o.} = 0

(Second Borel-Cantelli Lemma)

Our claim is P{An i.o.} = 1. We must therefore prove that:

P

( ∞⋂
n=1

Bn

)
= 1

⇐⇒ P

( ∞⋃
n=1

BC
n

)
= 0

We have:

P

( ∞⋃
n=1

BC
n

)
≤

∞∑
n=1

P(BC
n )

I want to prove that the above sum is zero. It means that each of these BC
n events should

have 0 probability. We will show that P(BC
n ) = 0 for all n ≥ 1.

Indeed fix n and k ≥ n. Consider P
(⋂k

i=n A
C
i

)
. That is I am taking finite intersection

of AC
i . I want to prove that B

C
n has probability zero.

If you look at AC
i , these are independent events. So, P(

⋂k
i=n A

C
i ) =

∏k
i=n P(AC

i ) =∏k
i=n [1− P(Ai)]. Passing to the limit as k → ∞,

lim
k→∞

P(
k⋂

i=n

AC
i ) = lim

k→∞

k∏
i=n

[1− P(Ai)]

P

( ∞⋂
i=n

AC
i

)
= lim

k→∞

k∏
i=n

[1− P(Ai)]

P(BC
n ) = lim

k→∞

k∏
i=n

[1− P(Ai)]
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Since,
∑∞

i=n P(Ai) diverges to∞, it follows from lemma (3.9), that
∏∞

i=n [1− P(Ai)] =
0. Hence, P(BC

n ) = 0 for all n ∈ N. So, 0 ≤ P
(⋃∞

n=1 B
C
n

)
≤ 0. Therefore,

P
(⋃∞

n=1 B
C
n

)
= 0, or equivalently, P (

⋂∞
n=1 Bn) = 1. The event {An i.o.} occurs

almost surely.

3.9 Convergence of random variables.

Fix a probability space (Ω,F ,P) once for all. On this probability space, we will have a
sequence (X1, X2, X3, . . .) of random variables defined on it.

Definition 3.22. (Point-wise convergence.) A sequence of random variables (Xn)
∞
n=1 on

(Ω,F ,P) is said to converge point-wise to X , if and if, for all ε > 0, and for all ω ∈ Ω,
there exists N(ε, ω) ∈ N such that for all n ≥ N , we have |Xn(ω)−X(ω)| < ε.

It would be natural to say, that, for allω ∈ Ω,Xn(ω) → X(ω). But, this is too demanding.
So, we will weaken this convergence.

Definition 3.23. (Almost-sure convergence.) A sequence of random variables (Xn)
∞
n=1 on

(Ω,F ,P) is said to converge almost-surely toX , writtenXn
a.s.−−→ X , if and only if, there

exists a set A ∈ F , such that P[A] = 1 and for all ω ∈ A, Xn(ω) → X(ω).

Theorem 3.21. (Sufficient condition for almost-sure convergence.) If (∀ε > 0),
∑∞

n=1 P(|Xn −
X| > ε) < ∞, then Xn

a.s.→ X .

Remark. If you notice just the object P(|Xn − X| > ε); if this term goes to zero, then

it is convergence in probability. So, if the term P(|Xn − X| > ε) goes to zero, we
have convergence in probability. The condition

∑∞
n=1 P(|Xn − X| > ε) < ∞ is a

little bit stronger, it says a little bit more. As n tends to infinity, not only do the terms
an = P(|Xn −X| > ε) go to zero, for every ε; it goes to zero fast enough that the sum
converges. For example, if this probability P(|Xn − X| > ε) were to go to zero, as 1

n ,

then you have convergence in probability, but
∑

1
n diverges. So, if the term an goes to

zero fast enough to keep the summation finite, then we have convergence almost surely.

For instance, if an ≈ 1
n2 , then we would have almost sure convergence.

This is just a sufficient condition. If it holds, we are guaranteed almost sure convergence,

but even if it doesn’t hold, sometimes we may have almost sure convergence.

Proof. Let An(ε) be the event {|Xn − X| > ε}. We are given that, for all ε > 0,∑∞
n=1 P(An(ε)) < ∞. Using BCL1 (3.8), we see that that, for any ε > 0, only finitely

many An(ε) occur with probability 1. Thus, there exists an n0, such that for all n ≥ n0,

AC
n (ε) = {|Xn − X| ≤ ε} occurs with probability 1. So, Xn converges to X with

probability 1.

Remark. If we plot the distance between the random variables, Xn − X , there may be
some excursions. But, essentially, BCL1 says that, with probability 1, there must be an n0,

beyond which the sequenceXn settles within an ε-band ofX , and these excursions never
occur. Because, only finitely many excursions occur. And this is true for every ε > 0. So,

with probability 1, Xn → X . Thus, Xn
a.s.→ X .
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n

Xn −X

ε

−ε

Figure. Convergence of Xn to X .

Example 3.23. The converse of the theorem (3.21) does not hold. Consider the sequence

of random variables:

Xn =

{
1 with probability 1

n

0 with probability 1− 1
n

Then, for all ε > 0, P(|Xn| < ε) = 1− 1
n . So, for all ε > 0, limP(|Xn| < ε) = 1. Thus,

the sequence (Xn) converges 0 with probability 1. So,Xn
a.s.→ 0. However,

∑
P(|Xn| >

ε) =
∑

1
n = ∞.

Theorem 3.22. (Necessary and sufficient condition for almost-sure convergence.) Let An(ε) be the

event that the excursion {|Xn −X| > ε} happens and define:

Bm(ε) =
⋃

n≥m

An(ε)

Then,
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Xn
a.s.→ X if and only if limP(Bm(ε)) = 0 ∀ε > 0

Remark. Note that, P(An(ε)) going to 0 is convergence in probability. I am saying a little

more. In words, An(ε) is the event that an excursion occurs at the nth term. In words,
Bm(ε) is the event that atleast one of Am, Am+1, Am+2, . . . occurs, which means that
atleast one excursion occurs m or after. What this theorem says is, if the probability of

this event goes to 0, then you have almost sure convergence. In other words, if you find
some m; this m can be very large, but if you find some m beyond which no excursions

ever occur, then you have almost sure convergence (and vice versa).

Proof. (=⇒ direction.)

We are given that Xn
a.s.→ X . Our claim is limm→∞ P(Bm(ε)) = 0.

Now, if Xn → X almost surely, then clearly, (∀ε > 0), the event

⋃
m≥1

⋂
n≥m

{|Xn −X| < ε}

occurs with probability 1.

So, for all ε > 0, the event

⋂
m≥1

⋃
n≥m

{|Xn −X| ≥ ε} =
⋂
m≥1

Bm

occurs with probability 0. An excursion happens only finitely many times.

Now, the sequence events B1(ε), B2(ε), B3(ε), . . . are nested decreasing. They are like
Russian dolls. By continuity of probability measure, P (

⋂∞
m=1 Bm) = limm→∞ P(Bm).

Consequently, it follows that limm→∞ P(Bm) = 0.

(⇐=direction.)

We are given that, for all ε > 0, limm→∞ Bm(ε) = 0. We are interested to prove that

Xn
a.s.→ X .

Let C be the event:

C ={ω|Xn(ω) → X(ω)}

Define the event:

A(ε) =
⋂
m≥1

⋃
n≥m

{|Xn −X| ≥ ε}
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I would like to prove that P(C) = 1. What we will prove is that P(CC) = 0.

CC is the event that, no matter how big an n you look at, there is some excursion. That
is there are infinitely many excursions.

This means, there must be some ε0 > 0 for which A(ε) occurs.

P(CC) = P

(⋃
ε>0

A(ε)

)

= P

( ∞⋃
k=0

A(
1

k
)

)

≤
∞∑
k=0

P
(
A(

1

k
)

)

Now,

lim
m→∞

P(Bm(
1

k
)) = P

( ∞⋂
m=1

Bm(
1

k
)

)
{ Continuity of probability measure }

= P
(
A(

1

k
)

)
So, P (A(1/k)) = 0. Consequently, P(CC) = 0 and P(C) = 1. Thus, Xn

a.s.→ X .

Remark. Therein, lies the difference between convergence in probability and convergence

almost surely. Convergence in probability just says the probability of An(ε) (an excursion
occurs at n) goes to zero. It just looks at one n; it forgets about the rest of the sequence.

For convergence almost surely, you are not looking at a particular n. You fix a particular
m and you’re saying that the probability that beyondm an excursion occurs goes to zero.

This should convince you intuitively, that almost sure convergence implies convergence in

probability.

Definition 3.24. (Convergence in Probability.) A sequence of random variables (Xn)
∞
n=1 on

(Ω,F ,P) is said to converge in probability to X , written Xn
P.−→ X , if and only if

∀ε > 0, lim
n→∞

P(|Xn −X| ≥ ε) = 0

Definition 3.25. (Convergence inLp) A sequence of random variables (Xn)
∞
n=1 on (Ω,F ,P)

is said to converge in the pth mean to X , if and only if

lim
n→∞

E [|Xn −X| p] = 0
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Definition 3.26. (Convergence in Distribution.) A sequence of random variables (Xn)
∞
n=1

on (Ω,F ,P) is said to converge in distribution to X , if and only if:

P(Xn ≤ X) → P(X ≤ x)

For example, let Ω = {1, 2} and P(1) = P(2) = 1
2 , Xn(1) =

−1
n and Xn(2) =

1
n . We

have:

1) Xn
a.s.−→ X because Xn(ω) → 0 for all ω ∈ Ω.

2) Xn
L2

−→ X because E(X2
n) =

1
n2 → 0.

3) Xn
P−→ X because P (|Xn| > ε) = P

(
1
n > ε

)
= 0.

Theorem 3.23. (Hierarchy of Convergence) The following implications hold:

(Xn
a.s.−→ X)

⇓

(Xn
P−→ X) =⇒ (Xn

D−→ X)

⇑

(Xn
Lp

−→ X)

Proof. (i) Claim. Xn
Lp

→ X implies Xn
P→ X .

This is a very easy proposition to prove. By definition, we have:

lim
n→∞

E [|Xn −X| p] = 0

By Markov’s inequality:

0 ≤ P(|Xn −X| > ε) = P(|Xn −X|p > εp)

≤ 1

εp
E [|Xn −X| p]

Passing to the limit on both sides, as n → ∞, by the squeeze limit theorem,

lim
n→∞

P(|Xn −X| > ε) = 0

(ii) Claim. Xn
P→ X implies that Xn

D→ X .

130



Fix an ε > 0.

We have:

FXn
(x) = P(Xn ≤ x)

= P(Xn ≤ x,X ≤ x+ ε)

+ P(Xn ≤ x,X > x+ ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| > ε)

∵ {Xn ≤ x,X ≤ x+ ε} ⊆ {X ≤ x+ ε}
= FX(x+ ε) + P(|Xn −X| > ε)

Similarly,

FX(x− ε) = P(X ≤ x− ε)

= P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn > x)

≤ P(Xn ≤ x) + P(|Xn − x| > ε)

= FXn(x) + P(|Xn −X| > ε)

Thus, we have the inequality:

∀ε > 0, FX(x− ε)−P(|Xn−X| > ε) ≤ FXn
(x) ≤ FX(x+ ε)+P(|Xn−X| > ε)

We assume that FX is continous for all x. Pick ε = 1
n and passing to the limit as n → ∞,

we have:

limFX(x− ε) ≤ limFXn
(x) ≤ limFX(x+ ε)

FX(x) ≤ limFXn
(x) ≤ FX(x)

By the Squeeze Theorem, the limit FXn
(x) exists and limFXn

(x) = FX(x).

(iii) Counterexample. (Convergence in distribution does not imply convergence in prob-

ability).

Convergence in distribution simply means that only the CDFs are converging; it doesn’t

mean that Xn and X are getting closer in any sense.

Let X1, X2, X3, . . . be such that Xi = X for all i ≥ 1 and

X =

{
0 with probability 1

2

1 with probability 1
2
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. The entire sequence is just (X,X,X, . . .). Let Y = 1 − X . By definition, Y ∼
Bernoulli(1/2). We have: Xn

D→ Y in distribution, but |Xn − Y | = 1, we could
choose ε0 = 1

2 and we get:

P(|Xn − Y | > 1

2
) = 1

so (Xn) does not converge to Y in probability.

(iv) Counterexample. (Convergence in probability does not imply convergence in the

mean square sense).

Consider

Xn =

{
n3 with probability n−2

0 with probability 1− n−2

Then,

P(|Xn| > ε) =
1

n2

and as n → ∞, 1
n2 → 0. So, Xn

P→ 0.

But,

E(X2
n) = n2

and as n → ∞, n2 → ∞. Hence, Xn
L2

��→ 0.

(v) Counterexample. (Convergence in probability does not imply convergence almost

surely).

Consider

Xn =

{
1 with probability 1n
0 with probability 1− 1

n

and Xi’s are independent. The larger the value of n, the more likely that Xn takes the

value 0. We have:

P(|Xn| > ε) =
1

n
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So,

lim
n→∞

P(|Xn| > ε) = lim
1

n
= 0

Our claim is that Xn does not converge to 0 almost surely.

Let An be the event that {Xn = 1}. Then, An’s are independent. We have:

∞∑
i=1

P(An) = 0 +
1

2
+

1

3
+

1

4
+ . . .

The harmonic series
∑∞

n=1
1
n diverges to∞.

By the BCL2 (Borell-Cantelli Lemma 2) (3.8), it follows that, with probability 1, infinitely
many An’s will occur.

P{Xn = 1 i.o.} = 1

So, Xn
a.s.
��→ 0.

Imagine a coin-tossing experiment, where Xn represents the outcome of the nth coin-
toss, and the probability of the nth coin toss falling heads is 1

n . Then, no matter how far

out you go in the sequence, BCL2 says that, there will some occasional head (Xn = 1)
popping off at some-time. Which means that Xn does not converge to zero.

(vi) Claim. Xn
a.s.→ X implies Xn

P→ X .

By the necessary and sufficient condition of almost sure convergence,Xn
a.s.→ X is equiv-

alent to saying that:

lim
m→∞

P(Bm(ε)) = 0

But, Bm(ε) =
⋃

n≥m An(ε). Thus, Am(ε) ⊆ Bm(ε). So, (∀ε > 0), 0 ≤ P(Am(ε)) ≤
P(Bm(ε)). Passing to the limit on both sides, 0 ≤ limP(Am(ε)) ≤ limP(Bm(ε)) = 0.

By the squeeze theorem, limP(Am(ε)) = 0. Consequently, Xn
P→ X .

(vii) Counterexample. (Convergence almost surely does not imply convergence in mean

square)

Let
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Xn(ω) =

{
n ω ∈ [0, 1

n ]

0 otherwise

In this case, we do have convergence almost surely. P(|Xn| < ε) = 1 − 1
n and so,

limP(|Xn| < ε) = 1. Xn
a.s.→ 0. But, E[X2

n] = n. Thus, Xn
L2

��→ 0.

(viii)Counterexample. (Convergence in mean square does not imply convergence almost

surely)

Let

Xn =

{
1 with probability 1/n

0 with probability 1− 1/n

where the Xn’s are independent.

Now, E[X2
n] =

1
n so limE[X2

n] = 0. Thus,Xn
L2

→ 0. DefineAn = {|Xn| ≥ ε}. But, by
BCL2,

∑
n P(An) = ∞ and the events An are independent. Then, An occurs infinitely

often. In other words, Xn does not converge to 0 almost surely.

Theorem 3.24. If a sequence (Xn) of random variables converges in probability to X , then there

exists a subsequence (Xnk
)k which converges to X almost surely.

Proof. Since Xn
P→ X it follows that:

∀ε > 0 limP(|Xn −X| > ε) = 0

By the definition of the limit of a sequence, there exists n1 such that:

P (|Xn1
−X| > 1) < 1

There exists n2 ≥ n1 such that:

P
(
|Xn2

−X| > 1

2

)
<

1

22

There exists n3 ≥ n2 such that:
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P
(
|Xn3

−X| > 1

3

)
<

1

32

In general, there exists a positive integer ni ≥ ni−1 such that:

P
(
|Xni −X| > 1

i

)
<

1

i2

By the sufficient condition for almost sure convergence (3.21),
∑∞

n=1 P(An) <
∑∞

n=1
1
n2

which converges to a finite value. Hence, Xni

a.s.→ X .

Consider a sequence of random variables (Xn), such that Xn
L2

→ X . it turns out that the
limit random variableX of the convergent sequence in L2 is guaranteed to be in L2. This

is because L2 is complete. We will prove this very important result further ahead. This

property is crucial for the construction of the Ito integral.

Example 3.24. (A version of the weak law of large numbers.) Consider a sequence of

random variables X1, X2, . . . , Xn in L
2(Ω,F ,P) such that E[Xi] = 0, E[X2

i ] = σ2 <
∞ for all i ≥ 1 and that they are orthogonal to each other, that is, E[XiXj ] = 0 for all
i 6= j. We show that the empirical mean

1

n
Sn =

1

n
(X1 +X2 + . . .+Xn)

converges to zero in the L2 sense.

Clearly,

E
[
S2
n

n2

]
= lim

n→∞

1

n2

n∑
i=1

E[X2
i ]

= lim
n→∞

1

n2
· nσ2

= lim
n→∞

σ2

n

= 0

Consequently, the empirical mean Sn

n converges to 0 in the mean square sense.
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Exercise 3.1. (Ornstein-Uhlenbeck Process.) Generate 100 paths with step size = 0.01
of the following processes on [0, 1]:

(a) Ornstein Uhlenbeck process: C(s, t) = e−2(t−s)

2 (1 − e−2s) for s ≤ t. with mean 0
(so that Y0 = 0).

(b) Stationary Ornstein-Uhlenbeck process: C(s, t) = e−2(t−s)

2 for s ≤ t with mean 0 (so
Y0 is a Gaussian random variable of mean 0 and variance 1/2).

Solution.

Listing 7: Orsntein-Uhlenbech(OU) process

def ornsteinUhlenbeck(numOfPaths,N):
C = np.zeros((N,N))

for i in range(N):
for j in range(N):

s = (i + 1)/N
t = (j + 1)/N

if s > t:
s,t = t,s

C[i][j] = np.exp(-2*(t-s))/2 * (1 - np.exp(-2*s))

A = np.linalg.cholesky(C)

Y =[]
for i in range(numOfPaths):

X = sampleGaussianProcess(A,N)
X = np.concatenate(([0],X),axis=0)
Y.append(X)

return Y

t

Y
(t
,ω

)

10 paths of Ornstein Uhlenbeck process on [0, 1]
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t

Y
(t
,ω

)

10 sample paths of stationary OU process on [0, 1]

4 Properties of Brownian Motion.

4.1 Properties of Brownian Motion.

Let B(t) be a fixed Brownian motion. We give below some simple properties that follow
directly from the definition of the Brownian Motion.

Proposition 4.1. For any t ≥ 0, B(t) is normally distributed with mean 0 and variance t. For any
s, t ≥ 0 we have E(BsBt) = min{s, t}.

Proof. From condition (1), we have that B0 = 0. From condition (2), Bt − B0 = Bt is

normally distributed with mean 0 and variance t.

Assume that s < t.

We have:

E(BsBt) = E [Bs(Bt −Bs +Bs)] {Write Bt = Bt −Bs +Bs}
= E[Bs(Bt −Bs)] + E[B2

s ] {Linearity of expectations}
= E[Bs]E(Bt −Bs) + s {Bs, (Bt −Bs) are independent}
= 0 · 0 + s

= s

This closes the proof.
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Proposition 4.2. (Translation Invariance) For fixed t0 ≥ 0, the stochastic process B̃(t) = B(t+
t0)−B(t0) is also a Brownian motion.

Proof. Firstly, the stochastic process B̃(t) is such that:

(1) B̃(0) = B(t0)−B(t0) = 0. Hence, it satisfies condition (1).

(2) Let s < t. We have: B̃(t)− B̃(s) = B(t+ t0)−B(s+ t0) which a Gaussian random
variable with mean 0 and variance t− s. Hence, for a ≤ b,

P{a ≤B̃(t) ≤ b} =
1√

2π(t− s)

∫ b

a

e−
x2

2(t−s) dx

Hence, it satisfies condition (2).

(3) To check condition (3) for B̃(t), we may assume t0 > 0. Then, for any 0 ≤ t1 ≤
t2 ≤ . . . ≤ tn, we have:

0 < t0 ≤ t0 + t1 ≤ t0 + t2 ≤ . . . ≤ t0 + tn

So, B(t1 + t0) − B(t0), B(t2 + t0) − B(t1 + t0), . . ., B(tk + t0) − B(tk−1 + t0),
. . ., B(tn + t0)−B(tn−1 + t0) are independent random variables. Consequently, B̃(t)
satisfies condition (3).

This closes the proof.

The above translation invariance property says that a Brownian motion starts afresh at any

moment as a new Brownian motion.

Proposition 4.3. (Scaling Invariance) For any real number λ > 0, the stochastic process B̃(t) =
B(λt)/

√
λ is also a Brownian motion.

Proof. The scaled stochastic process B̃(t) is such that:

(1) B̃(0) = 0. Hence it satisfies condition (1).

(2) Let s < t. Then, λs < λt. We have:

B̃(t)− B̃(s) =
1√
λ
(B(λt)−B(λs))

Now, B(λt)−B(λs) is a Gaussian random variable with mean 0 and variance λ(t− s).

We know that, ifX is a random variable with mean µ and variance σ2, Z =
(

X−µ
σ

)
has

mean 0 and variance 1. Consequently, B(λt)−B(λs)√
λ

is a Gaussian random variable with

mean 0 and variance (t− s).
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Hence, B̃(t)− B̃(s) is normal distributed with mean 0 and variance t− s and it satisfies
condition (2).

(3) To check condition (3) for B̃(t), we may assume t0 > 0. Then, for any 0 ≤ t1 ≤
t2 ≤ . . . ≤ tn, we have:

0 ≤
√
λt1 ≤

√
λt2 ≤ . . . ≤

√
λtn

Consequently, the random variables B(
√
λtk) − B(

√
λtk−1), k = 1, 2, 3, . . . , n are

independent. Hence it follows that 1√
λ
[B(

√
λtk)−B(

√
λtk−1)] for k = 1, 2, . . . , n are

also independent random variables.

This closes the proof.

It follows from the scaling invariance property that for any λ > 0 and 0 ≤ t1 ≤ t2 ≤
. . . ≤ tn, the random vectors:

(B(λt1), B(λt2), . . . , B(λtn)) (
√
λB(t1),

√
λB(t1), . . . ,

√
λB(tn))

have the same distribution.

The scaling property shows that Brownian motion is self-similar, much like a fractal. To

see this, suppose we zoom into a Brownian motion path very close to zero, say on the

interval [0, 10−6]. If the Brownian motion path were smooth and differentiable, the closer
we zoom in around the origin, the flatter the function will look. In the limit, we would

essentially see a straight line given by the derivative at 0. However, what we see with the
Brownian motion is very different. The scaling property means that for a = 10−6,

(B10−6t,t ∈ [0, 1])
distrib.
= (10−3Bt, t ∈ [0, 1])

where
distrib.
= means equality of the distribution of the two processes. In other words, Brow-

nian motion on [0, 10−6] looks like a Browian motion on [0, 1], but with its amplitude
multiplied by a factor of 10−3. In particular, it will remain rugged as we zoom in, unlike a

smooth function.

Proposition 4.4. (Reflection at time s) The process (−Bt, t ≥ 0) is a Brownian motion. More

generally, for any s ≥ 0, the process (B̃(t), t ≥ 0) defined by:

B̃(t) =

{
Bt if t ≤ s

Bs − (Bt −Bs) if t > s
(4.1)

is a Brownian motion.
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Proof. (a) Consider the process B̃(t) = (−Bt, t ≥ 0).

(1) B̃(0) = 0.

(2) IfX is a Gaussian random variable with mean 0 and variance t−s,−X is also Gaussian

with mean 0 and variance t− s. Thus, B̃(t)− B̃(s) = −(B(t)−B(s)) is also Gaussian
with mean 0 and variance (t− s). Hence condition (2) is satisfied.

(3) Assume that 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn. Then, the random variables −(B(tk) −
B(tk−1)) are independent for k = 1, 2, 3, . . . , n. Hence, condition (3) is satisfied.

(b) Consider the process B̃(t) as defined in (4.1).

Fix an s ≥ 0.

(1) Let t = 0. Then, t ≤ s. B̃(t) = B̃(0) = B(0) = 0.

(2) Let t1 < t2 ≤ s. Then, B̃(t2)− B̃(t1) = B(t2)−B(t1). This is a Gaussian random
variable with mean 0 and variance t2 − t1.

Let t1 < s < t2. Then, B̃(t2) − B̃(t1) = B(s) − (B(t2) − B(s)) − B(t1) =
(B(s)−B(t1))−(B(t2)−B(s)). Since,B(s)−B(t1) andB(t2)−B(s) are independent
Gaussian random variables, any linear combination of these is Gaussian. Moreover, its

mean is zero. The variance is given by:

V ar[B̃(t2)− B̃(t1)] = V ar[B(s)−B(t1)] + V ar[B(t2)−B(s)]

= (s− t1) + (t2 − s)

= t2 − t1

Let s < t1 < t2. Then,

B̃(t2)− B̃(t1) = Bs − (Bt2 −Bs)− (Bs − (Bt1 −Bs))

=��Bs − (Bt2 −��Bs)− (��Bs − (Bt1 −��Bs))

= −(Bt2 −Bt1)

Hence, B̃(t2) − B̃(t1) is again a Gaussian random variable with mean 0 and variance
t2 − t1. Hence, condition (3) is satisfied.

(3) Assume that 0 ≤ t1 ≤ . . . ≤ tk−1 ≤ s ≤ tk ≤ . . . ≤ tn. From the above

discussion, the increments B̃(t2) − B̃(t1), . . ., B̃(s) − B̃(tk−1), B̃(tk) − B̃(s), . . .,
B̃(tn) − B̃(tn−1) are independent increments. The increment B̃(tk) − B̃(tk−1) only
depends on the random variables B̃(s) − B̃(tk−1) and B̃(tk) − B̃(s). Thus, B̃(t2) −
B̃(t1), . . ., B̃(tk)− B̃(tk−1), . . ., B̃(tn)− B̃(tn−1) are independent.

Proposition 4.5. (Time Reversal). Let (Bt, t ≥ 0) be a Brownian motion. Show that the process

(B1 −B1−t, t ∈ [0, 1]) has the distribution of a standard brownian motion on [0, 1].
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Proof. (1) At t = 0, B(1)−B(1− t) = B(1)−B(1) = 0.

(2) Let s < t. Then, 1− t < 1− s. So, the increment :

(B(1)−B(1− t))− (B(1)−B(1− s)) = B(1− s)−B(1− t)

has a Gaussian distribution. It’s mean is 0 and variance is (1− s)− (1− t) = t− s.

(3) Let 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. Then:

1− tn ≤ . . . ≤ 1− tk ≤ 1− tk−1 ≤ . . . ≤ 1− t2 ≤ 1− t1

Consider the increments of the process for k = 1, 2, . . . , n:

(B(1)−B(1− tk))− (B(1)−B(1− tk−1)) = B(1− tk−1)−B(1− tk)

They are independent random variables. Hence, condition (3) is satisfied.

Example 4.1. (Evaluating Brownian Probabilities). Let’s compute the probability that

B1 > 0 and B2 > 0. We know from the definition that (B1, B2) is a Gaussian vector
with mean 0 and covariance matrix:

C =

[
1 1
1 2

]

The determinant of C is 1. By performing row operations on the augmented matrix [C|I]
we find that:

C−1 =

[
2 −1
−1 1

]

Thus, the probability P(B1 > 0, B2 > 0) can be expressed as:

P(B1 > 0, B2 > 0) =
1√
(2π)2

∫ ∞

0

∫ ∞

0

exp

[
−1

2
(2x2

1 − 2x1x2 + x2
2

]
dx2dx1

This integral can be evaluated using a calculator or software and is equal to 3/8. The
probability can also be computed using the independence of increments. The increments

(B1, B2 − B1) are IID standard Gaussians. We know their joint PDF. It remains to

integrate over the correct region of R2 which in this case will be:
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D∗ = {(z1, z2) : (z1 > 0, z1 + z2 > 0)}

We have:

P(B1 > 0, B2 > 0) =
1

2π

∫ ∞

0

∫ z2=∞

z2=−z1

e−(z2
1+z2

2)/2dz2dz1

It turns out that this integral can be evaluated exactly. Indeed by writing B1 = Z1 and

Z2 = B2 −B1 and splitting the probability on the event {Z2 ≥ 0} and its complement,
we have that P(B1 ≥ 0, B2 ≥ 0) equals:

P(B1 ≥ 0, B2 ≥ 0) = P(Z1 ≥ 0, Z1 + Z2 > 0, Z2 ≥ 0) + P(Z1 ≥ 0, Z1 + Z2 > 0, Z2 < 0)

= P(Z1 ≥ 0, Z2 ≥ 0) + P(Z1 ≥ 0, Z1 > −Z2,−Z2 > 0)

= P(Z1 ≥ 0, Z2 ≥ 0) + P(Z1 ≥ 0, Z1 > Z2, Z2 > 0)

=
1

4
+

1

8

=
3

8

Note that, by symmetry, P(Z1 ≥ 0, Z1 > Z2, Z2 > 0) = P(Z1 ≥ 0, Z1 ≤ Z2, Z2 >
0) = 1

8 .

Example 4.2. (Another look at Ornstein Uhlenbeck process.) Consider the process

(Xt, t ∈ R) defined by :

Xt =
e−2t

√
2
B(e4t), t ∈ R

Here the process (Be4t , t ≥ 0) is called a time change of Brownian motion, since the time
is now quantitfied by an increasing function of t namely e4t. The example (B(λt), t ≥ 0)
in the scaling property is another example of time change.

It turns out that (Xt, t ∈ R) is a stationary Ornstein-Uhlenbeck process. (Here the index
of time is R instead of [0,∞), but the definition also applies as the process is stationary.
Since the original brownian motion B(t) is a Gaussian process, any finite dimensional
vector (B(t1), . . . , B(tn)) is Gaussian. It follows that:

(B(T1), . . . , B(Tn)) =
1√
2
(e−2t1B(e4t1), . . . , e−2tnB(e4tn))
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is also a Gaussian vector. Hence, (Xt, t ∈ R) is a Gaussian process.

The mean of (Xt, t ∈ R) is:

E[Xt] =
e−2t

√
2
E[B(e4t)] = 0

And if s < t,

E[XsXt] =
e−2(s+t)

2
E[B(e4s)B(e4t)]

=
e−2(s+t)

2
e4s

=
e−2(t−s)

2

TwoGaussian processes having the same mean and covariance have the same distribution.

Hence, it proves the claim that (Xt) is a stationary OU process.

4.2 Properties of the paths.

First we review the definitions of the Riemann integral and the Riemann-Stieljtes integral

in Calculus.

Definition 4.1. A partition P of [a, b] is a finite set of points from [a, b] that includes
both [a, b].The notational convention is to always list the points of a partition P = {a =
x0, x1, x2, . . . , xn = b} in increasing order. Thus:

a = x0 < x1 < . . . < xk−1 < xk < . . . < xn = b

For each subinterval [xk−1, xk] of P , let

mk = inf{f(x) : x ∈ [xk−1, xk]}
Mk = sup{f(x) : x ∈ [xk−1, xk]}

The lower sum of f with respect to P is given by :

L(f, P ) =

n∑
k=1

mk(xk − xk−1)
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The upper sum of f with respect to P is given by:

U(f, P ) =

n∑
k=1

Mk(xk − xk−1)

For a particular partition P , it is clear that U(f, P ) ≥ L(f, P ) becauseMk ≥ mk for all

k = 0, 1, 2, . . . , n.

Definition 4.2. A partition Q is called a refinement of P if Q contains all of the points of

P ; that is Q ⊆ P .

Lemma 4.1. If P ⊆ Q, then L(f, P ) ≤ L(f,Q) and U(f,Q) ≤ U(f, P ).

Proof. Consider what happens when we refine P by adding a single point z to some subin-
terval [xk−1, xk] of P . We have:

mk(xk − xk−1) = mk(xk − z) +mk(z − xk−1)

≤ m′
k(xk − z) +m′′

k(z − xk−1)

where

m′
k = inf{f(x) : x ∈ [z, xk]}

m′′
k = inf{f(x) : x ∈ [xk−1, z]}

By induction we have:

L(f, P ) ≤ L(f,Q)

U(f,Q) ≤ U(f, P )

Lemma 4.2. If P1 and P2 are any two partitions of [a, b], then L(f, P1) ≤ U(f, P2).

Proof. Let Q = P1 ∪ P2. Then, P1 ⊆ Q and P2 ⊆ Q. Thus, L(f, P1) ≤ L(f,Q) ≤
U(f,Q) ≤ L(f, P2).

Definition 4.3. Let P be the collection of all possible partitions of the interval [a, b]. The
upper integral of f is defined to be:

U(f) = inf{U(f, P ) : P ∈ P}
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The lower integral of f is defined by:

L(f) = sup{L(f, P ) : P ∈ P}

Consider the set of all upper sums of f - {U(f, P ) : P ∈ P}. Take an arbitrary partition
P ′ ∈ P . SinceL(f, P ′) ≤ U(f, P ) for allP ∈ P ′, by the Axiom of Completeness(AoC),

inf{U(f, P ) : P ∈ P} exists.We can similarly argue for the supremum of all lower

Riemann sums.

Lemma 4.3. For any bounded function f on [a, b], it is always the case that U(f) ≥ L(f).

Proof. By the properties of the infimum of a set, (∀ε > 0), ∃P (ε) such that U(f) <
U(f, P (ε)) < U(f) + ε. Pick ε = 1, 1

2 ,
1
3 . . . ,

1
n , . . .. Thus, we can produce a sequence

of partitions Pn such that :

U(f) < . . . < U(f, Pn) < U(f) +
1

n

Consequently, limU(f, Pn) = U(f). Similarly, we can produce a sequence of partitions
(Qm) such that :

L(f)− 1

m
< . . . < L(f,Qm) < L(f)

We know that:

L(f,Qm) ≤ U(f, Pn)

Keepingm fixed and passing to the limit, as n → ∞ on both sides, we have:

lim
n→∞

L(f,Qm) ≤ lim
n→∞

U(f, Pn) {Order Limit Theorem}

L(f,Qm) ≤ U(f)

Now, passing to the limit, asm → ∞ on both sides, we have:

lim
m→∞

L(f,Qm) ≤ lim
m→∞

U(f) {Order Limit Theorem}

L(f) ≤ U(f)
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Definition 4.4. (Riemann Integrability). A bounded function f on the interval [a, b] is

said to be Riemann integrable if U(f) = L(f). In this case, we define
∫ b

a
f or

∫ b

a
f(x)dx

to be the common value:

∫ b

a

f(x)dx = U(f) = L(f)

Theorem 4.1. (Integrability Criterion) A bounded function f is integrable on [a, b] if and only if, for
every ε > 0, there exists a partition Pε of [a, b] such that:

U(f, Pε)− L(f, Pε) < ε

Proof. (⇐= direction.) Let ε > 0. If such a partition Pε exists, then:

U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε

Because ε is arbitrary, it follows that U(f) = L(f) and hence f is Riemann integrable.

(=⇒ direction.) Let f be a bounded function on [a, b] such that f is Riemann integrable.

Pick an arbitrary ε > 0.

Then, since U(f) = inf{U(f, P ) : P ∈ P}, there exists Pε ∈ P , such that U(f) <
U(f, Pε) < U(f)+ ε

2 . Since L(f) = sup{L(f, P ) : P ∈ P}, there exists Pε ∈ P , such
that L(f)− ε

2 < L(f, Pε) < L(f). Consequently,

U(f, Pε)− L(f, Pε) < U(f) +
ε

2
−
(
L(f)− ε

2

)
= U(f)− L(f) + ε

= ε

4.2.1 Functions considered in Stochastic Calculus.

Definition 4.5. A point c is called a discontinuity of the first kind or jump point if both
limits g(c+) = limt↑c g(t) and g(c−) = limt↓c g(t) exist and are not equal. The jump
at c is defined as ∆g(c) = g(c+) − g(c−). Any other discontinuity is said to be of the
second kind.

Example 4.3. Consider the function

f(x) = sin

(
1

x

)
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Let xn = 1
2nπ . Then, f(xn) = (0, 0, 0, . . .). Next, consider yn = 1

π/2+2nπ . Then,

f(yn) = (1, 1, 1, . . .). Consequently, f is not continuous at 0. Hence, limits from the

left or right don’t exist. Consequently, this is a discontinuity of the second kind.

Functions in stochastic calculus are functions without discontinuities of the second kind,

that is functions have both left and right hand limits at any point of the domain and have

one-sided limits at the boundary. These functions are called regular functions. It is often

agreed to identify functions if they have the same right and left limits at any point.

The classD = D[0, T ] of right-continuous functions on [0, T ]with left limits has a special
name, cadlag functions (which is the abbreviation of right continuous with left limits in

French). Sometimes these processes are called R.R.C. for regular right continuous. Notice

that this class of processes includes C , the class of continuous functions.

Let g ∈ D be a cadlag function, then, by definition, all the discontinuities of g are jumps.
An important result in analysis is that, a function can have no more than a countable

number of discontinuities.

4.2.2 Variation of a function.

If g is a function of a real variable, its variation over the interval [a, b] is defined as:

Vg([a, b]) = sup

{
n∑

i=1

|g(ti)− g(ti−1)|

}
(4.2)

where the supremum is taken over all partitions P ∈ P .

Clearly, by the Triangle Inequality, the sums in (4.2) increase as new points are added to

the partitions. Therefore, the variation of g is:

Vg([a, b]) = lim
||∆n||→0

n∑
i=1

|g(ti)− g(ti−1)|

where ||∆n|| = max1≤i≤n(ti−ti−1). If Vg([a, b]) is finite, then g is said to be a function
of finite variation on [a, b]. If g is a function of t ≥ 0, then the variation of g as a function
of t is defined by:

Vg(t) = Vg([0, t])

Clearly, Vg(t) is an increasing function of t.
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Definition 4.6. g is a function of finite variation if Vg(t) < ∞ for all t ∈ [0,∞). g is
of bounded variation if supt Vg(t) < ∞, in other words there exists C , for all t, such that
Vg(t) < C . Here C is independent of t.

Example 4.4. (1) If g(t) is increasing then for any i, g(ti) ≥ g(ti−1), resulting in a
telescopic sum, where all terms excluding the first and the last cancel out, leaving

Vg(t) = g(t)− g(0)

(2) If g(t) is decreasing, then similarly,

Vg(t) = g(0)− g(t)

Example 4.5. If g(t) is differentiable with continuous derivative g′(t), g(t) =
∫ t

0
g′(s)ds

then

Vg(t) =

∫ t

0

|g′(s)|ds

Proof. By definition,

Vg(t) = lim
||∆n→0||

n∑
i=1

|g(ti)− g(ti−1)|

Since g is continuous and differentiable on [ti−1, ti], there exists zi ∈ (ti−1, ti) such, that
g(ti)− g(ti−1) = g′(zi)(ti − ti−1). Therefore, we can write:

Vg(t) = lim
||∆n→0||

n∑
i=1

|g′(zi)|(ti − ti−1)

=

∫ t

0

|g′(s)|ds

Theorem 4.2. If g is continuous, g′ exists and
∫ t

0
|g′(s)|ds is finite, then g is of finite variation.

Example 4.6. The function g(t) = t sin(1/t) for t > 0 and g(0) = 0 is continuous on
[0, 1] and differentiable at all points except zero, but is not of bounded variation on any

interval that includes 0. Consider the partition {xn} =
{

1
π/2+nπ

}
. Thus,
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sin(
1

xn
) =

{
1 if n is even

−1 if n is odd

Thus,

f(xn) =

{
xn n is even

−xn n is odd

Therefore,

m∑
n=1

|f(xn)− f(xn−1)| =
m∑

n=1

(xn + xn−1)

= x0 + xn + 2

m−1∑
n=1

xn

≥
m−1∑
n=1

xn

This is the lower bound on the variation of g on the partition {0, xm, . . . , x1, x0, 1}.
Now, passing to the limit asm approaches infinity,

∑
1

π/2+nπ is a divergent series. Con-

sequently, Vg([0, 1]) has unbounded variation.

4.2.3 Jordan Decomposition.

Theorem 4.3. Any function g : [0,∞) → R is of bounded variation if and only if it can be expressed

as the difference of two increasing functions:

g(t) = a(t)− b(t)

Proof. (=⇒direction). If g is of finite variation, Vg(t) < ∞ for all t, and we can write:

g(t) = Vg(t)− (Vg(t)− g(t))

Let a(t) = Vg(t) and b(t) = Vg(t) − g(t). Clearly, both a(t) and b(t) are increasing
functions.
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(⇐=direction). Suppose a function g can be expressed as a difference of two bounded
increasing functions. Then,

Vg(t) = lim
||∆n||→0

n∑
i=1

|(a(ti)− b(ti))− (a(ti−1)− b(ti−1)|

{ Telescoping sum }
= a(t)− b(t)− (a(0)− b(0))

Since both a(t) and b(t) are bounded, g has bounded variation.

4.2.4 Riemann-Stieltjes Integral.

Let g be a montonically increasing function on a finite closed interval [a, b]. A bounded
function f defined on [a, b] is said to Riemann-Stieltjes integrable with respect to g if the
following limit exists:

∫ b

a

f(t)dg(t) = lim
||∆n||→0

n∑
i=1

f(τi)(g(ti)− g(ti−1)) (4.3)

where τi is an evaluation point in the interval [ti−1, ti]. It is a well-known fact that con-
tinuous functions are Riemann integrable and Riemann-Stieltjes integrable with respect to

any monotonically increasing function on [a, b].

We ask the following question. For any continuous functions f and g on [a, b], can we

define the integral
∫ b

a
f(t)dg(t) by Equation (4.3)?

Consider the special case f = g, namely, the integral:

∫ b

a

f(t)df(t)

Let ∆n = {a = t0, t1, . . . , tn = b} be a partition of [a, b]. Let Ln and Rn denote

the corresponding Riemann sums with the evaluation points τi = ti−1 and τi = ti,
respectively, namely,

Ln =

n∑
i=1

f(ti−1)(f(ti)− f(ti−1)) (4.4)

Rn =

n∑
i=1

f(ti)(f(ti)− f(ti−1)) (4.5)

150



Is it true that, limLn = limRn as ||∆n|| → 0? Observe that:

Rn − Ln =

n∑
i=1

(f(ti)− f(ti−1))
2 (4.6)

Rn + Ln =

n∑
i=1

(f(ti)
2 − f(ti−1)

2) = f(b)2 − f(a)2 (4.7)

Therefore, Rn and Ln are given by:

Rn =
1

2

(
f(b)2 − f(a)2 +

n∑
i=1

(f(ti)− f(ti−1))
2

)
(4.8)

Ln =
1

2

(
f(b)2 − f(a)2 −

n∑
i=1

(f(ti)− f(ti−1))
2

)
(4.9)

The limit of the right-hand side of equation (4.6) is called the quadratic variation of the func-

tion f on [a, b]. Obviously, lim||∆n||→0 Rn 6= lim||∆n||→0 Ln if and only the quadratic

variation of the function f is non-zero.

Example 4.7. Let f be a C1-function that is f ′(t) is a continuous function. Then, by the
mean value theorem:

|Rn − Ln| =
n∑

i=1

(f(ti)− f(ti−1))
2

=
n∑

i=1

(f ′(t∗i )(ti − ti−1))
2

{Mean Value Theorem}

≤
n∑

i=1

‖f ′‖2∞ (ti − ti−1)
2

{ Interior Extremum Theorem }

≤ ‖f ′‖2∞ ‖∆n‖
n∑

i=1

(ti − ti−1)

= ‖f ′‖2∞ ‖∆n‖ (b− a)

where ‖f ′‖∞ = supx∈[a,b] f(x). Thus, the limit as ‖∆n‖ → 0 of the distance |Rn−Ln|
also approaches zero. Thus, limLn = limRn as ‖∆n‖ → 0 and the Riemann-Stieltjes
integral exists. By equation (4.7), we have:
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lim
‖∆n‖→0

Ln = lim
‖∆n‖→0

Rn =
1

2
(f(b)2 − f(a)2) (4.10)

On the other hand, for such aC1-function f , wemay simply define the integral
∫ b

a
f(t)df(t)

by:

∫ b

a

f(t)df(t) =

∫ b

a

f(t)f ′(t)dt

Then, by the fundamental theorem of Calculus:

∫ b

a

f(t)df(t) =

∫ b

a

f(t)f ′(t)dt =
1

2
f(t)2|ba =

1

2
(f(b)2 − f(a)2)

Remark. There is a very close relationship between functions with bounded variation and

functions for which the classical integral makes sense. For the Ito integral, the quadratic

variation plays a similar role. The quadratic variation of a smooth fuction f ∈ C1([0, t])
is zero.

Example 4.8. Suppose f is a continuous function satisfying the condition

|f(t)− f(s)| ≤ C|t− s|1/2

where 0 < C < 1.

In this case we have:

0 ≤ |Rn − Ln| ≤ C2
n∑

i=1

(ti − ti−1) = C2(b− a)

Hence, limRn 6= limLn as ‖∆n‖ → 0 when a 6= b. Consequently, the integral∫ b

a
f(t)df(t) cannot be defined for such a function f . Observe that the quandratic varia-

tion of the function is b− a (non-zero).

We see from the above examples, that definining the integral
∫ b

a
f(t)dg(t) even when

f = g is a non-trivial problem. Consider the question posed earlier - if f and g are

continuous functions on [a, b], can we define the integral
∫ b

a
f(t)dg(t)? There is no simple

answer to this question. But then in view of example (4.8), we can ask another question:

Question. Are there continuous functions f satisfying the condition

|f(t)− f(s)| ≤ C|t− s|1/2
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4.2.5 Brownian motion as the limit of a symmetric random walk.

Consider a randomwalk starting at 0with jumps h and−h equally at times δ, 2δ, . . .where
h and δ are positive numbers. More precisely, let {Xn}∞n=1 be a sequence of independent

and identically distributed random variables with :

P{Xj = h} = P{Xj = −h} =
1

2

Let Yδ,h(0) = 0 and put:

Yδ,h(nδ)X1 +X2 + . . .+Xn

For t > 0, define Yδ,h(t) by linearization that is, for nδ < t < (n+ 1)δ, define:

Yδ,h(t) =
(n+ 1)δ − t

δ
Yδ,h(nδ) +

t− nδ

δ
Yδ,h((n+ 1)δ)

We can think of Yδ,h(t) as the position of the random walk at time t. In particular,X1 +
X2 + . . .+Xn is the position of this random walk at time nδ.

Question. What is the limit of the random walk Yδ,h as δ, h → 0?

Recall that the characteristic function of a random variable X is φX(λ) = E exp[iλX].
In order to find out the answer, let us compute the following limit of the characteristic

function of Yδ,h(t):

lim
δ,h→0

E exp [iλYδ,h(t)]

where λ ∈ Ris fixed. For heuristic derivation, let t = nδ and so n = t/δ. Then we have:

E exp [iλYδ,h(t)] =

n∏
j=1

EeiλXj

=

n∏
j=1

(
1

2
eiλh +

1

2
e−iλh

)

=

(
1

2
eiλh +

1

2
e−iλh

)n

= (cosλh)
n

= (cosλh)
t/δ
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For fixed t and λ, when δ and h independently approach 0, the limit of E exp [iλYδ,h(t)]
may not exist. For example, holding h constant, letting δ → 0, since −1 ≤ cos θ ≤
1, the function (cosλh)

t/δ → 0. Holding δ constant, letting h → 0, the function

(cosλh)
t/δ → 1. In order for the limit to exist, we impose a certain relationship be-

tween δ and h. However, depending on the relationship, we may obtain different limits.

Let u = cos(λh)1/δ . Then lnu = 1
δ ln cos(λh). Note that:

cos(λh) ≈ 1− 1

2
λ2h2

And ln(1 + x) ≈ x. Hence,

ln cos(λh) ≈ ln

(
1− 1

2
λ2h2

)
≈ −1

2
λ2h2

Therefore for small λ and h, we have lnu ≈ − 1
2δλ

2h2 and so:

u ≈ exp

[
− 1

2δ
λ2h2

]

In particular, if δ and h are related by h2 = δ, then

lim
δ→0

E exp [iλYδ,h(t)] = e−
1
2λ

2t

But, e−
1
2λ

2t is the characteristic function of a Gaussian random variable with mean 0 and
variance t. Thus, we have derived the following theorem about the limit of the random

walk Yδ,h as δ, h → 0 in such a way that h2 = δ.

Theorem 4.4. Let Yδ,h(t) be the random walk starting at 0 with jumps h and −h equally likely

at times δ, 2δ, 3δ, . . .. Assume that h2 = δ. Then, for each t ≥ 0, the limit:

lim
δ→0

Yδ,h(t) = B(t)

exists in distribution. Moreover, we have:

EeiλB(t) = e−
1
2λ

2t
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Theorem 4.5. (Quadratic Variation of a Brownian motion). Let (Bt, t ≥ 0) be a standard

brownian motion. Then, for any sequence of partitions (tj , j ≤ n) of [0, t] we have:

〈B〉t =
n∑

j=1

(Btj+1
−Btj )

2 L2

→ t

where the convergence is in the L2 sense.

Remark. It is reasonable to have some sort of convergence as we are dealing with a sum of

independent random variables. However, the conclusion would not hold if the increments

were not squared. So there is something more at play here.

Proof. We have:

E


n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 = E


n−1∑

j=0

(B(tj+1)−B(tj))
2 −

n−1∑
j=0

(tj+1 − tj)

2


= E


n−1∑

j=0

{
(B(tj+1)−B(tj))

2 − (tj+1 − tj)
}2


For simplicity, we define the variables Xj = (B(tj+1)− B(tj))

2 − (tj+1 − tj). Then,
we may write:

E


n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 = E


n−1∑

j=0

Xj

2


= E

n−1∑
i=0

n−1∑
j=0

XiXj


=

n−1∑
i=0

n−1∑
j=0

E[XiXj ]

Now, the random variables Xj are independent.

The expectation of Xj is E[Xj ] = E(B(tj+1)−B(tj))
2 − (tj+1 − tj) = 0.

Since, Xi and Xj are independent, for i 6= j, E[XiXj ] = EXi · EXj = 0.

Hence, we have:
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E


n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 =

n−1∑
i=0

E[X2
i ]

We now develop the expectation of the square of Xi. We have:

E[X2
i ] = E

[(
(B(ti+1)−B(ti))

2 − (ti+1 − ti)
)2]

= E
[
((B(ti+1)−B(ti))

4 − 2(B(ti+1)−B(ti))
2(ti+1 − ti) + (ti+1 − ti)

2
]

The MGF of the random variable B(ti+1)−B(ti) is :

φ(λ) = exp

[
λ2(ti+1 − ti)

2

]
φ′(λ) = λ(ti+1 − ti) exp

[
λ2(ti+1 − ti)

2

]
φ′′(λ) =

[
(ti+1 − ti) + λ2(ti+1 − ti)

2
]
exp

[
λ2(ti+1 − ti)

2

]
φ(3)(λ) =

[
3λ(ti+1 − ti)

2 + λ3(ti+1 − ti)
3
]
exp

[
λ2(ti+1 − ti)

2

]
φ(4)(λ) =

[
3(ti+1 − ti)

2 + 6λ2(ti+1 − ti)
3 + λ4(ti+1 − ti)

4
]
exp

[
λ2(ti+1 − ti)

2

]
Thus, E[(B(ti+1)−B(ti))

4] = 3(ti+1 − ti)
2. Consequently,

E[X2
i ] = E[(B(ti+1)−B(ti))

4]− 2(ti+1 − ti)E[(B(ti+1)−B(ti))
2] + (ti+1 − ti)

2

= 3(ti+1 − ti)
2 − 2(ti+1 − ti)

2 + (ti+1 − ti)
2

= 2(ti+1 − ti)
2

Putting all this together, we finally have that:

E


n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 = 2

n−1∑
i=0

(ti+1 − ti)
2 (4.11)

≤ 2 ‖∆n‖
n−1∑
i=0

(ti+1 − ti)

= 2 ‖∆n‖ · t
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As n → ∞, ‖∆n‖ → 0. Hence,

lim
n→∞

E


n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 = 0

Hence, the sequence of random variables

n−1∑
j=0

(B(tj+1)−B(tj))
2 L2

→ t

Corollary 4.1. (Quadratic Variation of a Brownian Motion Path). Let (Bs, s ≥ 0) be a Brownian
motion. For every n ∈ N, consider the dyadic partition (tj , j ≤ 2n) of [0, t] where tj =

j
2n t. Then

we have that:

〈B〉t =
2n−1∑
j=1

(Btj+1 −Btj )
2 a.s.→ t

Proof. We have (ti+1 − ti) =
t
2n . Borrowing equation (4.11) from the proof of theorem

(4.5), we have that:

E


2n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2
 = 2

2n−1∑
i=0

(
t

2n

)2

= 2 · (2n) · t2

22n

=
2t2

2n

By Chebyshev’s inequality,

P

∣∣∣∣∣∣
2n−1∑
j=0

(B(tj+1)−B(tj))
2 − t

∣∣∣∣∣∣ > ε

 ≤ 1

ε2
E


2n−1∑

j=0

(B(tj+1)−B(tj))
2 − t

2


≤ 1

ε2
· 2t

2

2n
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Define An :=
{∣∣∣∑2n−1

j=0 (B(tj+1)−B(tj))
2 − t

∣∣∣ > ε
}
. Since,

∑
1
2n is a convergent

series, any multiple of it, (2t2/ε2)
∑

1
2n also converges. Now, 0 ≤ P(An) ≤ (2t2/ε2)

2n .

By the comparison test,
∑

P(An) converges to a finite value. By Theorem (3.21),

2n−1∑
j=0

(B(tj+1)−B(tj))
2 a.s.→ t

We are now ready to show that every Brownian motion path has infinite variation.

If g is a C1 function,

∫ t

0

|g′(t)|dt =
∫ t

0

√
g′(t)2dt

≤
∫ t

0

√
1 + g′(t)2dt

= lg(t)

where lg(t) is the arclength of the function g between [0, t]. So, Vg(t) ≤ lg(t) and further:

lg(t) =

∫ t

0

√
1 + g′(t)2dt

≤
∫ t

0

(
1 +

√
g′(t)2

)
dt

≤ t+ Vg(t)

Consequently,

Vg(t) ≤ lg(t) ≤ t+ Vg(t)

The total variation of the function is finite if and only if it’s arclength is.

Hence, intuitively, our claim is that a Brownian motion path on [0, T ] has infinite arc-
length. Since g ∈ C1([a, b]) =⇒ (Vg(t) < ∞), it follows that (Vg(t) → ∞) =⇒ g /∈
C1.

Corollary 4.2. (Brownian Motion paths have unbounded total variation.) Let (Bs, s ≥ 0) be a

Brownian motion. Then, the random functions B(s, ω) on the interval [0, t] have unbounded variation
almost surely.
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Proof. Take the sequence of dyadic partitions of [0, t]: tj = j
2n t, n ∈ N, j ≤ 2n. By

pulling out the worst increment, we have the trivial bound for every ω:

2n−1∑
j=0

(Btj+1
(ω)−Btj (ω))

2 ≤ max
0≤j≤2n

∣∣Btj+1
(ω)−Btj (ω)

∣∣ · 2n−1∑
j=0

(Btj+1
(ω)−Btj (ω))

(4.12)

We proceed by contradiction. Let A′ be the set of all ω, for which the Brownian motion
paths have bounded total variation. Let A be event that the Brownian motion paths have

unbounded variation.

By the definition of total variation, that would imply, ∃M ∈ N :

(∀ω ∈ A′) lim
n→∞

2n−1∑
j=0

∣∣(Btj+1(ω)−Btj (ω))
∣∣ < M

Since Brownian Motion paths are continuous on the compact set [ j
2n t,

j+1
2n t], they are

uniformly continuous. So, as n → ∞, |tj+1 − tj | → 0 and therefore |Btj+1(ω) −
Btj (ω)| → 0. And consequently, max0≤j≤2n

∣∣Btj+1
(ω)−Btj (ω)

∣∣→ 0.

Thus, for every ω ∈ A′, the right hand side of the inequality (4.12), converges to 0 and

therefore the left hand side converges to 0. But, this contradicts the fact that 〈B〉t
a.s.→ t.

So, A′ is a null set, and P(A′) = 0 and P(A) = 1. This closes the proof.

4.3 What exactly is (Ω,F ,P) in mathematical finance?

If we make the simplifying assumption that the process paths are continuous, we obtain

the set of all continuous functions on [0, T ], denoted by C[0, T ]. This is a very rich space.
In a more general model, it is assumed that the process paths are right continuous with left

limits (regular right-continuous RRC, cadlag) functions.

Let the sample space Ω = D[0, T ] be the set of all RRC functions on [0, T ]. An element
of this set is a RRC function from [0, T ] into R. First we must decide what kind of sets of
these functions are measurable? The simplest set for which we would like to calculate the

probabilities are sets of the form {a ≤ S(t1) ≤ b} for some t1. If S(t) represents the
price of a stock at time t, then the probability of such a set gives the probability that the
stock price at time t1 is between a and b. We are also interested in how the price of the
stock at time t1 affects the price at another time t2. Thus, we need to talk about the joint
distribution of stock prices S(t1) and S(t2). This means that we need to define probability
on the sets of the form {S(t1) ∈ B1, S(t2) ∈ B2} where B1 and B2 are intervals on the

line. More generally, we would like to have all the finite-dimensional distributions of the

processS(t), that is, the probabilities of the sets: {S(t1) ∈ B1, S(t2) ∈ B2, . . . , S(tn) ∈
Bn} for any choice of 0 ≤ t1 ≤ . . . ≤ tn ≤ T .
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The sets of the form A = {ω(·) ∈ D[0, T ] : ω(t1) ∈ B1, . . . , ω(tn) ∈ Bn}, where Bi’s

are borel subsets of R, are called cylinder sets or finite-dimensional rectangles.

The stochastic process S(t) is just a (function-valued) random variable on this sample

space, which takes some value ω(t) - the value of the function ω at t.

LetR be the colllection of all cylindrical subsets ofD[0, 1]. ObviouslyR is not a σ-field.

Probability is first defined by on the elements ofR. Let A ⊆ R.

P(A) =

∫
B1

· · ·
∫
Bn

n∏
i=1

1√
(2π)(ti − ti−1)

exp

[
− (ui − ui−1)

2

2(ti − ti−1)

]
du1 · · · dun

and then extended to the σ-field generated by taking unions, complements and intersec-
tions of cylinders. We take the smallest σ-algebra containing all the cylindrical subsets of
D[0, 1]. Thus, F = B(D[0, 1]).

Hence, (Ω,F ,P) = (D[0, 1],B(D[0, 1]),P) is a probability space. It is called theWiener

space and P here is called theWiener measure.

4.4 Continuity and Regularity of paths.

As discussed in the previous section, a stochastic process is determined by its finite-dimensional

distribution. In studying stochastic processes, it is often natural to think of them as

function-valued random variables in t. Let S(t) be defined for 0 ≤ t ≤ T , then for a fixed
ω, it is a function in t, called the sample path or a realization ofS. Finite-dimensional distri-
butions do not determine the continuity property of sample paths. The following example

illustrates this.

Example 4.9. LetX(t) = 0 for all t, 0 ≤ t ≤ 1 and τ be a uniformly distributed random
variable on [0, 1]. Let Y (t) = 0 for t 6= τ and Y (t) = 1 if t = τ. Then, for any fixed
t, P(Y (t) 6= 0) = P(τ = t) = 0, and hence P(Y (t) = 0) = 1. So, that all one-
dimensional distributions ofX(t) and Y (t) are the same. Similarly, all finite-dimensional
distributions ofX and Y are the same. However, the sample paths of the processX , that
is, the functions X(t)0≤t≤1 are continuous in t, whereas every sample path Y (t)0≤t≤1

has a jump at the (random) point τ . Notice that, P(X(t) = Y (t)) = 1 for all t, 0 ≤ t ≤ 1.

Definition 4.7. Two stochastic processes are called versions (modifications) of one another

if

P(X(t) = Y (t)) = 1 for all 0 ≤ t ≤ T

Thus, the two processes in the example (4.9) are versions of one another, one has contin-

uous sample paths, the other does not. If we agree to pick any version of the process we

want, then we can pick the continous version when it exists. In general, we choose the

smoothest possible version of the process.
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For two processes,X and Y , denote byNt = {X(t) 6= Y (t)}, 0 ≤ t ≤ T . In the above
example, P(Nt) = P(τ = t) = 0 for any t, 0 ≤ t ≤ 1. However, P(

⋃
0≤t≤1 Nt) =

P(τ = t for some t in [0, 1]) = 1. Although, each of Nt is a P-null set, the union N =⋃
0≤t≤1 Nt contains uncountably many null sets, and in this particular case it is a set of of

probability one.

If it happens that P(N) = 0, then N is called an evanescent set, and the processes X and

Y are called indistinguishable. Note that in this case, P({ω : ∃t : X(t) 6= Y (t)}) =
P(
⋃

0≤t≤1{X(t) 6= Y (t)) = 0 and P(
⋂

0≤t≤1{X(t) = Y (t)}) = 1. It is clear, that
if the time is discrete, then any two versions of the process are indistinguishable. It is

also not hard to see, that if X(t) and Y (t) are versions of one another and they are both
right-continuous, they are indistinguishable.

Theorem 4.6. (Paul Levy’s construction of Brownian Motion). Standard Brownian motion exists.

Proof. I reproduce the standard proof as present in Brownian Motion by Morters and Peres.

I added some remarks for greater clarity.

Let

Dn =

{
k

2n
: k = 0, 1, 2, . . . , 2n

}
be a finite set of dyadic points.

Let

D =

∞⋃
n=0

Dn

Let {Zt : t ∈ D} be a collection of independent, standard normally distributed random
variables. This is a countable set of random variables.

Let B(0) := 0 and B(1) := Z1.

For each n ∈ N, we define the random variables B(d), d ∈ Dn such that, the following

invariant holds:

(1) for all r < s < t in Dn the random variable B(t)−B(s) is normally distributed with
mean zero and variance t− s and is independent of B(s)−B(r).

(2) the vectors (B(d) : d ∈ Dn) and (Zt : t ∈ D \ Dn) are independent.

Note that we have already done this forD0 = {0, 1}. Proceeding inductively, let’s assume
that the above holds for some n − 1. We are interested to prove that the invariant also
holds for n.

We define B(d) for d ∈ Dn\Dn−1 by:
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B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2(n+1)/2

Note that, the points 0, 1
2n−1 , . . . ,

k
2n−1 ,

k+1
2n−1 , . . . , 1 belong toDn−1. The first summand

is the linear interpolation of the values ofB at the neighbouring points of d inDn−1. That

is,

B

(
2k + 1

2n

)
=

B
(

k
2n−1

)
+B

(
k+1
2n−1

)
2

+
Zd

2(n+1)/2

Since P (n − 1) holds, B(d − 2−n) and B(d + 2−n) are have no dependence on (Zt :
t ∈ D \ Dn−1). Consequently, B(d) has no dependence on (Zt : t ∈ D \ Dn) and the
second property is fulfilled.

Moreover, as 1
2 [B(d + 2−n) − B(d − 2−n)] depends only on (Zt : t ∈ Dn−1), it is

independent of Zd

2(n+1)/2 . By our induction assumptions, they are both nromally distributed

with mean 0 and variance 1
2(n+1) .

So, their sum and difference random variables

B(d)−B(d− 2−n) =
B(d+ 2−n)−B(d− 2−n)

2
+

Zd

2(n+1)/2

B(d+ 2−n)−B(d) =
B(d+ 2−n)−B(d− 2−n)

2
− Zd

2(n+1)/2

are also independent, with mean 0 and variance 1
2n (the variance of independent random

variables is the sum of the variances).

Indeed all increments B(d) − B(d − 2−n) for d ∈ Dn \ {0} are independent. To see
this, it suffices to show that they are pairwise independent. We have seen in the previous

paragraph that the pairs B(d) − B(d − 2−n) and B(d + 2−n) − B(d) with d ∈ Dn \
Dn−1 are independent. The other possibility is that the increments are over the intervals

separated by some d ∈ Dn−1. For concreteness, if n were 3, then the increments,B7/8−
B6/8 and B5/8 − B4/8 are seperated by d = 3

4 ∈ D2. Choose d ∈ Dj with this

property and minimal j, so, the two intervals are contained in [d − 2−j , d] and [d, d +
2−j ] respectively. By induction, the increments over these two intervals of length 2−j are

independent and the increments over the intervals of length 2−n are constructed from the

independent increments B(d) − B(d − 2−j) and B(d + 2−j) − B(d) using a disjoint
set of variables (Zt : t ∈ Dn). Hence, they are independent and this implies pairwise
independence. This implies the first property. Consequently, the vector of increments

(B(d)−B(d− 2−n) for all d ∈ Dn is Gaussian.

Having thus chosen the value of the process on all the dyadic points, we interpolate be-

tween them. Formally, we define:
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F0(t) =


Z1 for t = 1

0 for t = 0

linear in between

and for each n ≥ 1,

Fn(t) =


Zt

2(n+1)/2 for t ∈ D \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points in Dn

These functions are continuous on [0, 1] and for all n and d ∈ Dn, we have:

B(d) =

n∑
i=0

Fi(d) =

∞∑
i=0

Fi(d) (4.13)

To see this, assume that above equation holds for all d ∈ Dn−1.

Let’s consider the point d ∈ Dn \ Dn−1.

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2(n+1)/2

=

n−1∑
i=0

Fi(d− 2−n) + Fi(d+ 2−n)

2
+

Zd

2(n+1)/2
(4.14)

Now, d − 2−n and d + 2−n belong to Dn−1 and are not in
⋃

i<n−1 Di. Therefore, for

i = 0, 1, . . . , n−2, the points (d−2−n, Fi(d−2−n)) and (d+2−n, Fi(d+2−n) lie on
some straight line and have (d, Fi(d)) as their midpoint. Moreover, d−2−n and d+2−n

are vertices in Dn−1. So, by definition of Fn−1(d), we have Fn−1(d) = [Fn−1(d −
2−n) + Fn−1(d+ 2−n)]/2.

To summarize, the first term on the right hand side of expression (4.14) is equal to
∑n−1

i=0 Fi(d).
By mathematical induction, it follows that the claim (4.13) is true for all n ∈ N.

It’s extremely easy to find an upper bound on the probability contained in the Gaussian

tails. Suppose X ∼ N(0, 1) and let x > 0. We are interested in the tail probability
P(X > x). We have:

P(X > x) =

∫ ∞

x

e−x2/2dx =

∫ ∞

x

xe−x2/2dx

x
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Let u = 1
x and dv = xe−x2/2dx. We have:

u = 1
x dv = xe−x2/2dx

du = − 1
x2 dx v = −e−x2/2

Thus,

P(X > x) = − 1

x
e−x2/2

∣∣∣∣∞
x

−
∫ ∞

x

e−x2/2

x2
dx

=
e−x2/2

x
−
∫ ∞

x

e−x2/2

x2
dx{

I(x) =

∫ ∞

x

e−x2/2

x2
≥ 0

}

≤ e−x2/2

x

Thus, for c > 1 and large n, we have:

P(|Zd| ≥ c
√
n) ≤ 1

c
√
n
e−c2n/2 ≤ exp

(
−c2n

2

)

So, the series:

∞∑
n=0

P
{
There exists atleast one d ∈ Dn with |Zd| ≥ c

√
n
}
≤

∞∑
n=0

∑
d∈Dn

P
{
|Zd| ≥ c

√
n
}

≤
∞∑

n=0

(2n + 1) exp

(
−c2n

2

)

Now, the series (an) given by, an := (2n + 1)e−c2n/2 has the ratio between successive

terms:

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1 + 1

2n + 1
· e(c

2n)/2

ec2(n+1)/2

= lim
n→∞

1
2 + 1

2n

1 + 1
2n

· 1

ec2/2

=
1

2ec2/2
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If this ratio is less than unity, that is c >
√
2 log 2, than by the ratio test,

∑
(2n+1)e−c2n/2

converges to a finite value. Fix such a c.

By BCL1(Borel-Cantelli Lemma), ifAn := {There exists atleast one d ∈ Dn with |Zd| ≥ c
√
n}

and
∑∞

n=0 P(An) converges to a finite value, then the eventAn occurs finitely many times

with probability 1. There exists N ∈ N, such that for all n ≥ N , An fails to occur with

probability 1. Thus, for all n ≥ N , {Zd ≤ c
√
n} occurs with probability 1. It follows

that:

sup
t∈[0,1]

Fn(t) ≤
c
√
n

2(n+1)/2

Define

Mn =
c
√
n

2(n+1)/2

Since
∑

Mn converges, by theWeierstrassM -test, the infinite series of functions
∑∞

n=0 Fn(t)
converges uniformly on [0, 1]. Since, each Fn(t) is piecewise linear and continuous, by the
Term-by-Term continuity theorem,

∑∞
n=0 Fn(t) is continuous on [0, 1].

4.5 A point of comparison: The Poisson Process.

Like the Brownian motion, the Poisson process is defined as a process with stationary and

independent increments.

Definition 4.8. A process (Nt, t ≥ 0) defined on (Ω,F ,P) has the distribution of the
Poisson process with rate λ > 0, if and only if the following hold:

(1) N0 = 0.

(2) For any s < t, the increment Nt − Ns is a Poisson random variable with parameter

λ(t− s).

(3) For any n ∈ N and any choice 0 < t1 < t2 < . . . < tn < ∞, the increments

Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1
are independent.

Poisson paths can be sampled using this definition. By construction, it is not hard to

see that the paths of Poisson processes are piecewise, constant, integer-valued and non-

decreasing. In particular, the paths of Poisson processes have finite variation. Poisson

paths are much simpler than the ones of Brownian motion in many ways!

Example 4.10. (Simulating the Poisson Process.) Use the definition (4.8) to generate 10
paths of the Poisson process with rate 1 on the interval [0, 10] with step-size 0.01.
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Listing 8: Generating 10 paths of a Poisson process

def generatePoissonProcess(lam,T,stepSize):
N = int(T/stepSize)
x = np.random.poisson(lam=lam,size=N)
y = np.cumsum(x)
y = np.concatenate([[0.0],y])
return y
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10 paths of the Poisson process on [0, 10]

We can construct a Poisson process as follows. Consider (τj , j ∈ N) IID exponential

random variables with parameter 1/λ. One should think of τj as the waiting time from
the (j − 1)st to the jth jump. Then, one defines :

Nt = #{k : τ1 + τ2 + . . .+ τk ≤ t}
= Number of jumps upto and including time t

Now, here is an idea! What about defining a new process with stationary and independent

increments using a given distribution other than Poisson and Gaussian? Is this even pos-

sible? The answer is yes, but only if the distribution satisfies the property of being infinitely

divisible. To see this, consider the value of the process at time 1,N1. Then, no matter how

many subintervals we chop the interval [0, 1] into, we must have the increments add up to
N1. In other words, we must be able to write N1 as a sum of n IID random variables for

every possible n. This is certainly true for Poisson random variables and Gaussian random
variables. Another example is the Cauchy distribution. In general, processes that can be

constructed using independent, stationary increments are called Levy processes.
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Example 4.11. Time Inversion. Let (Bt, t ≥ 0) be a standard brownian motion. We
consider the process:

Xt = tB1/t for t > 0

This property relates the behavior of t large to the behavior of t small.

(a) Show that (Xt, t > 0) has the distribution of Brownian motion on t > 0.

Proof.

Like B(t), it is an easy exercise to prove that X(t) is also a Gaussian process.

We have, E[Xs] = 0.

Let s < t. We have:

Cov(Xs, Xt) = E[sB(1/s) · tB(1/t)]

= stE[B(1/s) ·B(1/t)]

= st · 1
t{

∵
1

t
<

1

s

}
= s

Consequently, X(t) has the distribution of a Brownian motion.

(b) Argue thatX(t) converges to 0 as t → 0 in the sense ofL2-convergence. It is possible

to show convergence almost surely so that (Xt, t ≥ 0) is really a Brownian motion for
t ≥ 0.

Solution.

Let (tn) be any arbitrary sequence of positive real numbers approaching 0 and consider
the sequence of random variables (X(tn))

∞
n=1. We have:

E
[
X(tn)

2
]
= E

[
t2nB(1/tn)

2
]

= t2nE
[
B(1/tn)

2
]

= t2n · 1

tn
= tn

Hence,
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limE
[
X(tn)

2
]
= lim tn = 0

Since (tn) was an arbitrary sequence, it follows that limt→0 E[(X(t))2] = 0.

(c) Use this property of Brownian motion to show the law of large numbers for Brownian

motion:

lim
t→∞

X(t)

t
= 0 almost surely

Solution.

What we need to do is to show that X(t) → 0 as t → 0 almost surely. That would show

that
B(1/t)
1/t → 0 as t → 0 almost surely, which is the same as showing B(t)

t → 0 as
t → ∞, which is the law of large numbers for Brownian motion.

What we have done in part (b), is to prove the claim that E[X(t)2] → 0 as t → 0, which
shows convergence in the L2 sense and hence convergence in probability. This is infact

the weak law of large numbers.
B(t)
t

P→ 0 as t → ∞.

For t > 0, continuity is clear. However, it is the proof that as t → 0, X(t) → 0 almost
surely which we have not done.

Note that, the limit X(t) → 0 as t → 0 if and only if (∀n ≥ 1), (∃m ≥ 1), such that
∀r ∈ Q ∩ (0, 1

m ], we have |X(r)| =
∣∣rB ( 1r )∣∣ ≤ 1

n .

To understand the above, we just recall the ε − δ definition of continuity. Note that 1
n

plays the role of ε and 1
m works as δ.

That is,

ΩX :=
{
lim
t→0

X(t) = 0
}
=
⋂
n≥1

⋃
m≥1

⋂
r∈Q∩(0, 1

m ]

{
|X(r)| ≤ 1

n

}

Also, note that X(t) is continuous on all [a, 1] for all a > 0, thus, uniformly continuous
on [a, 1], and hence uniformly continuous on Q ∩ (0, 1]. So, there exists a continuous
extension ofX(t) on [0, 1]. We already know from part (a), that (X(t))t>0 and (B(t))t>0

have the same finite dimensional distributions. Therefore, the RHS event has the same

probability as ΩB :=
⋂

n≥1

⋃
m≥1

⋂
r∈Q∩(0, 1

m ]

{
|B(r)| ≤ 1

n

}
. Since B(t) → 0 as

t → 0 almost surely, the event ΩB has probability 1. Thus, P {limt→0 X(t) = 0} = 1.

This actually shows that X(t) is a bonafide standard brownian motion, as we have estab-
lished continuity as well.
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5 Martingales.

5.1 Elementary conditional expectation.

In elementary probability, the conditional expectation of a variable Y given another ran-

dom variableX refers to the expectation ofY given the conditional distribution fY |X(y|x)
of Y givenX . To illustrate this, let’s go through a simple example. Consider B1, B2 to be

two independent Bernoulli-distributed random variables with p = 1/2. Then, construct:

X = B1, Y = B1 + B2

It is easy to compute E[Y |X = 0] and E[Y |X = 1]. By definition, it is given by:

E[Y |X = 0] =

2∑
j=0

jP(Y = j|X = 0)

=

2∑
j=0

j · P(Y = j,X = 0)

P (X = 0)

= 0 + 1 · (1/4)
(1/2)

+ 2 · 0

(1/2)

=
1

2

and

E[Y |X = 1] =

2∑
j=0

jP(Y = j|X = 1)

=

2∑
j=0

j · P(Y = j,X = 1)

P (X = 1)

= 0 + 1 · (1/4)
(1/2)

+ 2 · (1/4)
(1/2)

=
3

2

With this point of view, the conditional expectation is computed given the information that

the event {X = 0} occurred or the event {X = 1} occurred. It is possible to regroup
both conditional expectations in a single object, if we think of the conditional expectation

as a random variable and denote it by E[Y |X]. Namely, we take:
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E[Y |X](ω) =

{
1
2 if X(ω) = 0
3
2 if X(ω) = 1

(5.1)

This random variable is called the conditional expectation of Y given X . We make two im-
portant observations:

(i) If the value of X is known, then the value of E[Y |X] is determined.

(ii) If we have another random variable g(X) constructed from X , then we have:

E[g(X)Y ] = E[g(X)E[Y |X]]

In other words, as far as X is concerned, the conditional expectation E[Y |X] is a proxy
for Y in the expectation. We sometimes say that E[Y |X] is the best estimate of Y given

the information of X .

The last observation is easy to verify since:

E[g(X)Y ] =

1∑
i=0

2∑
j=0

g(i) · j · P(X = i, Y = j)

=

1∑
i=0

P(X = i)g(i)


2∑

j=0

j · P(X = i, Y = j)

P(X = i)


= E[g(X)E[Y |X]]

Example 5.1. (Elementary Definitions of Conditional Expectation).

(1) (X,Y ) discrete. The treatment is similar to the above. If a random variable X takes

values (xi, i ≥ 1) and Y takes values (yj , j ≥ 1), we have by definition that the condi-
tional expectation as a random variable is:

E[Y |X](ω) =
∑
j≥1

yjP(Y = yj |X = xi) for ω such that X(ω) = xi

(2) (X,Y ) continuous with joint PDF fX,Y (x, y): In this case, the conditional expectation
is the random variable given by

E[Y |X] = h(X)

where

h(x) =

∫
R

yfY |X(y|x)dy =

∫
R

y
fX,Y (x, y)

fX(x)
dy =

∫
R
yfX,Y (x, y)dy∫

R
fX,Y (x, y)dy

170



In the two examples above, the expectation of the random variable E[Y |X] is equal to
E[Y ]. Indeed in the discrete case, we have:

E[E[Y |X]] =
1∑

i=0

P (X = xi) ·
2∑

j=0

yjP(Y = yj |X = xi)

=

1∑
i=0

2∑
j=0

yjP(Y = yj , X = xi)

=

2∑
j=0

yjP(Y = yj)

= E[Y ]

Example 5.2. (Conditional Probability vs Conditional expectation). The conditional prob-

ability of the eventA givenB can be recast in terms of conditional expectation using indi-

cator functions. If 0 < P(B) < 1, it is not hard to check that: P(A|B) = E[1A|1B = 1]
and P(A|BC) = E[1A|1B = 0]. Indeed the random variables 1A and 1B are discrete. If

we proceed as in the discrete case above, we have:

E[1A|1B = 1] = 1 · P(1A = 1|1B = 1)

=
P(1A = 1, 1B = 1)

P(1B = 1)

=
P(A ∩B)

P(B)

= P(A|B)

A similar calculation gives P(A|BC). In particular, the formula for total probability for A
is a rewriting of the expectation of the random variable E[1A|1B ]:

E[E[1A|1B ]] = E[1A|1B = 1]P(1B = 1) + E[1A|1B = 0]P(1B = 0)

= P(A|B) · P(B) + P(A|BC) · P(BC)

= P(A)

5.2 Conditional Expectation as a projection.

Conditioning on one variable. We start by giving the definition of conditional ex-

pectation given a single variable. This relates to the two observations (A) and (B) made

previously. We assume that the random variable is integrable for the expectations to be

well-defined.
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Definition 5.1. Let X and Y be integrable random variables on (Ω,F ,P). The con-
ditional expectation of Y given X is the random variable denoted by E[Y |X] with the
following two properties:

(A) There exists a function h : R → R such that E[Y |X] = h(X).

(B) For any bounded random variable of the form g(X) for some function g,

E[g(X)Y ] = E[g(X)E[Y |X]] (5.2)

We can intepret the second property as follows. The conditional expectation E[Y |X]
serves as a proxy forY as far asX is concerned. Note that in equation (5.2), the expectation

on the left can be seen as an average over the joint values of (X,Y ), whereas the one on
the right is an average over the values of X only! Another way to see this property is to

write is as:

E[g(X)(Y − E[Y |X])] = 0 (5.3)

In other words, the random variable Y −E[Y |X] is orthogonal to any random variable constructed

from X .

Finally, it is important to notice that if we take g(X) = 1, then the second property implies
:

E[Y ] = E[E[Y |X]]

In other words, the expectation of the conditional expectation of Y is simply the expecta-

tion of Y .

The existence of the conditional expectation E[Y |X] is not obvious. We know, it exists
in particular cases given in example (5.1). We will show more generally, that it exists, it

is unique whenever Y is in L2(Ω,F ,P) (In fact, it can be shown to exist whenever Y is

integrable). Before doing so, let’s warm up by looking at the case of Gaussian vectors.

Example 5.3. (Conditional expectation of Gaussian vectors - I). Let (X,Y ) be aGaussian
vector of mean 0. Then:

E[Y |X] =
E[XY ]

E[X2]
X (5.4)

This candidate satisfies the two defining properties of conditional expectation : (A) It is

clearly a function of X ; in fact it is a simple multiple of X . (B) We have that the random

variable
(
Y − E[XY ]

E[X2] X
)
is orthogonal and thus independent toX . This is a consequence

of the proposition (3.5), since:
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= E
[
X

(
Y − E[XY ]

E[X2]
X

)]
= EXY − E[XY ]

E[X2]
EX2

= EXY − E[XY ]

�
��E[X2]

���EX2

= 0

Therefore, we have for any bounded function g(X) of X :

E[g(X)(Y − E(Y |X))] = E[g(X)]E[Y − E[Y |X]] = 0

Example 5.4. (Brownian conditioning-I) Let (Bt, t ≥ 0) be a standard Brownianmotion.
Consider the Gaussian vector (B1/2, B1). Its covariance matrix is:

C =

[
1/2 1/2
1/2 1

]

Let’s compute E[B1|B1/2] and E[B1/2|B1]. This is easy using the equation (5.4). We
have:

E[B1|B1/2] =
E[B1B1/2]

E[B2
1/2]

B1/2

=
(1/2)

(1/2)
B1/2

= B1/2

In other words, the best approximation of B1 given the information of B1/2 is B1/2.

There is no problem in computing E[B1/2|B1], even though we are conditioning on a
future position. Indeed the same formula gives

E[B1/2|B1] =
E[B1B1/2]

E[B2
1 ]

B1 =
1

2
B1

This means that the best approximation ofB1/2 given the position at time 1, is
1
2B1 which

makes a whole lot of sense!

In example (5.4) for the Gaussian vector (X,Y ), the conditional expectation was equal
to the orthogonal projection of Y onto X in L2. In particular, the conditional expectation
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was a multiple of X . Is this always the case? Unfortunately, it is not. For example, in the
equation (5.1), the conditional expectation is clearly not a multiple of the random variable

X . However, it is a function of X , as is always the case by definition (5.1).

The idea to construct the conditional expectation E[Y |X] in general is to project Y on the

space of all random variables that can be constructed fromX . To make this precise, consider the following

subspace of L2(Ω,F ,P) :

Definition 5.2. Let (Ω,F ,P) be a probability space and X a random variable defined

on it. The space L2(Ω, σ(X),P) is the linear subspace of L2(Ω,F ,P) consisting of the
square-integrable random variables of the form g(X) for some function g : R → R.

This is a linear subspace of L2(Ω,F ,P): It contains the random variable 0, and any linear
combination of random variables of this kind is also a function ofX and must have a finite

second moment. We note the following:

Remark. L2(Ω, σ(X),P) is a subspace of L2(Ω,F ,P), very much how a plane or line
(going through the origin) is a subspace of R3.

In particular, as in the case of a line or a plane, we can project an element of Y of

L2(Ω,F ,P) ontoL2(Ω, σ(X),P). The resulting projection is an element ofL2(Ω, σ(X),P),
a square-integrable random-variable that is a function ofX . For a subspace S ofR3 (e.g. a

line or a plane), the projection of the vector v ∈ R3 onto the subspace S , denoted ProjS(v)
is the closest point to v lying in the subspace S . Moreover, v− ProjS(v) is orthogonal to
the subspace. This picture of orthogonal projection also holds in L2. Let Y be a random

variable in L2(Ω,F ,P) and let L2(Ω, σ(X),P) be the subspace of those random vari-

ables that are functions of X . We write Y ? for the random variable in L2(Ω, σ(X),P)
that is closest to Y . In other words, we have (using the definition of theL2-distance square):

inf
Z∈L2(Ω,σ(X),P)

E[(Y − Z)2] = E[(Y − Y ?)2] (5.5)

It turns out that Y ? is the right candidate for the conditional expectation.
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O

Y

Y ? = E[Y |X]

L2(Ω, σ(X),P)

Figure. An illustration of the conditional expectation E[Y |X] as an orthogonal
projection of Y onto the subspace L2(Ω, σ(X),P).

Theorem 5.1. (Existence and uniqueness of the conditional expectation) Let X be a random vari-

able on (Ω,F ,P). Let Y be a random variable in L2(Ω,F ,P). Then the conditional expectation

E[Y |X] is the random variable Y ? given in the equation (5.5). Namely, it is the random variable in

L2(Ω, σ(X),P) that is closest to Y in the L2-distance.

In particular we have the following:

1) It is the orthogonal projection of Y onto L2(Ω, σ(X),P), that is Y − Y ? is orthogonal to any

random variables in the subspace L2(Ω, σ(X),P).

2) It is unique.

Remark. This result reinforces the meaning of the conditional expectation E[Y |X] as the
best estimation of Y given the information of X : it is the closest random variable to Y
among all the functions of X in the sense of L2.

Proof. We write for short L2(X) for the subspace L2(Ω, σ(X),P). Let Y ? be as in equa-

tion (5.5). We show successively that (1) Y − Y ? is orthogonal to any element of L2(X),
so it is the orthogonal projection (2) Y ? has the properties of conditional expectation in

definition (5.2) (3) Y ? is unique.

(1) Let W = g(X) be a random variable in L2(X). We show that W is orthogonal to

Y − Y ?; that is E[(Y − Y ?)W ] = 0. This should be intuitively clear from figure above.

On the one hand, we have by developing the square:
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E[(W − (Y − Y ?))2] = E[W 2 − 2W (Y − Y ?) + (Y − Y ?)2]

= E[W 2]− 2E[W (Y − Y ?)] + E(Y − Y ?)2] (5.6)

On the other hand, Y ? +W is an arbitrary vector in L2(X)(it is a linear combination of
the elements in L2(X)), we must have from equation (5.5):

E[(W − (Y − Y ?))2] = E[(Y − (Y ? +W ))2]

≥ inf
Z∈L2(X)

E[(Y − Z)2]

= E[(Y − Y ?)2] (5.7)

Putting the last two equations (5.6), (5.7) together, we get that for anyW ∈ L2(X):

E[W 2]− 2E[W (Y − Y ?)] ≥ 0

In particular, this also holds for aW , in which case we get:

a2E[W 2]− 2aE[W (Y − Y ?)] ≥ 0

=⇒ a
{
aE[W 2]− 2E[W (Y − Y ?)]

}
≥ 0

If a > 0, then:

aE[W 2]− 2E[W (Y − Y ?)] ≥ 0 (5.8)

whereas if a < 0, then the sign changes upon dividing throughout by a, and we have:

aE[W 2]− 2E[W (Y − Y ?)] ≤ 0 (5.9)

Rearranging (5.8) yields:

E[W (Y − Y ?)] ≤ aE[W 2]/2 (5.10)

Rearranging (5.9) yields:

E[W (Y − Y ?)] ≥ aE[W 2]/2 (5.11)
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Since (5.10) holds for a > 0, it follows that, E[W (Y − Y ?)] ≤ 0. Since, (5.11) holds for
all a < 0, it follows that E[W (Y − Y ?)] ≥ 0. Consequently,

E[W (Y − Y ?)] = 0 (5.12)

(2) It is clear that Y ? is a function of X by construction, since it is in L2(X). Moreover,
for anyW ∈ L2(X), we have from (1) that:

E[W (Y − Y ?)] = 0

which is the second defining property of conditional expectations.

(3) Lastly, suppose there is another element Y ′ that is inL2(X) that minimizes the distance
to Y . Then we would get:

E[(Y − Y ′)2] = E[(Y − Y ? + Y ? − Y ′)2]

= E[(Y − Y ?)2] + 2E[(Y − Y ?)(Y ? − Y ′)] + E[(Y ? − Y ′)2]

= E[(Y − Y ?)2] + 0 + E[(Y ? − Y ′)2]{
(Y ? − Y ′) ∈ L2(X) ⊥ (Y − Y ?)

}
where we used the fact, that Y ?−Y ′ is a vector inL2(X) and the orthogonality of Y −Y ?

with L2(X) as in (1). But, this implies that:

������
E[(Y − Y ′)2] =((((((E[(Y − Y ?)2] + E[(Y ? − Y ′)2]

E[(Y ? − Y ′)2] = 0

So, Y ? = Y ′ almost surely.

Example 5.5. [Arguin-4.1]Conditional Expectation of continuous randomvariables.

Let (X,Y ) be two random variables with joint density fX,Y (x, y) on R
2. Suppose for

simplicity, that
∫
R
f(x, y)dx > 0 for every y belonging to R. Show that the conditional

expectation E[Y |X] equals h(X) where h is the function:

h(x) =

∫
R
yfX,Y (x, y)dy∫

R
fX,Y (x, y)dy

(5.13)

In particular, verify that E[E[Y |X]] = E[Y ].

Hint : To prove this, verify that the above formula satisfies both the properties of condi-

tional expectations; then invoke uniqueness to finish it off.
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Solution. (i) The density function fX,Y (x, y) is a map f : R2 → R. The integral∫ y=+∞
y=−∞ yfX,Y (x0, y)dy is the area under the curve yf(x, y) at the point x = x0. Let’s

call it A(x0). If instead, we have an arbitrary x,
∫ y=+∞
y=−∞ yfX,Y (x, y)dy represents the

area A(x) of an arbitrary slice of the surface yfX,Y at the point x. Hence, it is a function
of x. The denominator

∫
R
fX,Y (x, y)dy = fX(x), the density ofX , which is a function

of x. Hence, the ratio is a function of x.

(ii) Let g(X) is a bounded random variable. We have:

E[g(X)(Y − h(X))] = E[Y g(X)]− E[g(X)h(X)]

=

∫ ∫
R2

yg(x)fX,Y (x, y)dydx−
∫
R

g(x)h(x)f(x)dx

=

∫ ∫
R2

yg(x)fX,Y (x, y)dydx

−
∫
R

g(x) ·
∫
R
yfX,Y (x,y)dy∫

R
fX,Y (x,y)dy

·
∫
R

fX,Y (x, y)dy dx

=

∫ ∫
R2

yg(x)fX,Y (x, y)dydx

−
∫
R

g(x) ·
∫
R
yfX,Y (x,y)dy

((((((∫
R
fX,Y (x,y)dy

·
�������
∫
R

fX,Y (x, y)dy dx

=

∫ ∫
R2

yg(x)fX,Y (x, y)dydx−
∫
R2

yg(x)fX,Y (x, y) · dx · dy

= 0

Thus, h(X) is a valid candidate for the conditional expectation E[Y |X]. Moreover, by
the existence and uniqueness theorem (5.1), E[Y |X] is unique and equals h(X).

Conditioning on several random variables. We would like to generalize the condi-

tional expectation to the case when we condition on the information of more than one

random variable. Taking the L2 point of view, we should expect that the conditional

expectation is the orthogonal projection of the given random variable on the subspace

generated by square integrable functions of all the variables on which we condition.

It is now useful to study sigma-fields, an object that was defined in chapter 1.

Definition 5.3. (Sigma-Field) A sigma-field or sigma-algebra F of a sample space Ω is a

collection of all measurable events with the following properties:

(1) Ω is in F .

(2) Closure under complement. If A ∈ F , then AC ∈ F .

(3) Closure under countable unions. If A1, A2, . . . ,∈ F , then
⋃∞

n=1 An ∈ F .
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Such objects play a fundamental role in the rigorous study of probability and real analysis

in general. We will focus on the intuition behind them. First let’s mention some examples

of sigma-fields of a given sample space Ω to get acquainted with the concept.

Example 5.6. (Examples of sigma-fields).

(1) The trivial sigma-field. Note that the collection of events {∅,Ω} is a sigma-field of Ω. We
generally denote it by F0.

(2) The σ-field generated by an event A. Let A be an event that is not ∅ and not the entire Ω.
Then the smallest sigma-field containing A ought to be:

F1 = {∅, A,AC ,Ω}

This sigma-field is denoted by σ(A).

(3) The sigma-field generated by a random variable X .

We now define the FX as follows:

FX = X−1(B) := {ω : X(ω) ∈ B},∀B ∈ B(R)

where B is the Borel σ-algebra on R. FX is sometimes denoted as σ(X). FX is the set of

all events pertaining to X . It is a sigma-algebra because:

(i) Ω ∈ σ(X) because Ω = {ω : X(ω) ∈ R} and R ∈ B(R).

(ii) Let any event C ∈ σ(X). We need to show that Ω \ C ∈ σ(X).

Since C ∈ σ(X), there exists A ∈ B(R), such that:

C = {ω ∈ Ω : X(ω) ∈ A}

Now, we calculate:

Ω \ C = {ω ∈ Ω : X(ω) ∈ R \A}

Since B(R) is a sigma-algebra, it is closed under complementation. Hence, if A ∈ B(R),
it implies that R \A ∈ B(R). So, Ω \ C ∈ σ(X).

(iii) Consider a sequence of events C1, C2, . . . , Cn, . . . ∈ σ(X). We need to prove that⋃∞
n=1 Cn ∈ σ(X).

Since Cn ∈ σ(X), there exists An ∈ B(R) such that:
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Cn = {ω ∈ Ω : X(ω) ∈ An}

Now, we calculuate:

⋃
n=1

Cn = {ω ∈ Ω : X(ω) ∈
∞⋃

n=1

An}

But,
⋃∞

n=1 An ∈ B(R). So,
⋃∞

n=1 Cn ∈ σ(X).

Consequently, σ(X) is indeed a σ-algebra.

Intuitively, we think of σ(X) as containing all information about X .

(4) The sigma-field generated by a stochastic process (Xs, s ≤ t). Let (Xs, s ≥ 0) be a stochastic
process. Consider the process restricted to [0, t], (Xs, s ≤ t). We consider the smallest
sigma-field containing all events pertaining to the random variablesXs, s ≤ t. We denote
it by σ(Xs, s ≤ t) or Ft.

The sigma-fields on Ω have a natural (partial) ordering: two sigma-fields G and F of Ω
are such that G ⊆ F if all the events in G are in F . For example, the trivial σ-field
F0 = {∅,Ω} is contained in all the σ-fields of Ω. Clearly, the σ-field Ft = σ(Xs, s ≤ t)
is contained in Ft′ if t ≤ t′.

If all the events pertaining to a random variable X are in the σ-field G (and thus we can
compute µ(X−1((a, b]))), we will say that X is G-measurable. This means that all infor-
mation about X is contained in G.

Definition 5.4. Let X be a random variable defined on (Ω,F ,P). Consider another
G ⊆ F . Then X is said to be G-measurable, if and only if:

{ω : X(ω) ∈ (a, b]} ∈ G for all intervals (a, b] ∈ R

Example 5.7. (F0-measurable random variables). Consider the trivial sigma-field F0 =
{∅,Ω}. A random variable that is F0-measurable must be a constant. Indeed, we have

that for any interval (a, b], {ω : X(ω) ∈ (a, b]} = ∅ or {ω : X(ω) ∈ (a, b]} = Ω. This
can only hold if X takes a single value.

Example 5.8. (σ(X)-measurable random variables). Let X be a given random variable

on (Ω,F ,P). Roughly speaking, a σ(X)-measurable random variable is determined by

the information of X only. Here is the simplest example of a σ(X)-measurable random
variable. Take the indicator function Y = 1{X∈B} for some event {X ∈ B} pertaining
to X . Then the pre-images {ω : Y (ω) ∈ (a, b]} are either ∅, {X ∈ B}, {X ∈ BC}
or Ω depending on whether 0, 1 are in (a, b] or not. All of these events are in σ(X).
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More generally, one can construct a σ(X)-measurable random variable by taking linear

combinations of indicator functions of events of the form {X ∈ B}.

It turns out that any (Borel measurable) function of X can be approximated by taking

limits of such simple functions.

Concretely, this translates to the following statement:

If Y is σ(X)-measurable, then Y=g(X) for some function g (5.14)

In the same way, if Z is σ(X,Y )-measurable, then Z = h(X,Y ) for some h. These facts
can be proved rigorously using measure theory.

We are ready to give the general definition of conditional expectation.

Example 5.9. (Coin-Tossing Space). Suppose a coin is tossed infinitely many times. Let

Ω be the set of all infinite sequences ofHs and T s. A generic element of Ω is denoted by

ω1ω2 . . ., where ωn indicates the result of the nth coin toss. Ω is an uncountable sample

space. The trivial sigma-field F0 = {∅,Ω}. Assume that we don’t know anything about
the outcome of the experiement. Even without any information, we know that the true ω
belongs to Ω and does not belong to ∅. It is the information learned at time 0.

Next, assume that we know the outcome of the first coin toss. Define AH = {ω :
ω1 = H}=set of all sequences beginning with H and AT = {ω : ω1 = T}=set of all
sequences beginning with T . The four sets resolved by the first coin-toss form the the σ-
field F1 = {∅, AH , AT ,Ω}. We shall think of this σ-field as containing the information
learned by knowing the outcome of the first coin toss. More precisely, if instead of being

told about the first coin toss, we are told for each set in F1, whether or not the true ω
belongs to that set, then we know the outcome of the first coin toss and nothing more.

If we are told the first two coin tosses, we obtain a finer resolution. In particular, the four

sets:

AHH = {ω : ω1 = H,ω2 = H}
AHT = {ω : ω1 = H,ω2 = T}
ATH = {ω : ω1 = T, ω2 = H}
ATT = {ω : ω1 = T, ω2 = T}

are resolved. Of course, the sets in F1 are resolved. Whenever a set is resolved, so is its

complement, which means thatAC
HH ,A

C
HT ,A

C
TH andAC

TT are resolved, so is their union

which means thatAHH∪ATH ,AHH∪ATT ,AHT ∪ATH andAHT ∪ATT are resolved.

The other two pair-wise unions AHH ∪AHT = AH and ATH ∪ATT = AT are already

resolved. Finally, the triple unions are also resolved, becauseAHH∪AHT ∪ATH = AC
TT

and so forth. Hence, the information pertaining to the second coin-toss is contained in:
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F2 = {∅,Ω,
AH , AT ,

AHH , AHT , ATH , ATT ,

AC
HH , AC

HT , A
C
TH , AC

TT ,

AHH ∪ATH , AHH ∪ATT , AHT ∪ATH , AHT ∪ATT }

Hence, if the outcome of the first two coin tosses is known, all of the events in F2 are

resolved - we exactly know, if each event has ocurred or not. F2 is the information learned

by observing the first two coin tosses.

Exercise 5.1. [Arguin-4.2] (Exercises on sigma-fields).

(a) LetA,B be two proper subsets ofΩ such thatA∩B 6= ∅ andA∪B 6= Ω. Write down
σ({A,B}), the smallest sigma-field containing A and B explicitly. What if A ∩B = ∅?

(b) The Borel sigma-field is the smallest sigma-field containing intervals of the form (a, b]
in R. Show that all singletons {b} are in B(R) by writing {b} as a countable intersection
of intervals (a, b]. Conclude that all open intervals (a, b) and all closed intervals [a, b] are
in B(R). Is the subset Q of rational numbers a Borel set?

Proof. (a) The sigma-field generated by the two events A, B is given by:

σ({A,B}) = {∅,Ω,
A,B,AC , BC ,

A ∪B,A ∩B,

A ∪BC , AC ∪B,AC ∪BC ,

A ∩BC , AC ∩B,AC ∩BC ,

(A ∪B) ∩ (A ∩B)C ,

(A ∪B)C ∪ (A ∩B)}

(b) Firstly, recall that:

B(R) =
⋂
α∈Λ

Fα =
⋂

σ({I : I is an interval (a, b] ⊆ R})

We can write:

{b} =

∞⋂
n=1

(
b− 1

n
, b

]
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As B(R) is a sigma-field, it is closed under countable intersections. Hence, the singleton
set {b}is a Borel set.

Similarly, we can write, any open interval as the countable union:

(a, b) =

∞⋃
n=1

(
a, b− 1

n

]

Hence, open intervals are Borel sets.

Similarly, we may write:

[a, b] =

∞⋂
n=1

(
a− 1

n
, b+

1

n

)

Consequently, closed intervals are Borel sets. SinceQ is countable, it is a Borel set. More-

over, the empty set ∅ and R are Borel sets. So, R\Q is also a Borel set.

Exercise 5.2. [Arguin-4.4] Let (X,Y ) be a Gaussian vector with mean 0 and covariance
matrix

C =

[
1 ρ
ρ 1

]

for ρ ∈ (−1, 1). We verify that the example (5.3) and exercise (5.5) yield the same condi-
tional expectation.

(a) Use equation (5.4) to show that E[Y |X] = ρX .

(b) Write down the joint PDF f(x, y) of (X,Y ).

(c) Show that
∫
R
yf(x, y)dy = ρx and that

∫
R
f(x, y)dy = 1.

(d) Deduce that E[Y |X] = ρX using the equation (5.13).

Proof. (a) Since (X,Y ) have mean 0 and variance 1, it follows that:

E[(X − EX)(Y − EY )] = E(XY )√
(E[X2]− (EX)2) ·

√
(E[Y 2]− (EY )2) =

√
(1− 0)(1− 0)

= 1

and therefore,
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ρ =
E(XY )

1
=

E[XY ]

E[X2]

Since (X,Y ) is a Gaussian vector, using (5.4), we have:

E[Y |X] =
E[XY ]

E[X2]
X = ρX

(b) Consider the augmented matrix [C|I]. We have:

[C|I] =
[

1 ρ
ρ 1

∣∣∣∣ 1 0
0 1

]
Performing R2 = R2 − ρR1, the above system is row-equivalent to:[

1 ρ
0 1− ρ2

∣∣∣∣ 1 0
−ρ 1

]
Performing R2 = 1

1−ρ2R2, the above system is row-equivalent to:[
1 ρ
0 1

∣∣∣∣ 1 0
−ρ

1−ρ2
1

1−ρ2

]
Performing R1 = R1 − ρR2, we have:[

1 0
0 1

∣∣∣∣∣ 1
1−ρ2 − ρ

1−ρ2

−ρ
1−ρ2

1
1−ρ2

]
Thus,

C−1 =
1

1− ρ2

[
1 −ρ
−ρ 1

]
Moreover, detC = 1− ρ2.

Therefore, the joint density of (X,Y ) is given by:

f(x, y) =
1

2π
√
1− ρ2

exp

[
− 1

2(1− ρ2)

[
x y

] [ 1 −ρ
−ρ 1

] [
x
y

]]
=

1

2π
√
1− ρ2

exp

[
− 1

2(1− ρ2)

[
x− ρy −ρx+ y

] [ x
y

]]
1

2π
√
1− ρ2

exp

[
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

]
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(c) Claim I.
∫
R
yf(x, y)dy = ρx.

Completing the square, we have:

(x2 − 2ρxy + y2) = (y − ρx)2 + x2(1− ρ2)

Thus, we can write:

∫
R

yf(x, y)dy =
1

2π
√
1− ρ2

e−
1
2x

2

∫
R

ye
− 1

2
(y−ρx)2

(1−ρ2) dy

Let’s substitute

z =
(y − ρx)√
1− ρ2

dz =
dy√
1− ρ2

Therefore,

∫
R

ye
− 1

2
(y−ρx)2

(1−ρ2) dy =
√
1− ρ2

∫
R

(ρx+
√

1− ρ2z)e−
z2

2 dz

= ρx ·
√
1− ρ2

∫
R

e−
z2

2 dz + (1− ρ2)

∫
R

ze−
z2

2 dz

= ρx ·
√
1− ρ2 ·

√
2π + (1− ρ2) · 0

= ρx ·
√
1− ρ2 ·

√
2π

Consequently,

∫
R

yf(x, y)dy =
1

2π����√
1− ρ2

e−
1
2x

2

ρx ·����√
1− ρ2 ·

√
2π

= ρx · 1√
2π

e−
1
2x

2

= ρx · fX(x)∫
R
yf(x, y)dy

fX(x)
=

∫
R
yf(x, y)dy∫
R
f(x, y)

= ρx

(d) For a Gaussian vector (X,Y ), the conditional expectation E[Y |X] = h(X). Hence,
E[Y |X] = ρX .
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Definition 5.5. (Conditional Expectation) Let Y be an integrable random variable on

(Ω,F ,P) and let G ⊆ F be a sigma-field of Ω. The conditional expectation of Y given

G is the random variable denoted by E[Y |G] such that the following hold:

(a) E[Y |G] is G-measurable.

In other words, all events pertaining to the random variable E[Y |G] are in G.

(b) For any (bounded) random variableW , that is G-measurable,

E[WY ] = E[WE[Y |G]]

In other words, E[Y |G] is a proxy for Y as far as the events in G are concerned.

Note that, by takingW = 1 in the property (B), we recover:

E[E[Y |G]] = E[Y ]

Remark. Beware of the notation! IfG = σ(X), then the conditional expectationE[Y |σ(X)]
is usually denoted by E[Y |X] for short. However, one should always keep in mind that
conditioning on X is in fact projecting on the linear subspace generated by all variables con-

structed fromX and not on the linear space generated by generated byX alone. In the same

way, the conditional expectation E[Z|σ(X,Y )] is often written E[Z|X,Y ] for short.

As expected, if Y is in L2(Ω,F ,P), then E[Y |G] is given by the orthogonal projection
of Y onto the subspace L2(Ω,G,P), the subspace of square integrable random variables

that are G-measurable. We write Y ? for the random variable in L2(Ω,G,P) that is closest
to Y that is:

min
Z∈L2(Ω,G,P)

E[(Y − Z)2] = E[(Y − Y ?)2] (5.15)

Theorem 5.2. (Existence and Uniqueness of Conditional Expectations) Let G ⊂ F be a sigma-field

of Ω. Let Y be a random variable in L2(Ω,F ,P). Then, the conditional expectation E[Y |G] is the
random variable Y ? given in the equation (5.15). Namely, it is the random variable in L2(Ω,G,P)
that is closest to Y in the L2-distance. In particular we have the following:

• It is the orthogonal projection of Y ontoL2(Ω,G,P), that is, Y −Y ? is orthogonal

to the random variables in L2(Ω,G,P).

• It is unique.

Again, the result should be interpreted as follows: The conditional expectation E[Y |G] is
the best approximation of Y given the information included in G.
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Remark. The conditional expectation in fact exists and is unique for any integrable ran-

dom variable Y (i.e. Y ∈ L1(Ω,F ,P) as the definition suggests. However, there is no
orthogonal projection in L1, so the intuitive geometric picture is lost.

O

Y

Y ? = E[Y |G]

Y − E[Y |G]

L2(Ω,G,P)

Figure. An illustration of the conditional expectation E[Y |G] as an orthogonal projection
of Y onto the subspace L2(Ω,G,P).

Example 5.10. (Conditional Expectation for Gaussian Vectors. II.) Consider the Gaus-

sian vector (X1, . . . , Xn). Without loss of generality, suppose it has mean 0 and is non-
degenerate. What is the best approximation ofXn given the informationX1, . . . , Xn−1?

In other words, what is:

E[Xn|σ(X1, . . . , Xn−1)

With example (5.8) in mind, let’s write E[Xn|X1 . . . Xn−1] for short. From example

(5.5), we know that if (X,Y ) is a Gaussian vector with mean 0, then E[Y |X] is a mul-
tiple of X . Thus, we expect, that E[Xn|X1X2 . . . Xn−1] is a linear combination of
X1, X2, . . . , Xn−1. That is, there exists a1, . . . , an−1 such that:

E[Xn|X1X2 . . . Xn−1] = a1X1 + a2X2 + . . .+ an−1Xn−1

In particular, since the conditional expectation is a linear combination of theX ’s, it is itself
a Gaussian random variable. The best way to find the coefficient a’s is to go back to IID
decomposition of Gaussian vectors.
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Let (Z1, Z2, . . . , Zn−1) be IID standard Gaussians constructed from the linear combina-
tion of (X1, X2, . . . , Xn−1). Then, we have:

E[Xn|X1X2 . . . Xn−1] = b1Z1 + . . .+ bn−1Zn−1

Now, recall, that we construct the random variables Z1, Z2, . . ., Zn using Gram-Schmidt

orthogonalization:

Z̃1 = X1, Z1 =
Z̃1

E(Z̃2
1 )

Z̃2 = X2 − E(X2Z1)Z1 Z2 =
Z̃2

E(Z̃2
2 )

Z̃3 = X3 −
2∑

i=1

E(X3Zi)Zi Z3 =
Z̃3

E(Z̃2
3 )

...

The simple case for n = 2 random variables.

We have already seen before:

E[X1(X2 − E(X2Z1)Z1)] =
1

E(Z̃2
1 )
E[Z1(X2 − E(X2Z1)Z1)]

=
1

E(Z̃2
1 )

{
E[X2Z1]− E[X2Z1]E(Z

2
1 )
}

= 0

So,X2 − E(X2Z1)Z1 is orthogonal to X1.

Moreover, E(X2Z1)Z1 is a function ofX1. Thus, both the properties of conditional ex-

pectation are satisfied. Since conditional expectations are unique, wemust have,E[X2|X1] =
E(X2Z1)Z1.

The case for n = 3 random variables.

We have seen that:
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E[X1(X3 − E(X3Z1)Z1 − E(X3Z2)Z2)] =
1

E(Z̃2
1 )
E[Z1(X3 − E(X3Z1)Z1 − E(X3Z2)Z2)]

=
1

E(Z̃2
1 )

E(X3Z1)− E(X3Z1)E(Z
2
1 )︸ ︷︷ ︸

equals 1


− 1

E(Z̃2
1 )
E(X3Z2)E(Z2Z1)︸ ︷︷ ︸

equals 0

= 0

It is an easy exercise to show that it is orthogonal to X2.

Hence, X3 − E(X3Z1)Z1 − E(X3Z2)Z2 is orthogonal to X1 and X2. Moreover,

E(X3Z1)Z1 + E(X3Z2)Z2 is a function of X1, X2. Thus, we must have:

E[X3|X1X2] = E(X3Z1)Z1 + E(X3Z2)Z2

In general, Xn −
∑n−1

i=1 E(XnZi)Zi is orthogonal to X1, X2, . . ., Xn−1. Hence,

E[Xn|X1X2 . . . Xn−1] =

n−1∑
i=1

E(XnZi)Zi

5.2.1 Properties of Conditional Expectation.

We now list the properties of conditional expectation that follow from the two defining

properties (A), (B) in the definition. They are extremely useful, when doing explicit compu-

tations onmartingales. A good way to remember them is to understand how they related to

the interpretation of conditional expectation as an orthogonal projection onto a subspace

or, equivalently, as the best approximation of the variable given the information available.

Proposition 5.1. Let Y be an integrable random variable on (Ω,F ,P). Let G ⊆ F be another

sigma-field of Ω. Then, the conditional expectation E[Y |G] has the following properties:

(1) If Y is G-measurable, then :

E[Y |G] = Y

(2) Taking out what is known. More generally, if Y is G−measurable and X is another integrable

random variable (with XY also integrable), then :
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E[XY |G] = Y E[X|G]

This makes sense, since Y is determined by G, so we can take out what is known; it can be treated as a

constant for the conditional expectation.

(3) Independence. If Y is independent of G, that is, for any events {Y ∈ (a, b]} and A ∈ G:

P({Y ∈ I} ∩A) = P({Y ∈ I}) · P(A)

then

E[Y |G] = E[Y ]

In other words, if you have no information on Y , your best guess for its value is simply plain expectation.

(4) Linearity of conditional expectations. Let X be another integrable random variable on (Ω,F ,P).
Then,

E[aX + bY |G] = aE[X|G] + bE[Y |G], for any a, b ∈ R

The linearity justifies the cumbersom choice of notation E[Y |G] for the random variable.

(5) Tower Property : If H ⊆ G is another sigma-field of Ω, then:

E[Y |H] = E[E[Y |G]|H]

Think in terms of two successive projections: first on a plane, then on a line in the plane.

(6) Pythagoras Theorem. We have:

E[Y 2] = E

[
(E[Y |G])2

]
+ E

[
(Y − E[Y |G])2

]
In particular:

E

[
(E [Y |G])2

]
≤ E[Y 2]

In words, the L2 norm of E[X|G] is smaller than the one of X , which is clear if you think in terms of

orthogonal projection.

(7) Expectation of the conditional expectation.

E [E[Y |G]] = E[Y ]
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Proof.

The uniqueness property of conditional expectations in theorem (5.2) might appear to be

an academic curiosity. On the contrary, it is very practical, since it ensures, that if we find

a candidate for the conditional expectation that has the two properties in Definition (5.1),

then it must be the conditional expectation. To see this, let’s prove property (1).

Claim 5.1. If Y is G-measurable, then E[Y |G] = Y .

It suffices to show that Y has the two defining properties of conditional expectation.

(1) We are given that, Y is G-measurable. So, property (A) is satisfied.
(2) For any bounded random variableW that is G-measurable, we have:

E[W (Y − Y )] = E[0] = 0

So, property (B) is also a triviality.

Claim 5.2. (Taking out what is known.) If Y is G-measurable andX is another integrable

random variable, then:

E[XY |G] = Y E[X|G]

In a similar vein, it suffices to show that, Y E[X|G] has the two defining properties of
conditional expectation.

(1) We are given that Y is G-measurable; from property (1), E[X|G] is G-measurable. It
follows that, Y E[X|G] is G-measurable.
(2) From theorem (5.2),X −E[X|G] is orthogonal to the random variables L2(Ω,G,P).
So, ifW is any bounded G-measurable random variable, it follows that:

E[WY (X − E[X|G])] = 0

=⇒ E[W ·XY ] = E[WY E[X|G]]

This closes the proof.

Claim 5.3. (Independence.) If Y is independent of G, that is, for all events {Y ∈ (a, b]}
and A ∈ G,

P{Y ∈ (a, b] ∩A} = P{Y ∈ (a, b]} · P(A)

then

E[Y |G] = E[Y ]

Let us show that E[Y ] has the two defining properties of conditional expectations.
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Claim 5.4. (Linearity of conditional expectations) Let X be another integrable random

variable on (Ω,F ,P). Then,

E[aX + bY |G] = aE[X|G] + bE[Y |G], for any a, b ∈ R

SinceE[X|G] andE[Y |G] areG−measurable, any linear combination of these two random
variables is also G-measurable.

Also, ifW is any bounded G−measurable random variable, we have:

E[W (aX + bY − (aE[X|G] + bE[Y |G]))] = aE[W (X − E[X|G])]
+ bE[W (Y − E[Y |G])]

By definition, X − E(X|G) is orthogonal to the subspace L2(Ω,G,P) and hence to all
G-measurable random-variables. Hence, the two expectations on the right hand side of the
above expression are 0. Since, conditional expectations are unique, we have the desired
result.

Claim 5.5. IfH ⊆ G is another sigma-field of Ω, then

E[Y |H] = E[E[Y |G]|H]

Define U := E[Y |G]. By definition, E[U |H] isH-measurable.

LetW be any boundedH-measurable random variable. We have:

E[W{E(Y |G)− E(E(Y |G)|H)}] = E[W (U − E(U |H)]

But, by definition U − E(U |H) is always orthogonal to the subspace L2(Ω,H,P) and
hence, E[W (U −E(U |H)] = 0. Since, conditional expectations are unique, we have the
desired result.

Claim 5.6. Pythagoras’s theorem. We have:

E[Y 2] = E[(E[Y |G])2] + E[(Y − E(Y |G))2]

In particular,

E[(E[Y |G])2] ≤ E[Y 2]
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Consider the orthogonal decomposition:

Y = E[Y |G] + (Y − E[Y |G])

Squaring on both sides and taking expectations, we have:

E[Y 2] = E[(E(Y |G))2] + E[(Y − E[Y |G])2] + 2E [E[Y |G](Y − E[Y |G])]

By definition of conditional expectation, (Y − E[Y |G]) is orthogonal to the subspace
L2(Ω,G,P). By the properties of conditional expectation, E[Y |G] is G−measurable, so it
belongs toL2(Ω,G,P). Hence, the dot-product on the right-hand side is 0. Consequently,
we have the desired result.

Moreover, since (Y −E[Y |G])2 is a non-negative random variable, E[(Y −E[Y |G])2] ≥
0. It follows that: E[Y 2] ≥ E[(E(Y |G))2].
Claim 5.7. Our claim is:

E [E[Y |G]] = E[Y ]

We know that, ifW is any bounded G-measurable random variable:

E [WY ] = E[WE[Y |G]]

TakingW = 1, we have:

E [Y ] = E[E[Y |G]]

Example 5.11. (Brownian Conditioning II). We continue the example (5.4). Let’s now

compute the conditional expectations E[eaB1 |B1/2] and E[e
aB1/2 |B1] for some param-

eter a. We shall need the properties of conditional expectation in proposition (5.1). For
the first one we use the fact that B1/2 is independent of B1 −B1/2 to get:

E[eaB1 |B1/2] = E[ea((B1−B1/2)+B1/2)|B1/2]

= E[ea(B1−B2) · eaB1/2 |B1/2]

{Taking out what is known}
= eaB1/2E[ea(B1−B1/2)|B1/2]

= eaB1/2 · E[ea(B1−B1/2)]

{Independence}
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We know that, a(B1 − B1/2) is a gaussian random variable with mean 0 and variance

a2/2. We also know that, E[etZ ] = et
2/2. So, E[ea(B1−B1/2)] = ea

2/4. Consequently,

E[eaB1 |B1/2] = eaB1/2+a2/4.

The result itself has the form of the MGF of a Gaussian with mean B1/2 and variance

1/2. (The MGF ofX = µ+ σZ , Z = N(0, 1) isMX(a) = exp
[
µ+ 1

2σ
2a2
]
.) In fact,

this shows that the conditional distribution of B1 given B1/2 is Gaussian of mean B1/2

and variance 1/2.

For the other expectation, note that B1/2 − 1
2B1 is independent of B1. We have:

E

[(
B1/2 −

1

2
B1

)
B1

]
= E(B1/2B1)−

1

2
E[B2

1 ]

=
1

2
− 1

2
· 1

= 0

Therefore, we have:

E[eaB1/2 |B1] = E[ea(B1/2− 1
2B1)+

a
2B1 |B1]

= E[ea(B1/2− 1
2B1) · e a

2B1 |B1]

= e
a
2B1E[ea(B1/2− 1

2B1)|B1]

{Taking out what is known }

= e
a
2B1E[ea(B1/2− 1

2B1)]

{Independence}

Now, a(B1/2 − 1
2B1) is a random variable with mean 0 and variance a2( 12 − 1

4 ) =
a2

4 .

Consequently, E[e(a/2)Z ] = e
a2

8 . Thus, E[eaB1/2 |B1] = e
a
2B1+

a2

8 .

Example 5.12. (Brownian bridge is conditioned Brownian motion). We know that the

Brownian bridgeMt = Bt − tB1, t ∈ [0, 1] is independent of Bt. We use this to show

that the conditional distribution of the Brownian motion given the value at the end-point

B1 is the one of a Brownian bridge shifted by the straight line going from 0 to B1. To

see this, we compute the conditional MGF of (Bt1 , Bt2 , . . . , Btn) given B1 for some

arbitrary choices of t1, t2, . . . , tn in [0, 1]. We get the following by adding and subtracting
tjB1:

E[ea1Bt1+...+anBtn |B1] = E[ea1(Bt1−t1B1)+...+an(Btn−tnB1) · e(a1t1B1+...+antnB1)|B1]

= e(a1t1B1+...+antnB1)E[ea1Mt1
+...+anMtn |B1]

{Taking out what is known}
= e(a1t1B1+...+antnB1)E[ea1Mt1+...+anMtn ]

{Independence}
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The right side is exactly the MGF of the processMt + tB1, t ∈ [0, 1] (for a fixed value
B1), where (Mt, t ∈ [0, 1]) is a Brownian bridge. This proves the claim.

Lemma 5.1. (Conditional Jensen’s Inequality) If c is a convex function on R and X is a random

variable on (Ω,F ,P), then:

E[c(X)] ≥ c(E[X])

More generally, if G ⊆ F is a sigma-field, then:

E[c(X)|G] ≥ c(E[X|G]) (5.16)

Proof. We know that, if c(x) is a convex function, the tangent to the curve c at any point
lies below the curve. Fix a point (t, c(t)). The tangent to the cuve at this point, is a
straight-line of the form:

c(t) = y = mt+ c

wherem(t) = c′(t). At any arbitrary point x we have:

c(x) ≥y = mx+ c

Therefore, we have:

c(x)− c(t) ≥ m(t)(x− t)

c(X)− c(Y ) ≥ m(Y )(X − Y )

Substituting Y = E[X|G], we get:

c(X)− c(E[X|G]) ≥ m(E[X|G])(X − E[X|G])

Taking expectations on both sides, we get:

E[(c(X)− c(E[X|G]))|G] ≥ E[m(E[X|G])(X − E[X|G])|G]
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The left-hand side simplifies as:

E[(c(X)− c(E[X|G]))|G] = E[c(X)|G]− E[c(E[X|G]))|G]
{Linearity}

= E[c(X)|G]− c(E[X|G])
{c(E[X|G])) is G-measurable}

On the right hand side, we have:

E[m(E[X|G])(X − E[X|G])|G] = E[m(E[X|G]) ·X|G]− E[m(E[X|G]) · E[X|G]|G]
= E[X|G]m(E[X|G])−m(E[X|G]) · E[X|G]
= 0

Consequently, it follows that E[c(X)|G] ≥ c(E[X|G]).

Example 5.13. (Embeddings ofLp spaces) Square-integrable random variables are in fact

integrable. In other words, there is always the inclusion L2(Ω,F ,P) ⊆ L1(Ω,F ,P). In
particular, square integrable random variables always have a well-defined variance. This

embedding is a simple consequence of Jensen’s inequality since:

|E[X]|2 ≤ E[|X|2]

By taking the square root on both sides, we get:

‖X‖1 ≤ ‖X‖2

More generally, for any 1 < p < ∞, we can define Lp(Ω,F ,P) to be the linear space of
random variables such that E[|X|p] < ∞. Then for p < q, since xq/p is convex, we get

by Jensen’s inequality :

E[|X|q] = E[(|X|p)
q
p ] ≥ (E[|X|p])

q
p

Taking the q-th root on both sides:

E[|X|p]1/p ≤ E[|X|q]1/q

So, ifX ∈ Lq , then it must also be in Lp. Concretely, this means that any random variable

with a finite q-moment will also have a finite p-moment, for q > p.
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5.3 Martingales.

We now have all the tools to define martingales.

Definition 5.6. (Filtration). A filtration (Ft : t ≥ 0) of Ω is an increasing sequence of

σ-fields of Ω. That is,

Fs ⊆ Ft, ∀s ≤ t

We will usually take F0 = {∅,Ω}. The canonical example of a filtration is the natural
filtration of a given process (Ms : s ≥ 0). This is the filtration given by Ft = σ(Ms, s ≤
t). The inclusions of the σ-fields are then clear. For a given Brownian motion (Bt, t ≥ 0),
the filtration Ft = σ(Bs, s ≤ t) is sometimes called the Brownian filtration. We think of

the filtration as the flow of information of the process.

Definition 5.7. A stochastic process (Xt : t ≥ 0) is said to be adapted to (Ft : t ≥ 0),
if for each t, the random variable Xt is Ft−measurable.

Definition 5.8. (Martingale). A process (Mt : t ≥ 0) is a martingale for the filtration
(Ft : t ≥ 0) if the following hold:

(1) The process is adapted, that isMt is Ft−measurable for all t ≥ 0.

(2) E[|Mt|] < ∞ for all t ≥ 0. (This ensures that the conditional expectation is well
defined.)

(3) Martingale property:

E[Mt|Fs] = Ms ∀s ≤ t

Roughly, speaking this means that the best approximation of a process at a future time t
is its value at the present.

In particular, the martingale property implies that:

E[Mt|F0] = M0

E[E[Mt|F0]] = E[M0]

E[Mt] = E[M0] (5.17)

{Tower Property}

Usually, we take F0 to be the trivial sigma-field {∅,Ω}. A random variable that is F0-

measurable must be a constant, soM0 is a constant. In this case, E[Mt] = M0 for all t. If
properties (1) and (2) are satisfied, but the best approximation is larger, E[Mt|Fs] ≥ Ms,
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the process is called a submartingale. If it is smaller on average, E[Mt|Fs] ≤ E[Ms], we say
it is a supermartingale.

Wewill bemostly interested inmartingales that are continuous and square-integrable. Con-

tinuous martingales are martingales whose paths t 7→ Mt(ω) are continuous almost surely.
Square-integrable martingales are such that E[|Mt|2] < ∞ for all t’s. This condition is
stronger than E[|Mt|] < ∞ due to Jensen’s inequality.

Remark. (Martingales in Discrete-time). Martingales can be defined the same way if the

index set of the process is discrete. For example, the filtration (Fn : n ∈ N) is a countable
set and the martingale property is then replaced by E[Mn+1|Fn] = Mn as expected. The

tower-property then yields the martingale property E[Mn+k|Fn] = Mn for k ≥ 1.

Remark. (Continuous Filtrations). Filtrations with continuous time can be tricky to handle

rigorously. For example, one has to make sense of what it means for Fs as s approaches
t from the left. Is it equal to Ft? Or is there actually less information in lims→t− Fs than

in Ft? This is a bit of headache when dealing with processes with jumps, like the Poisson

process. However, if the paths are continuous, the technical problems are not as heavy.

Let’s look at some of the important examples of martingales constructed from Brownian

Motion.

Example 5.14. (Examples of Brownian Martingales)

(i) Standard Brownian Motion. Let (Bt : t ≥ 0) be a standard Brownian motion and let
(Ft : t ≥ 0) be a Brownian filtration. Then (Bt : t ≥ 0) is a square integrable martingale
for the filtration (Ft : t ≥ 0). Property (1) is obvious, because all the sets in Ft are

resolved, upon observing the outcome ofBt. Similarly,E[|Bt|] = 0. As for the martingale
property, note that, by the properties of conditional expectation in proposition (5.1), we

have:

E[Bt|Fs] = E[Bt|Bs]

= E[Bt −Bs +Bs|Bs]

= E[Bt −Bs|Bs] + E[Bs|Bs]

{Linearity}
= E[Bt −Bs] +Bs

{Independence}
= Bs

(ii) Geometric Brownian Motion. Let (Bt, t ≥ 0) be a standard brownian motion, and Ft =
σ(Bs, s ≤ t). A geometric brownian motion is a process (St, t ≥ 0) defined by:

St = S0 exp (σBt + µt)

for some parameter σ > 0 and µ ∈ R. This is simply the exponential of the Brownian

motion with drift. This is not a martingale for most choices of µ! In fact, one must take
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µ = −1

2
σ2

for the process to be a martingale for the Brownian filtration. Let’s verify this. Property

(1) is obvious since St is a function of Bt for each t. So, it is Ft measurable. Moreover,

property (2) is clear: E[exp(σBt+µt)] = E[exp(σ
√
tZ+µt)] = exp(µt+ 1

2σ
2t). So, its

a finite quantity. As for the martingale property, note that by the properties of conditional

expectation, and the MGF of Gaussians, we have for s ≤ t:

E[St|Fs] = E

[
S0 exp

(
σBt −

1

2
σ2t

)
|Fs

]
= S0 exp(−

1

2
σ2t)E[exp(σ(Bt −Bs +Bs))|Fs]

= S0 exp(−
1

2
σ2t) exp(σBs)E[exp(σ(Bt −Bs))|Fs]

{Taking out what is known}

= S0 exp

(
σBs −

1

2
σ2t

)
E [exp (σ(Bt −Bs))]

{Independence}

= S0 exp

(
σBs −

1

2
σ2t+

1

2
σ2(t− s)

)
= S0 exp(σBs −

1

2
σ2s)

= Ss

We will sometimes abuse terminology and refer to the martingale case of geometric brow-

nian motion simply as geometric Brownian Motion when the context is clear.

(iii) The square of the Brownian motion, compensated. It is easy to check (B2
t , t ≥ 0) is a sub-

martingale by direct computation using increments or by Jensen’s inequality: E[B2
t |Fs] >

(E[Bt|Fs])
2 = B2

s , s < t. It is nevertheless possible to compensate to get a martingale:

Mt = B2
t − t

It is an easy exercise to verify that (Mt : t ≥ 0) is a martingale for the Brownian filtration
(Ft : t ≥ 0).
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E[Mt|Fs] = E[B2
t − t|Fs]

= E[B2
t |Fs]− t

= E[(Bt −Bs +Bs)
2|Fs]− t

= E[(Bt −Bs)
2|Fs] + 2E[(Bt −Bs)Bs|Fs] + E[B2

s |Fs]− t

= E[(Bt −Bs)
2] + 2BsE[(Bt −Bs)|Fs] +B2

s − t

= E[(Bt −Bs)
2] + 2BsE[(Bt −Bs)] +B2

s − t{
(Bt −Bs) is independent of Fs

Also, Bs is known at time s

}
= (t− s) + 2Bs · 0 +B2

s − t

= B2
s − s

= Ms

Example 5.15. (Other important martingales).

(1) Symmetric random walks. This is an example of a martingale in discrete time. Take (Xi :
i ∈ N) to be IID random variables with E[X1] = 0 and E[|X1|] < ∞. Take Fn =
σ(Xi, i ≤ n) and

Sn = X1 +X2 + . . .+Xn, S0 = 0

Firstly, the information learned by observing the outcomes of X1,. . .,Xn is enough to

completely determine Sn. Hence, Sn is Fn−measurable.

Next,

|Sn| =

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
≤

n∑
i=1

|Xi|

Consequently, by the montonocity of expectations, we have:

E[|Sn|] ≤
n∑

i=1

E[|Xi|] < ∞

The martingale property is also satisfied. We have:
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E[Sn+1|Fn] = E[Sn +Xn+1|Fn]

= E[Sn|Fn] + E[Xn+1|Fn]

= Sn + E[Xn+1]{
Sn is Fn-measurable

Xn+1 is independent of Fn

}
= Sn + 0

= Sn

(2) Compensated Poisson process. Let (Nt : t ≥ 0) be a Poisson process with rate λ and Ft =
σ(Ns, s ≤ t). Then, Nt is a submartingale for its natural filtration. Again, properties (1)

and (2) are easily checked. Nt is Ft measurable. Moreover, E[|Nt|] = E[Nt] =
1
λt < ∞.

The submartingale property follows by the independence of increments : for s ≤ t,

E[Nt|Fs] = E[Nt −Ns +Ns|Fs]

= E[Nt −Ns|Fs] + E[Ns|Fs]

= E[Nt −Ns] +Ns

= λ(t− s) +Ns

{∵ E[Nt] = λt}

More importantly, we get a martingale by slightly modifying the process. Indeed, if we

subtract λt, we have that the process :

Mt = Nt − λt

is a martingale. We have:

E[Mt|Fs] = E[Nt − λt|Fs]

= λt− λs+Ns − λt

= Ns − λs

= Ms

This is called the compensated Poisson process. Let us simulate 10 paths of the compensated
poisson process on [0, 10].
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Listing 9: Generating 10 paths of a compensated Poisson process

import numpy as np
import matplotlib.pyplot as plt

# Generates a sample path of a compensated poisson process
# with rate : `lambda_` per unit time
# on the interval [0,T], and subintervals of size `stepSize`.

def generateCompensatedPoissonPath(lambda_,T,stepSize):
N = int(T/stepSize)

poissonParam = lambda_ * stepSize

x = np.random.poisson(lam=poissonParam,size=N)
x = np.concatenate([[0.0], x])
N_t = np.cumsum(x)
t = np.linspace(start=0.0,stop=10.0,num=1001)

M_t = np.subtract(N_t,lambda_ * t)
return M_t

t = np.linspace(0,10,1001)
plt.grid(True)

plt.xlabel(r'Time $t$')
plt.ylabel(r'Compensated poisson process $M(t)$')
plt.grid(True)
plt.title(r'$10$ paths of the compensated Poisson process on $[0,10]$')

for i in range(10):
# Generate a poisson path with rate 1 /sec = 0.01 /millisec
n_t = generateCompensatedPoissonPath(lambda_=1.0, T=10, stepSize

=0.01)
plt.plot(t, n_t)

plt.show()
plt.close()
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10 paths of the compensated Poisson process on [0, 10]

We saw in the two examples, that, even though a process is not itself a martingale, we can

sometimes compensate to obtain a martingale! Ito Calculus will greatly extend this perspec-

tive. We will have systematic rules that show when a function of Brownian motion is a

martingale and if not, how to modify it to get one.

For now, we observe that a convex function of a martingale is always a submartingale by

Jensen’s inequality.

Corollary 5.1. If c is a convex function on R and (Mt : t ≥ 0) is a martingale for (Ft : t ≥ 0),
then the process (c(Mt) : t ≥ 0) is a submartingale for the same filtration, granted thatE[|c(Mt)|] <
∞.

Proof. The fact that c(Mt) is adapted to the filtration is clear since it is an explicit function
of Mt. The integrability is by assumption. The submartingale property is checked as

follows:

E[c(Mt)|Fs] ≥ c(E[Mt|Fs]) = c(Ms)

Remark. (The Doob-Meyer Decomposition Theorem). Let (Xn : n ∈ N) be a submartin-
gale with respect to a filtration (Fn : n ∈ N). Define a sequence of random variables

(An : n ∈ N) by A0 = 0 and

An =

n∑
i=1

(E[Xi|Fi−1]−Xi−1), n ≥ 1
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Note that An is Fn−1-measurable. Moreover, since (Xn : n ∈ N) is a submartingale,
we have E[Xi|Fi−1] −Xi−1 ≥ 0 almost surely. Hence, (An : n ∈ N) is an increasing
sequence almost surely. LetMn = Xn −An.

We have:

E[Mn|Fn−1] = E[Xn −An|Fn−1]

= E[Xn|Fn−1]− E[An|Fn−1]

= E[Xn|Fn−1]− E [E[Xn|Fn−1]−Xn−1 +An−1| Fn−1]

= E[Xn|Fn−1]− E[Xn|Fn−1] + E[Xn−1|Fn−1]− E[An−1|Fn−1]

=((((((
E[Xn|Fn−1]−((((((

E[Xn|Fn−1] +Xn−1 −An−1

= Mn−1

Thus, (Mn : n ∈ N) is a martingale. Thus, we have obtained the Doob decomposition:

Xn = Mn +An (5.18)

This decomposition of a submartingale as a sum of a martingale and an adapted increasing

sequence is unique, if we require that A0 = 0 and that An is Fn−1-measurable.

For the continuous-time case, the situation is much more complicated. The analogue of

equation (5.18) is called theDoob-Meyer decomposition. We briefly describe this decomposition

and avoid the technical details. All stochastic processes X(t) are assumed to be right-
continuous with left-hand limits X(t−).

Let X(t), a ≤ t ≤ b be a submartingale with respect to a right-continuous filtration
(Ft : a ≤ t ≤ b). IfX(t) satisfies certain conditions, then it can be uniquely decomposed
as:

X(t) = M(t) + C(t), a ≤ t ≤ b

where M(t), a ≤ t ≤ b is a martingale with respect to (Ft; a ≤ t ≤ b), C(t) is right-
continuous and increasing almost surely with E[C(t)] < ∞.

Example 5.16. (Square of a Poisson Process). Let (Nt : t ≥ 0) be a Poisson process
with rate λ. We consider the compensated processMt = Nt − λt. By (5.1), the process
(M2

t : t ≥ 0) is a submartingale for the filtration (Ft : t ≥ 0) of the Poisson process.
How should we compensated M2

t to get a martingale? A direct computation using the

properties of conditional expectation yields:
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E[M2
t |Fs] = E[(Mt −Ms +Ms)

2|Fs]

= E[(Mt −Ms)
2 + 2(Mt −Ms)Ms +M2

s |Fs]

= E[(Mt −Ms)
2|Fs] + 2E[(Mt −Ms)Ms|Fs] + E[M2

s |Fs]

= E[(Mt −Ms)
2] + 2Ms E[Mt −Ms]︸ ︷︷ ︸

equals 0

+M2
s

= E[(Mt −Ms)
2] +M2

s

Now, if X ∼ Poisson(λt), then E[X] = λt and E[X2] = λt(λt+ 1).

E[(Mt −Ms)
2] = E

[
{(Nt −Ns)− λ(t− s)}2

]
= E

[
(Nt −Ns)

2
]
− 2λ(t− s)E [(Nt −Ns)] + λ2(t− s)2

= λ2(t− s)2 + λ(t− s)− 2λ(t− s) · λ(t− s) + λ2(t− s)2

= λ(t− s)

Thus,

E[M2
t − λt|Fs] = M2

s − λs

We conclude that the process (M2
t − λt : t ≥ 0) is a martingale. The Doob-Meyer

decomposition of the submartingaleM2
t is then:

M2
t = (M2

t − λt) + λt

Example 5.17. Consider a Brownian motionB(t). The quadratic variation of the process
(B(t) : t ≥ 0) over the interval [0, t] is given by [B]t = t. On the other hand, we saw,
that the square of Brownian motion compensated, (B2

t −t : t ≥ 0) is a martingale. Hence,
the Doob-Meyer decomposition of B(t)2 is given by:

B(t)2 = (B(t)2 − t) + t

5.4 Computations with Martingales.

Martingales are not only conceptually interesting, they are also formidable tools to compute

probabilities and expectations of processes. For example, in this section, we will solve the

gambler’s ruin problem for Brownian motion. For convenience, we introduce the notion of

stopping time before doing so.
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Definition 5.9. A random variable τ : Ω → N ∪ {+∞} is said to be a stopping time for
the filtration (Ft : t ≥ 0) if and only if:

{ω : τ(ω) ≤ t} ∈ Ft, ∀t ≥ 0

Note that since Ft is a sigma-field, if τ is a stopping time, then we must also have that
{ω : τ(ω) > t} ∈ Ft.

In other words, τ is a stopping time, if we can decide if the events {τ ≤ t} occurred or
not based on the information available at time t.

The term stopping time comes from gambling: a gambler can decide to stop playing at a ran-

dom time (depending for example on previous gains or losses), but when he or she decides

to stop, his/her decision is based solely upon the knowledge of what happened before, and

does not depend on future outcomes. In other words, the stopping policy/strategy can

only depend on past outcomes. Otherwise, it would mean that he/she has a crystall ball.

Example 5.18. (Examples of stopping times).

(i) First passage time. This is the first time when a process reaches a certain value. To be

precise, let X = (Xt : t ≥ 0) be a process and (Ft : t ≥ 0) be its natural filtration. For
a > 0, we define the first passage time at a to be:

τ(ω) = inf{s ≥ 0 : Xs(ω) ≥ a}

If the path ω never reaches a, we set τ(ω) = ∞. Now, for t fixed and for a given path
X(ω), it is possible to know if {τ(ω) ≤ t} (the path has reached a before time t) or
{τ(ω) > t} (the path has not reached a before time t) with the information available at
time t, since we are looking at the first time the process reaches a. Hence, we conclude
that τ is a stopping time.

(ii) Hitting time. More generally, we can consider the first time (if ever) that the path of a

process (Xt : t ≥ 0) enters or hits a subset B of R:

τ(ω) = min{s ≥ 0 : Xs(ω) ∈ B}

The first passage time is the particular case in which B = [a,∞).

(iii) Minimum of two stopping times. If τ and τ ′ are two stopping times for the same filtration
(Ft : t ≥ 0), then so is the minimum τ ∧ τ ′ between the two, where

(τ ∧ τ ′)(ω) = min{τ(ω), τ ′(ω)}

This is because for any t ≥ 0:
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{ω :(τ ∧ τ ′)(ω) ≤ t} = {ω : τ(ω) ≤ t} ∪ {ω : τ ′(ω) ≤ t}

Since the right hand side is the union of two events in Ft, it must also be in Ft by the

properties of a sigma-field. We conclude that τ ∧ τ ′ is a stopping time. Is it also the case
that the maximum τ ∨ τ ′ is a stopping time?

For any fixed t ≥ 0, we have:

{ω : (τ ∨ τ ′)(ω) ≤ t} = {ω : τ(ω) ≤ t} ∩ {ω : τ ′(ω) ≤ t}

Since the right hand side is the intersection of two events in Ft, it must also be in Ft by

the properties of a sigma-field. We conclude that τ ∨ τ ′ is a stopping time.

Example 5.19. (Last passage time is not a stopping time). What if we look at the last time

the process reaches a, that is:

ρ(ω) = sup{t ≥ 0 : Xt(ω) ≥ a}

This is a well-defined random variable, but it is not a stopping time. Based on the infor-

mation available at time t, we are not able to decide whether or not {ρ(ω) ≤ t} occurred
or not, as the path can always reach a one more time after t.

It turns out that a martingale that is stopped when the stopping time is attained remains a

martingale.

Proposition 5.2. (Stopped Martingale). If (Mt : t ≥ 0) is a continuous martingale for the filtration
(Ft : t ≥ 0) and τ is a stopping time for the same filtration, then the stopped process defined by

Mt∧τ =

{
Mt t ≤ τ

Mτ t > τ

is also a continuous martingale for the same filtration.

Theorem 5.3. (Doob’s Optional sampling theorem). If (Mt : t ≥ 0) is a continuous martingale

for the filtration (Ft : t ≥ 0) and τ is a stopping time such that τ < ∞ and the stopped process

(Mt∧τ : t ≥ 0) is bounded, then:

E[Mτ ] = M0
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Proof. Since (Mτ∧t : t ≥ 0) is a martingale, we always have:

E[Mτ∧t] = M0

Now, since τ(ω) < ∞, we must have that limt→∞ Mτ∧t = Mτ almost surely. In

particular, we have:

E[Mτ ] = E

[
lim
t→∞

Mτ∧t

]
= lim

t→∞
E[Mτ∧t] = lim

t→∞
M0

where we passed to the limit, using the dominated convergence theorem (2.6).

Example 5.20. (Gambler’s ruin with Brownian motion). The gambler’s ruin problem is

known in different forms. Roughly speaking, it refers to the problem of computing the

probability of a gambler making a series of bets reaching a certain amount before going

broke. In terms of Brownian motion (and stochastic processes in general), it translates

to the following questions: Let (Bt : t ≥ 0) be a standard brownian motion starting at
B0 = 0 and a, b > 0.

(1) What is the probability that a Brownian path reaches a before −b?

(2) What is the expected waiting time for the path to reach a or −b?

For the first question, it is a simple computation using stopping time and martingale prop-

erties. Define the hitting time:

τ(ω) = inf{t ≥ 0 : Bt(ω) ≥ a or Bt(ω) ≤ −b}

Note that τ is the minimum between the first passage time at a and the one at −b.

We first show that τ < ∞ almost surely. In other words, all Brownian paths reach a or
−b eventually. To see this, consider the event En that the n-th increment exceeds a+ b

En := {|Bn −Bn−1| > a+ b}

Note that, if En occurs, then we must have that the Brownian motion path exits the

interval [−b, a]. Moreover, we have P(En) = P(E1) for all n. Since the events En are

independent, we have:

P(EC
1 ∩ EC

2 ∩ . . . ∩ EC
n ) = (1− p)n

As n → ∞ we have:
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lim
n→∞

P(EC
1 ∩ EC

2 ∩ . . . ∩ EC
n ) = 0

The sequence of events (Fn) where Fn = EC
1 ∩EC

2 ∩ . . .∩EC
n is a decreasing sequence

of events. By the continuity of probability measure lemma (1.8), we conclude that:

lim
n→∞

P (Fn) = P

( ∞⋂
n=1

Fn

)
= 0

Therefore, it must be the case P(∪∞
n=1En) = 1. So, En must occur for some n, so all

brownian motion paths reach a or −b.

Since τ < ∞ with probability one, the random variable Bτ is well-defined : Bτ (ω) =
Bt(ω) if τ(ω) = t. It can only take two values: a or −b. Question (1) above translates
into computing P(Bτ = a). On one hand, we have:

E[Bτ ] = aP(Bτ = a) + (−b)(1− P(Bτ = a))

On the other hand, by corollary (5.3), we have E[Bτ ] = E[B0] = 0. (Note that the
stopped process (Bt∧τ : t ≥ 0) is bounded above by a and by −b below). Putting these
two observations together, we get:

P(Bτ = a) =
b

a+ b

A very simple and elegant answer!

We will revisit this problem again and again. In particular, we will answer the question

above for Brownian motion with a drift at length further ahead.

Example 5.21. (ExpectedWaiting Time). Let τ be as in the last example. We now answer
question (2) of the gambler’s ruin problem:

E[Bτ ] = ab

Note that the expected waiting time is consistent with the rough heuristic that Brownian

motion travels a distance
√
t by time t. We now use the martingaleMt = B2

t − t. On the
one hand, if we apply optional stopping in corollary (5.3), we get:

E[Mτ ] = M0 = 0
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Moreover, we know the distribution of Bτ , thanks to the probability calculated in the last

example. We can therefore compute E[Mτ ] directly:

0 = E[Mτ ]

= E[B2
τ − τ ]

= E[B2
τ ]− E[τ ]

= a2 · b

a+ b
+ b2 · a

a+ b
− E[τ ]

E[τ ] =
a2b+ b2a

a+ b

=
ab����(a+ b)

����(a+ b)
= ab

Why can we apply optional stopping here? The random variable τ is finite with probability
1 as before. However, the stopped martingale is not necessarily bounded as before: Bτ∧t

is bounded but τ is not. However, the conclusion of optional stopping still holds. Indeed,
we have:

E[Mt∧τ ] = E[B2
t∧τ ]− E[t ∧ τ ]

By the bounded convergence theorem, we get limt→∞ E[B2
t∧τ ] = E[limt→∞ B2

t∧τ ] =
E[B2

τ ]. Since τ ∧ t is a non-decreasing sequence and as t → ∞, t∧ τ → τ almost surely,
as τ < ∞, by the monotone convergence theorem, limt→∞ E[t ∧ τ ] = E[τ ].

Example 5.22. (First passage time of Brownian Motion.) We can use the previous two

examples to get some very interesting information on the first passage time:

τa = inf{t ≥ 0 : Bt ≥ a}

Let τ = τa ∧ τ−b be as in the previous examples with τ−b = inf{t ≥ 0 : Bt ≤ −b}.
Note that τ−b is a sequence of random variables that is increasing in b. A brownian motion
path must cross through −1 before it hits −2 for the first time and in general τ−n(ω) ≤
τ−(n+1)(ω). Moreover, we have τ−b → ∞ almost surely as b → ∞. That’s because,

P{τ < ∞} = 1. Moreover, the event {Bτ = a} is the same as {τa < τ−b}. Now, the
events {τa < τ−b} are increasing in b, since if a path reaches a before −b, it will do so
as well for a more negative value of −b. On one hand, this means by the continuity of
probability measure lemma (1.8) that:

lim
b→∞

P {τa < τ−b} = P{ lim
b→∞

τa < τ−b}

= P{τa < ∞}

210



On the other hand, we have by example (5.20)

lim
b→∞

P {τa < τ−b} = lim
b→∞

P{Bτ = a}

= lim
b→∞

b

b+ a

= 1

We just showed that:

P {τa < ∞} = 1 (5.19)

In other words, every Brownian path will reach a, no matter how large a is!

How long will it take to reach a on average? Well, we know from example (5.21) that

E[τa ∧ τ−b] = ab. On one hand this means,

lim
b→∞

E[τa ∧ τ−b] = lim
b→∞

ab = ∞

On the other hand, since the random variables τ−b are increasing,

lim
b→∞

E[τa ∧ τ−b] = E

[
lim

b→∞
τa ∧ τ−b

]
= E[τa]

by the monotone convergence theorem (2.3). We just proved that:

E[τa] = ∞

In other words, any Brownian motion path will reach a, but the expected waiting time for
this to occur is infinite, no matter, how small a is! What is happening here? No matter,
how small a is, there is always paths that reach very large negative values before hitting a.
These paths might be unlikely. However, the first passage time for these paths is so large

that they affect the value of the expectation substantially. In other words, τa is a heavy-tailed
random variable. We look at the distribution of τa in more detail in the next section.

Example 5.23. (When option stopping fails). Consider τa, the first passage time at a > 0.
The random variable Bτa is well-defined since τa < ∞. In fact, we have Bτa = a with
probability one. Therefore, the following must hold:

E[Bτa ] = a 6= B0

Optional stopping theorem corollary (5.3) does not apply here, since the stopped process

(Bt∧τa : t ≥ 0) is not bounded. Bt∧τa can become infinitely negative before hitting a.
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5.5 Reflection principle for Brownian motion.

Proposition 5.3. (Bachelier’s formula). Let (Bt : t ≤ T ) be a standard brownian motion on

[0, T ]. Then, the CDF of the random variable sup0≤t≤T Bt is:

P

(
sup

0≤t≤T

Bt ≤ a

)
= P (|BT | ≤ a)

In particular, its PDF is:

fmax(a) =
2√
2πT

e−
a2

2T

Remark. We can verify these results empirically. Note that the paths of the random vari-

ables max0≤s≤t Bs and |Bt| are very different as t varies for a given ω. One is increasing
and the other is not. The equality holds in distribution for a fixed t. As a bonus corollary,
we get the distribution of the first passage time at a.

Corollary 5.2. Let a ≥ 0 and τa = inf{t ≥ 0 : Bt ≥ a}. Then:

P (τa ≤ T ) = P
(
max

0≤t≤T
Bt ≥ a

)
=

∫ ∞

a

2√
2πT

e−
x2

2T dx

In particular, the random variable τa has the PDF:

fτa(t) =
a√
2π

e−
a2

2t

t3/2
, t > 0

This implies that it is heavy-tailed with E[τa] = ∞.

Proof. The maximum on [0, T ] is larger than or equal to a if and only if τa ≤ T . Therefore,
the events {max0≤t≤T Bt ≥ a} and {τa ≤ T} are the same. So, the CDF P(τa ≤ t) of

τa, by proposition (5.3)
∫∞
a

fmax(x)dx =
∫∞
a

2√
2πT

e−
x2

2T dx. To get the PDF, it remains

to differentiate the integral with respect to t. This is easy to do once we realize by a change
of variable u = x/

√
t that:

∫ ∞

a

2√
2πt

e−
x2

2t dx =

∫ ∞

a/
√
t

2√
2πt

e−
u2

2

√
t · du

=

∫ ∞

a/
√
t

2√
2π

e−u2/2du

Fτa(t) = 2(1− Φ(a/
√
t))
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Differentiating with respect to t, we get:

fτa(t) = −2φ(a/
√
t) · a ·

(
− 1

2t3/2

)
=

a

t3/2
φ

(
a√
t

)
=

a

t3/2
· 1√

2π
e−

a2

2t

To estimate the expectation, it suffices to realize that for t ≥ 1, e−
a2

2t is larger than e−
a2

2 .

Therefore, we have:

E[τa] =

∫ ∞

0

t
a√
2π

e−a2/2t

t3/2
dt ≥ ae−a2/2

√
2π

∫ ∞

1

t−1/2dt

This is an improper integral and it diverges like
√
t and is infinite as claimed.

To prove proposition (5.3), we will need an important property of Brownian motion called

the reflection principle. To motivate it, recall the reflection symmetry of Brownian motion at

time s in proposition (4.4). It turns out that this reflection property also holds if s is
replaced by a stopping time.

Lemma 5.2. (Reflection principle). Let (Bt : t ≥ 0) be a standard Brownian motion and let τ be

a stopping time for its filtration. Then, the process (B̃t : t ≥ 0) defined by the reflection at time τ :

B̃t =

{
Bt if t ≤ τ

Bτ − (Bt −Bτ ) if t > τ

is also a standard brownian motion.

Remark. We defer the proof of the reflection property of Brownian motion to a further

section. It is intuitive and instructive to quickly picture this in the discrete-time setting. I

adopt the approach as in Shreve-I.

We repeatedly toss a fair coin (p, the probability of H on each toss, and q = 1 − p, the
probability of T on each toss, are both equal to 1

2 ). We denote the successive outcomes

of the tosses by ω1ω2ω3 . . .. Let

Xj =

{
−1 if ωj = H

+1 if ωj = T
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and define M0 = 0, Mn =
∑n

j=1 Xn. The process (Mn : n ∈ N) is a symmetric
random walk.

Suppose we toss a coin an odd number (2j − 1) of times. Some of the paths will reach
level 1 in the first 2j − 1 steps and other will not rach. In the case of 3 tosses, there are
23 = 8 possible paths and 5 of these reach level 1 at some time τ1 ≤ 2j − 1. From that

moment on, we can create a reflected path, which steps up each time the original path steps

down and steps down each time the original path steps up. If the original path ends above

1 at the final time 2j − 1, the reflected path ends below 1 and vice versa. If the original
path ends at 1, the reflected path does also. In fact, the reflection at the first hitting time
has the same distribution as the original random walk.

The key here is, out of the 5 paths that reach level 1 at some time, there are as many
reflected paths that exceed 1 at time (2j − 1) as there are original paths that exceed 1 at
time (2j − 1). So, to count the total number of paths that reach level 1 by time (2j − 1),
we can count the paths that are at 1 at time (2j − 1) and then add on twice the number of

paths that exceed 1 at time (2j − 1).

With this new tool, we can now prove proposition (5.3).

Proof. Consider P(maxt≤T Bt ≥ a). By splitting this probability over the event of the
endpoint, we have:

P
(
max
t≤T

Bt ≥ a

)
= P

(
max
t≤T

Bt ≥ a,BT > a

)
+ P

(
max
t≤T

Bt ≥ a,BT ≤ a

)

Note also, that P(BT = a) = 0. Hence, the first probability equals P(BT ≥ a). As for
the second, consider the time τa. On the event considered, we have τa ≤ T and using

lemma (5.2) at that time, we get

P
(
max
t≤T

Bt ≥ a,BT ≤ a

)
= P

(
max
t≤T

Bt ≥ a, B̃T ≥ a

)

Observe that the event {maxt≤T Bt ≥ a} is the same as {maxt≤T B̃T ≥ a}. (A rough
picture might help here.) Thereforem the above probability is

P
(
max
t≤T

Bt ≥ a,BT ≤ a

)
= P

(
max
t≤T

B̃t ≥ a, B̃T ≥ a

)
= P

(
max
t≤T

Bt ≥ a,BT ≥ a

)

where the last equality follows from the reflection principle (B̃t is also a standard brownian

motion, and BT and B̃T have the same distribution.) But, as above, the last probability is

equal to P(BT ≥ a). We conclude that:
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P
(
max
t≤T

Bt ≥ a

)
= 2P(BT ≥ a) =

2√
2πT

∫ ∞

a

e−
x2

2T dx = P(|BT | ≥ a)

This implies in particular thatP (maxt≤T Bt = a) = 0. Thus, we also haveP(maxt≤T Bt ≤
a) = P(|BT | ≤ a) as claimed.

Example 5.24. (Simulating Martingales) Sample 10 paths of the following process with a
step-size of 0.01:

(a) B2
t − t, t ∈ [0, 1]

(b) Geometric Brownian motion : St = exp(Bt − t/2), t ∈ [0, 1].

Let’s write a simple BrownianMotion class, that we shall use to generate sample paths.

Listing 10: 10 paths of B2
t − t

import numpy as np
import matplotlib.pyplot as plt

import numpy as np
import matplotlib.pyplot as plt

class BrownianMotion:
def __init__(self,stepSize,T):

self.stepSize = stepSize
self.T = T
self.N = int(T/stepSize)

# Construct the covariance matrix C for
# the gaussian vector B(1/N),...,B(1)
self.C = np.zeros((self.N, self.N))

for i in range(self.N):
for j in range(self.N):

s = (i + 1) * self.T / self.N
t = (j + 1) * self.T / self.N
self.C[i, j] = np.min([s, t])

self.A = np.linalg.cholesky(self.C)

def samplePath(self):
Z = np.random.standard_normal(self.N)
B_t = np.matmul(self.A, Z)
B_t = np.concatenate([[0.0], B_t])
return B_t

Now, the process B2
t − t can be sampled as follows:

Listing 11: 10 paths of B2
t − t

def generateSquareOfBMCompensated(numOfPaths,stepSize,T):
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N = int(T/stepSize)

X = []
brownianMotion = BrownianMotion(stepSize,T)
for n in range(numOfPaths):

B_t = brownianMotion.samplePath()

B_t_sq = np.square(B_t)

t = np.linspace(start=0.0,stop=1.0,num=N+1)
M_t = np.subtract(B_t_sq,t)
X.append(M_t)

return X
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The gBMprocess can be sampled similarly, withMt = np.exp(np.subtract(Bt,t/2)).
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Example 5.25. (Maximumof BrownianMotion.) Consider themaximumof Brownian

motion on [0, 1]: maxs≤1 Bs.

(a) Draw the histogram of the random variable maxs≤1 Bsusing 10, 0000 sampled Brow-
nian paths with a step size of 0.01.

(b) Compare this to the PDF of the random variable |B1|.

Solution.

I use the itertools python library to compute the running maximum of a brownian

motion path.

Listing 12: The process sups≤1 Bs

brownianMotion = BrownianMotion(stepSize=0.01,T=1)
data = []

for i in range(10000):
B_t = brownianMotion.samplePath()
max_B_t = list(itertools.accumulate(B_t,max))
data.append(max_B_t[100])
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Analytically, we know that B1 is a gaussian random variable with mean 0 and variance 1.

P(|B1| ≤ z) = P(|Z| ≤ z)

= P(−z ≤ Z ≤ z)

= P(Z ≤ z)− P(Z ≤ −z)

= P(Z ≤ z)− (1− P(Z ≤ z))

F|B1|(z) = 2Φ(z)− 1

Differentiating on both sides, we get:

f|B1|(z) = 2φ(z) =
2√
2π

e−
z2

2 , z ∈ [0,∞)
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Example 5.26. (First passage time.) Let (Bt : t ≥ 0) be a standard brownian motion.
Consider the random variable:

τ = min{t ≥ 0 : Bt ≥ 1}

This is the first time that Bt reaches 1.

(a) Draw a histogram for the distribution of τ∧10 on the time-interval [0, 10] using 10, 000
brownian motion paths on [0, 10] with discretization 0.01.

The notation τ ∧ 10 means that if the path does not reach 1 on [0, 10], then give the value 10 to the

stopping time.

(b) Estimate E[τ ∧ 10].

(c) What proportion of paths never reach 1 in the time interval [0, 10]?

Solution.
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To compute the expectation, we classify the hitting times of all paths into 50 bins. I simply
did

frequency, bins = np.histogram(firstPassageTimes,bins=50,range=(0,10))

and then computed

expectation=np.dot(frequency,bins[1:])/10000.

This expectation estimate on my machine is E[τ ∧ 10] = 4.34 secs. There were approxi-
mately 2600 paths out of 10, 000 that did not reach 1.

Example 5.27. Gambler’s ruin at the French Roulette. Consider the scenario in which

you are gambling $1 at the French roulette on the reds: You gain $1with probability 18/38
and you lose a dollar with probability 20/38. We estimate the probability of your forune
reaching $200 before it reaches 0.

(a) Write a function that samples the simple random walk path from time 0 to time 5, 000
with a given starting point.

(b) Use the above to estimate the probability of reaching $200 before $0 on a sample of
100 paths if you start with $1000.

Example 5.28. Doob’s maximal inequalities. We prove the following: Let (Mk : k ≥
1) be positive submartingale for the filtration (Fk : k ∈ N). Then, for any 1 ≤ p < ∞
and a > 0

P
(
max
k≤n

Mk > a

)
≤ 1

ap
E[Mp

n]
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(a) Use Jensen’s inequality to show that if (Mk : k ≥ 1) is a positive submartingale, then
so is (Mp

k : k ≥ 1) for 1 ≤ p < ∞. Conclude that it suffices to prove the statement for

p = 1.

Solution.

The function f(x) = xp is convex. By conditional Jensen’s inequality,

(E[Mk+1|Fk])
p ≤ E[Mp

k |Fk]

Thus,

E[Mp
k+1|Fk] ≥ (E[Mk+1|Fk])

p ≥ Mp
k

where the last inequality follows from the fact that (Mk : k ≥ 1) is a positive sub-
martingale, so E[Mk+1|Fk] ≥ Mk . Consequently, (M

p
k : k ≥ 1) is also a positive

submartingale.

(b) Consider the events

Bk =
⋂
j<k

{ω : Mj(ω) ≤ a} ∩ {ω : Mk(ω) > a}

Argue that the Bk ’s are disjoint and that
⋃

k≤n Bk = {maxk≤n Mk > a} = B.

Solution.

Clearly, Bk is the event that the first time to cross a is k. If Bk occurs, Bk+1, Bk+2, . . .
fail to occur. Hence, allB′

ks are pairwise disjoint. The event
⋃

k≤n Bk is the event that the

random walk crosses a at any time k ≤ n. Thus, the running maximum of the Brownian

motion at time n exceeds a.

(c) Show that

E[Mn] ≥ E[Mn1B ] ≥ a
∑
k≤n

P(Bk) = aP(B)

by decomposing B in Bk ’s and by using the properties of expectations, as well as the

submartingale property.

Solution.

Clearly,Mn ≥ Mn1B ≥ a1B . AndMn is a positive random variable. By monotonicity

of expectations, E[Mn] ≥ E[Mn1B ] ≥ aE[1B ] = aP(B) = a
∑

k≤n P(Bk), where the
last equality holds because the Bk ’s are disjoint.
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(d) Argue that the inequality holds for continuous paths by discretizing time and using

convergence theorems : If (Mt : t ≥ 0) is a positive submartingale with continuous paths
for the filtration (Ft : t ≥ 0), then for any 1 ≤ p < ∞ and a > 0:

P
(
max
s≤t

Ms > a

)
≤ 1

ap
E[Mp

t ]

Solution.

Let (Mt : t ≥ 0) be a positive submartingale with continuous paths for the filtration
(Ft : t ≥ 0). Consider a sequence of partitions of the interval [0, t] into 2r subintervals :

Dr =

{
kt

2r
: k = 0, 1, 2, . . . , 2n

}

And consider a sequence of discrete positive sub-martingales:

M
(r)
kt/2r = Mkt/2r , k ∈ N, 0 ≤ k ≤ 2r

Next, we define for r = 1, 2, 3, . . .

Ar =

{
sup
s∈Dr

|M (r)
s | > a

}

By using the maximal inequality in discrete time, gives us:

P(Ar) = P

{
sup
s∈Dr

|M (r)
s | > a

}
≤ 1

ap
E

[(
M (r)

s

)p]
=

1

ap
E [Mp

t ]

P
(
max
s≤t

Ms > a

)
= P

( ∞⋃
r=1

Ar

)
= lim

r→∞
P (Ar)

{Continuity of probability measure}

≤ lim
r→∞

1

ap
E [Mp

t ]
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6 Ito Calculus.

The Riemann-Stieltjes integral of g with respect to f is understood to be limit of the sums:∫ t

0

g(s) · df(s) = lim
n→∞

n−1∑
j=0

g(tj)(f(tj+1)− f(tj))

The goal is to make sense of the above, when f is replaced by a Brownian motion (Bt :
t ≥ 0).

∫ t

0

g(s) · dBs = lim
n→∞

n−1∑
j=0

g(tj)(Btj+1
−Btj )

The major hurdle here is not the fact that the Brownian motion paths are random, but

instead that these paths have unbounded variation. This means that the classical construction

does not apply for a given path.

Note that the sum
∑n−1

j=0 g(tj)(Btj+1 − Btj ) is a random variable. If the end-point

tn = t is varied, it can be seen as a stochastic process. Since Brownian motion paths are
continuous, this new stochastic process also has continuous paths. As we shall see, this

stochastic process is in fact a continuous martingale. It turns out that these properties

remain in the limit as n → ∞.

What is the intepretation of the stochastic integral? If we think of (Bt : t ≥ 0) as

modelling the price of a stock, then
∑n−1

j=0 g(tj)(Btj+1
−Btj ) gives the value of a portfolio

at time t that implements the following strategy: At tj we buy g(tj) shares of the stock
that we sell at time tj+1. We do this for every j ≤ n − 1. The net gain or loss of this
strategy is the sum over j of g(tj)(Btj+1 −Btj ). Of course, in this implementation, the
number of shares g(tj) put in play could be random and depend on the past information

of the path upto time tj .

6.1 Martingale Transform.

Let (Mt, t ≤ T ) be a continuous square-integrable martingale on [0, T ] for the filtration
(Ft : t ≤ T ) defined on some probability space (Ω,F ,P). The idea of the martingale
transform is to modify the amplitude of each increment in such a way as to produce a

martingale when these new increments are summed up. The martingale transforms are to

the Ito Integral, what Riemann sums are for the Riemann integral.

More precisely, let (tj , j ≤ n) be a sequence of partitions of [0, T ] with t0 = 0 and tn =

T . For example, we can take tj = jT
n . Consider n fixed numbers (Yt0 , Yt1 , . . . , Ytn−1

).
It is convenient to construct a function of time Xt from these:
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Xt = Ytj if t ∈ (tj , tj+1]

This can also be written as a sum of indicator functions:

Xt =

n−1∑
j=0

Ytj 1(tj ,tj+1](t), t ≤ T (6.1)

The integral of (Xt : t ≤ T ) with respect to the martingale M on [0, T ] also called a
martingale transform, is the sum of the increments of the martingale modulated byX ; that is:

IT = Y0(M1 −M0) + . . .+ Yn−1(MT −Mtn−1
) =

n−1∑
j=0

Yj(Mtj+1
−Mtj )

This is a random variable in L2(Ω,F ,P), since it is a linear combination of random vari-

ables in L2. Note that, we recoverMT when Xtj is 1 for all intervals. We may think of
(Ms : s ≤ T ) as the price of an asset, say a stock, on a time interval [0, T ]. Then, the
term:

Ytj (Mtj+1
−Mtj )

can be seen as the gain/loss in the time interval (tj , tj+1] of buying Ytj units of the asset

at time tj at priceMtj and selling these at time tj+1 at priceMtj+1
. Summing these terms

over time gives the value of implementing the investment strategyX on the interval [0, T ].
It is not hard to modify the definition to obtain a stochastic process on the whole interval

[0, T ]. For t ≤ T , we simply sum up the increments up to t. This can be written down as:

It = Yt0(Mt1 −Mt0) + . . .+ Ytj (Mt −Mtj ), if t ∈ (tj , tj+1] (6.2)

Example 6.1. (Integral of a simple process). Consider a standard Brownian motion (Bt :
t ∈ [0, 1]) on the time interval [0, 1]. We know very well by now, that it is a martingale.
We look at the simple integral constructed from it. We take the following integrand:

Xt =


10 if t ∈ (0, 1/3]

5 if t ∈(1/3, 2/3]
2 if t ∈ (2/3, 1]

Then the integrals It as in equation (6.2) forms a process (It : t ∈ [0, 1]) of the form:
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It =


10Bt if t ∈ (0, 1/3]

10B1/3 + 5(Bt −B1/3) if t ∈(1/3, 2/3]
10B1/3 + 5B2/3 + 2(Bt −B2/3) if t ∈ (2/3, 1]

We make three important observations. First, the paths of the process (It, t ∈ [0, 1])
are continuous, because Brownian paths are. Second the process is a square-integrable

martingale. It is easy to see that it is adapted and square-integrable, because It is a sum
of square-integrable random variables. The martingale property is also not hard to verify.

For example, we have for t ∈ (2/3, 1]:

E[It|F2/3] = 10B1/3 + 5(B2/3 −B1/3) + 2E[Bt −B2/3|F2/3] = I2/3.

since E[Bt −B2/3|F2/3] = 0 by the martingale property of Brownian motion.

We can generalize the integrand or the investing strategy X by considering values Xtj

that depend on the process, hence are random, but predictable in a way. Namely, we

can take X to be a random vector such that Xtj is Ftj measurable. In other words,

Xtj may be random, but it must depend only on the information available up to time tj .
Common sense dictates that the number of shares you buy today should not depend on

the information in the future. With this in mind, for a given filtration, we define the space

of simple (that is, discrete) adapted processes on [0, T ] as:

S(T ) =

(Xt : t ≤ T ) : Xt =

n−1∑
j=0

Ytj 1(tj ,tj+1](t), Ytj is Ftjmeasurable, E[Y
2
tj ] < ∞


(6.3)

In other words, the processes in S(T ) have paths that are piecewise constant on a finite
number of intervals of [0, T ]. The values Ytj (ω) on each time interval might vary de-
pending on the paths ω. As random variables, the Ytj ’s depend only on the information

available upto time tjand have a finite second moment : E[Y
2
tj ] < ∞. Note that, S(T ) is

a linear space. IfX ,X ′ belong to S(T ), then aX+bX ′ ∈ S(T ) for all a, b ∈ R. Indeed,

if the paths of X,X ′ take a finite number of values, then so are the ones of aX + bX ′.

Example 6.2. (An example of a simple adapted process). Let (Bt : t ≤ 1) be a standard
Brownian motion. For the interval [0, 1], consider the investing strategy X in S(1) given
by the position of the Brownian path at times 0, 1/3, 2/3:

Xs =


0 if s ∈ [0, 1/3]

B1/3 if s ∈ (1/3, 2/3]

B2/3 if s ∈ (2/3, 1]
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Clearly, X is simple and adapted to the Brownian filtration. For example, the value at

s = 3/4 is B2/3. In particular, it depends only on the information prior to the time 3/4.

For a simple adapted processX , the integral It ofX with respect to the martingale (Mt :
t ≤ T ) is the same as equation (6.2).
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Simple adapted process Xs

Definition 6.1. Let (Mt : t ≤ T ) be a continuous square-integrable martingale for the fil-

tration (Ft : t ≤ T ). LetX ∈ S(T ) be a simple, adapted processX =
∑n−1

j=0 Ytj 1(tj ,tj+1]

on [0, T ]. The martingale transform It(X) is:

It(X) =

∫ t

0

XsdMs =

n−1∑
j=0

Ytj (Mtj+1 −Mtj )

It defines a process (It : t ≤ T ).

Example 6.3. (Another integral of a simple process). Consider the simple process X of

(6.2) defined on a Brownian motion. The integral of X as a process on [0, 1] is:

Is(X) =


0 if s ∈ [0, 1/3]

B1/3(Bs −B1/3) if s ∈ (1/3, 2/3]

B1/3(B2/3 −B1/3) +B2/3(Bs −B2/3) if s ∈ (2/3, 1]

As in example (6.2), the paths of Is(X) are continuous for all s ∈ [0, 1], since the paths of
Bs are continuous! This is also true at the integer times s = 1/3, 2/3, if we approached
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from the left or right. The process (Is : s ≤ 1) is also a martingale for the Brownian
filtration. The key here is that the value multiplying the increment on the interval (tj , tj+1]
is Ftj−measurable. For example, take t > 2/3 and 1/3 < s < 2/3. The properties of
conditional expectation in (5.1) and the fact that Brownian motion is a martingale give:

E[It|Fs] = E[B1/3(B2/3 −B1/3) +B2/3(Bt −B2/3)|Fs]

= E[B1/3(B2/3 −B1/3)|Fs] + E[B2/3(Bt −B2/3)|Fs]

= B1/3(Bs −B1/3) + E[E[B2/3(Bt −B2/3)|F2/3]|Fs]

= B1/3(Bs −B1/3) + E[B2/3E[Bt −B2/3|F2/3]|Fs]

= B1/3(Bs −B1/3) + E[B2/3(B2/3 −B2/3)|Fs]

= B1/3(Bs −B1/3)

= Is

Note that it was crucial to use the tower property in the third equality and that we took

out what is known at t = 2/3 in the fourth equality.

Martingale transforms are always themselves martingales. In particular, it is not possible

in this setup to design an investment strategy who value would be increasing on average.

Proposition 6.1. Martingale transforms are martingales. Let (Mt : t ≤ T ) be a continuous square-
integrable martingale for the filtration (Ft : t ≤ T ) and let X ∈ S(T ) be a simple process as in

equation (6.3). Then, the martingale transform (It : t ≤ T ) is a continuous martingale on [0, T ] for
the same filtration.

Proof. The fact that It(X) is Ft−measurable for t ≤ T is clear from the construction in

equation (6.2). Indeed, the increments Mtj+1 − Mtj are Ft−measurable for tj+1 ≤ t
since the martingale is adapted. The integrand X is also adapted. Moreover, It(X) is
integrable since:

E[|It|] ≤ E[|IT |] = E

∣∣∣∣∣∣
n−1∑
j=0

Ytj (Mtj+1
−Mtj )

∣∣∣∣∣∣


≤ E

n−1∑
j=0

∣∣Ytj (Mtj+1
−Mtj )

∣∣ =

n−1∑
j=0

E[|Ytj ||(Mtj+1
−Mtj )|]

≤
n−1∑
j=0

(
E[Y 2

tj ]
)1/2 (

E[(Mtj+1
−Mtj )

2]
)1/2

{Cauchy-Schwarz}

Now, since bothMtj andMtj+1
both belong to L2, and L2 is a linear space, their differ-

ence also belongs to L2. Moreover, E[Y 2
tj ] < ∞. Hence, the above sum is finite.
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As for continuity, since (Mt : t ≤ T ) is continuous, the only possible issue could be at
the points tj for some j. But in that case, we have t > tj but close and any outcome ω:

It(ω) =

j−1∑
i=0

Yti(Mti+1(ω)−Mti(ω)) + Yj(Mt(ω)−Mtj (ω)

as t → t+j , It → Itj by continuity ofMt(ω). A similar argument holds for t → t−j . If
both the left- and right- limits exist and are equal to Itj , then It is continuous at tj .

To prove the martingale property, consider s < t. We want to show that E[It|Fs] = Is.
Suppose that t ∈ (tj , tj+1] for some tj < T . By linearity of conditional expectations, we
have:

E[It|Fs] =

j∑
i=0

E[Yti(Mti+1 −Mti)|Fs] (6.4)

where it is understood that t = tj+1 in the above to simplify notation. We can now handle

each summand. There are three possibilities s ≥ ti+1, s ∈ (ti, ti+1) and s < ti. It all
depends on proposition (5.1). In the case s ≥ ti+1, we have:

E[Yti(Mti+1
−Mti)|Fs] = Yti(Mti+1

−Mti)

since the whole summand is Fs−measurable. In the case s ∈ (ti, ti+1), we have that Yti

is Fs−measurable; therefore:

E[Yti(Mti+1
−Mti)|Fs] = YtiE[(Mti+1

−Mti)|Fs] = Yti(Ms −Mti)

by the martingale property. In the case, s < ti, we use the tower property to get:

E[Yti(Mti+1
−Mti)|Fs] = E[E[Yti(Mti+1

−Mti)|Fti ]|Fs]

= E[YtiE[(Mti+1
−Mti)|Fti ]|Fs]

= E[Yti(Mti −Mti)|Fti ]|Fs]

= 0

sinceE[(Mti+1
−Mti)|Fti ] = 0 by the martingale property. Putting all the cases together,

in (6.4) gives for s ∈ (tk, tk+1], say:

E[It|Fs] = Yt0(Mt1 −Mt0) + . . .+ Ytk−1
(Mtk −Mtk−1

) + Ytk(Ms −Mtk) = Is
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Exercise 6.1. Let (Mn : n ∈ N) be a martingale in discrete time for the filtration (Fn :
n ≥ 0). Let τ be a stopping time for the same filtration. Use the Martingale transform
with the process:

Xn(ω) =

{
+1 if n < τ(ω)

0 if n ≥ τ(ω)

to show that the stopped martingale (Mτ∧n, n ∈ N) is a martingale.

Proof. Let n be an arbitrary time. At any given time n, by definition of stopping times, we
know if the event {τ(ω) ≤ n} has occurred. Thus,Xn = 1{τ(ω)≤n} is Fn−measurable.
Also, E[X2

n] ≤ 1. So, Xn is a simple adapted process.

Consider the martingale transform of the process (Xn : n ∈ N) defined above:

I(n) =

n∑
i=1

Xi(Mi+1 −Mi)

We have:

In =

{
Mn if n < τ(ω)

Mτ if n ≥ τ(ω)

That is, In = Mn∧τ . By proposition (6.1), martingale transforms are martingales. So, a

stopped martingale is also a martingale.

6.2 The Ito Integral.

We now turn to martingale transforms where the underlying martingale is a standard Brow-

nian motion (Bt : t ≥ 0). This gives our first definition of the Ito integral.

Definition 6.2. (Ito Integral on S(T )). Let (Bt : t ≤ T ) be a standard brownian motion

on [0, T ] and let X ∈ S(T ) be a simple process X =
∑n−1

j=0 Ytj 1(tj ,tj+1] on [0, T ]
adapted to the Brownian filtration. The Ito integral of X with respect to the Brownian

motion is defined as the martingale transform:

∫ T

0

XsdBs =

n−1∑
j=0

Ytj (Btj+1
−Btj )
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and similarly for any t ≤ T ,

∫ t

0

XsdBs = Yt0(Bt1 −Bt0) + . . .+ Ytj (Bt −Btj ) if t ∈ (tj , tj+1]

Note again the similarities with Riemann sums. The interpretation of the Ito integral is as

follows:

The value of implementing the strategyX on the underlying asset with price given by the Brownian motion.

The martingale transform with Brownian motion has more properties than with a generic

martingale as given in definition (6.1). This is because Brownian motion increments are

independent. We gather the properties of the Ito integral for X ∈ S(T ) in an important
proposition. The same exact result will hold for continuous strategies.

Proposition 6.2. (Properties of the Ito Integral). Let (Bt : t ≤ T ) be a standard Brownian motion
on [0, T ] defined on a probability space (Ω,F ,P). The Ito integral in the definition (6.2) has the

following properties:

• Linearity. If X,X ′ ∈ S(T ) and a, b ∈ R, then for all t ≤ T ,∫ t

0

(aXs + bX ′
s)dBs = a

∫ t

0

XsdBs + b

∫ t

0

X ′
sdBs

• Continuous martingale. The process (
∫ t

0
XsdBs, t ≤ T ) is a continuous mar-

tingale on [0, T ] for a Brownian filtration.

• Ito Isometry. The random variable
∫ t

0
XsdBs is in L

2(Ω,F ,P) with mean 0 and
variance:

E

[(∫ t

0

XsdBs

)2
]
=

∫ t

0

E[X2
s ]ds = E

[∫ t

0

X2
sds

]
, t ≤ T

It is very important for the understanding of the theory to keep in mind that
∫ t

0
XsdBs is a

random variable. We should walk away from the temptation to use the reflexes of classical

calculus to manipulate it as if it were a Riemann Integral. The reason we use the integral

sign to denote the random variable
∫ t

0
XsdBs is because it shares the linearity property

with the Riemann integral.

It turns out that Ito’s isometry not only yields the mean and variance of the random variable∫ t

0
XsdBs, but also the covariances of these random variables at different times, and the

covariances for two integrals built with two different strategies on the same Brownian

motion. What about the distribution of
∫ t

0
XsdBs? It turns out that the random variable∫ t

0
XsdBs is not Gaussian in general. However, if the process X is not random, then it

will be.
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Proof. The linearity property is clear from the definition of the martingale transform. The

continuity and the martingale property follow from proposition (6.1).

We now prove Ito’s isometry. We will use the properties of conditional expectation many

times. To simplify notation, for fixed t ∈ [0, T ], we can suppose that the partition (tj , j ≤
n) is a partition of [0, t] with tn = t. Since Ytj is Ftj -measurable, we have:

E[Ytj (Btj+1
−Btj )] = E[E[Ytj (Btj+1

−Btj )|Ftj ]]

= E[YtjE[Btj+1
−Btj |Ftj ]]

= 0

since E[Ytj (Btj+1
−Btj )] = 0 as Brownian motion is a martingale. Therefore, it follows

that:

E

[∫ t

0

XsdBs

]
=

n−1∑
j=0

E[Ytj (Btj+1
−Btj )] = 0

As for the variance, we have by conditioning on Ftj , that for ti < tj :

E[YtjYti(Btj+1
−Btj )(Bti+1

−Bti)] = E[YtiYtj (Bti+1
−Bti)E[(Btj+1

−Btj )|Ftj ]]

= 0

since E[Btj+1
−Btj |Ftj ] = 0 and since all factors but Btj+1

−Btj are Ftj -measurable.

Thus, this yields:

E

[(∫ t

0

XsdBs

)2
]
=

n−1∑
i,j=0

E[YtjYti(Btj+1
−Btj )(Bti+1

−Bti)]

=

n−1∑
j=0

E[Y 2
tjE[(Btj+1

−Btj )
2|Ftj ]]

by the previous equation and the fact that Ytj is Ftj -measurable. Since the increment

Btj+1 −Btj is independent of Ftj , we have:

E[(Btj+1
−Btj )

2|Ftj ] = E[(Btj+1
−Btj )

2] = tj+1 − tj

Therefore, we conclude that:
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E

[(∫ t

0

XsdBs

)2
]
=

n−1∑
j=0

E[Y 2
tj ](tj+1 − tj)

From the definition of X as a simple process in equation (6.1), we have
∫ t

0
E[X2

s ]ds =∑n−1
j=0 E[Y

2
tj ](tj+1 − tj) since Xs = Ytj on the whole interval (tj , tj+1].

Example 6.4. We go back to the Ito integral in example (6.2). The mean of It(X) is 0
by proposition (6.2) or by direct computation. It is not hard to compute the variance. For

example at t = 1, it is:

E[I21 (X)] =

∫ 1

0

E[X2
u]du

= E[B2
0 ] ·

1

3
+ E[B2

1/3] ·
1

3
+ E[B2

2/3]
1

3
=

1

9
+

2

9
=

1

3

Consider now another process Y on [0, 1] defined on the same Brownian motion:

Yt = B2
01[0,1/3](t) +B2

1/31(1/3,2/3](t) +B2
2/31(2/3,1](t)

Again the Ito integral Jt =
∫ t

0
YsdBs is well-defined as a process on [0, 1]:

Jt =


0 if t ∈ [0, 1/3]

B2
1/3(Bt −B1/3) if t ∈ (1/3, 2/3]

B2
1/3(B2/3 −B1/3) +B2

2/3(Bt −B2/3) if t ∈ (2/3, 1]

The covariance between the random variables I1 and J1 can be computed easily by using
the independence of the increments and suitable conditioning. Indeed, we have:

E[I1(X)J1(Y )] =

3∑
i,j=0

E[Bi/3B
2
j/3(B(i+1)/3 −Bi/3)(B(j+1)/3 −Bj/3)]

If j > i, we can condition on Fj/3 in the above summand to get:

E[Bi/3B
2
j/3(B(i+1)/3 −Bi/3)(B(j+1)/3 −Bj/3)|Fj/3]

=Bi/3B
2
j/3(B(i+1)/3 −B(j+1)/3)E[(B(j+1)/3 −Bj/3)|Fj/3] = 0
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The same holds for i > j by conditioning on Fi/3. The only remaining terms are i = j:

E[I1J1] =

3∑
i=0

E[B3
i/3(B(i+1)/3 −Bi/3)

2]

=

3∑
i=0

E[B3
i/3] · E[(B(i+1)/3 −Bi/2)

2]

by independence of increments. The first factor of each term is zero (due to the nature

of odd moments of a Gaussian centered at 0). Therefore, the variables I1 and J1 are
uncorrelated.

Remark. An isometry is a mapping between metric spaces(that is, with a distance) that ac-

tually preserves the distance between two points. (It literally means the same measure in

Greek.) In case of Ito’s isometry, the mapping is the one that sends the integrand X to

the square-integrable random variable given by the integral:

I : S(T ) → L2(Ω,F ,P)

X 7→
∫ T

0

XsdBs

The L2−norm of
∫ T

0
XsdBs is (E

[∫ T

0
XsdBs

2
]
)1/2 . It turns out that the space S(T )

is also a linear space with the norm ‖X‖S =
(∫ T

0
E[Xs]

2ds
)1/2

. Ito’s isometry says that

these two norms (and hence the distance) are equal. In fact, this isometry extends in part

to the L2−space of functions on Ω × [0, T ], for which S(T ) is a subspace. We will see
that this isometry is central to the extension of the Ito integral in the limit as n → ∞.

The next goal is to extend the Ito integral to processesX other than simple processes. The

integral will be defined as a limit of the integrals of simple processes, much like the Riemann

integral is a limit of the Riemann sums. But first, we need a good class of integrands.

Definition 6.3. For a given Brownian filtration (Ft : t ≤ T ), we consider the class of
processes L2

c(T ) of processes (Xt : t ≤ T ) such that the following hold:

(1) Xt is adapted. That is, Xt is Ft-measurable.

(2) The norm of Xt:

‖X‖2L2
c
=

∫ T

0

E[X2
t ]dt = E

[∫ T

0

X2
t dt

]
< ∞
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(3) (Xt) is almost surely continuous.

It is not hard to check that the processes (Bt : t ≤ T ) and (B2
t : t ≤ T ) are in

L2
c(T ). In fact, if f is a continuous function and

∫ T

0
E[f(Bt)

2]dt < ∞, then the process

(f(Bt) : t ≤ T ) is in L2
c(T ). Indeed, f(Bt) is Ft-measurable, since it is an explicit

function ofBt. Moreover, the second condition is by assumption. The third simply holds

because the composition of continuous functions is continuous. The main advantage of

processes in L2
c(T ) is that they are easily approximated by simple adapted processes.

Lemma 6.1. (Approximation Lemma). Let X ∈ L2
c(T ). Then, there exists a sequence

(X(n)) of simple step adapted processes in S(T ), such that:

lim
n→∞

∫ T

0

E[(X
(n)
t −Xt)

2]dt = 0

Proof. (1) For a given n, consider the partition { jT
2n ,

(j+1)T
2n } and the simple step adapted

process given by :

X
(n)
t =

n∑
j=0

Xtj 1(tj ,tj+1](t)

In other words, we give the constant value Xtj on the whole interval (tj , tj+1]. By con-

tinuity of paths of X , it is clear that X
(n)
t (ω) → Xt(ω) at any t ≤ T and for any ω.

(?) Justification.

For any s ∈ [0, T ], let As be the set of all ω, such that limt→s X(t, ω) = X(s, ω). Then,
P(As) = 1.

Pick an arbitrary ε > 0 and fix a point s ∈ [0, T ]. By definition of continuity, (∃δ > 0)
such that |t− s| < δ implies |Xt −Xs| < ε. By the Archimedean property, there exists
N ∈ N, such that 1

2N
< δ.

Consider (X(n) : n ≥ N). There exists a sequence of dyadic intervals IN ⊆ IN+1 ⊆ . . .
containing the point s. Thus, the process X(n) takes the (random) but constant value

X
(n)
jT
2n

on the interval jT
2n < t ≤ (j+1)T

2n . For all n ≥ N , since l(In) < δ, it follows that

|X jT
2n

−Xs| < ε. But,X(n) takes the valueX jT
2n
over

(
jT
2n ,

(j+1)T
2n

]
. So, for all n ≥ N ,

X
(n)
s = X jT

2n
. Consequently, for all n ≥ N ,

∣∣∣X(n)
s −Xs

∣∣∣ < ε.

This is true for all ω ∈ A. Thus, X
(n)
t

a.s.−−→ Xt.

(2) Assume that (X
(n)
t −Xt) is uniformly bounded. (∃M) (∀ω) s.t. |X(n)

t (ω)−Xt(ω)| ≤
M .
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∥∥∥X(n)
t −Xt

∥∥∥
L2

c

=

∫ T

0

E[(X
(n)
t −Xt)

2]dt

Passing to the limit on both sides, by the dominated convergence theorem:

lim

∥∥∥X(n)
t −Xt

∥∥∥
L2

c

= lim
n→∞

∫ T

0

E[(X
(n)
t −Xt)

2]dt = 0

Lemma 6.2. (Convergence in L2 implies convergence of the first and second moments). Let (Xn :
n ≥ 0) be a sequence of random variables that converge to X in L2(Ω,F ,P).

(a) Show that E[X2
n] converges to E[X

2].

Hint: Write X = (X −Xn) +Xn. The Cauchy Schwarz inequality might be useful.

(b) Show that E[Xn] converges to E[X].

Hint: Write |E[Xn]− E[X]| and use Jensen’s inequality twice.

(a) We are given that limn→∞ E[|Xn −X|2] → 0. Firstly, let c(x) = |x|. Let p ∈ (0, 1).
We have:

c(pa+ (1− p)b) = |pa+ (1− p)b|
≤ p|a|+ (1− p)|b|
= pc(a) + (1− p)c(b)

Hence, |x| is a convex function. Consequently, 0 ≤ |E[X2 − X2
n]| ≤ E[|X2 − X2

n].
Therefore, we can write:

0 ≤ |E[X2 −X2
n]| ≤ E[|X2 −X2

n|]
= E[|((X −Xn) +Xn)

2 −X2
n|]

= E[|(X −Xn)
2 + 2(X −Xn)Xn +X2

n −X2
n|]

≤ E[|X −Xn|2] + 2E[|(X −Xn)(Xn)|]

≤ E[|X −Xn|2] + 2
(
E[|(X −Xn)|2]

)1/2 (
E[|Xn)|2]

)1/2
{Cauchy-Schwarz}

Passing to the limit on both sides as n → ∞, it follows that lim |E[X2
n] − E[X2]| → 0.

Consequently, E[X2
n] → E[X2].
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(b) We have:

0 ≤ |E[Xn]− E[X]| = |E[Xn −X]|
≤ E[|Xn −X|]
{since |x| is a convex function}

≤
(
E[|Xn −X|2]

)1/2
Passing to the limit on both sides, as n → ∞, E[Xn] → E[X].

Lemma 6.3. We prove that the space L2(Ω,F ,P) is complete; that is, if (Xn : n ≥ 1) is a

Cauchy sequence in L2, then there exists X ∈ L2(Ω,F ,P) such that Xn → X in L2.

(a) Argue from the definition of Cauchy sequence that we can find a subsequence (Xnk
: k ≥ 0) such

that ‖Xm −Xnk
‖ ≤ 2−k for all m > nk where ‖·‖ is the L2 norm.

Proof. We are given that (Xn : n ∈ N) is a Cauchy sequence. For a Cauchy sequence,
given any ε > 0, we can find N(ε), such that for allm > n ≥ N(ε), ||Xn −Xm|| < ε.
Let εk = 1

2k
. We can choose nk to be the first n such that,

‖Xn −Xm‖L2 < εk =
1

2k

(b) Consider the candidate limit
∑∞

j=0(Xnj+1 −Xnj ) withXn0 = 0. Show that this sum
converges almost surely (so X is well-defined) by considering

k∑
j=0

E
[∣∣Xnj+1

−Xnj

∣∣]
Proof. Firstly, by Jensen’s inequality, we have (E[|X|])2 ≤ E[|X|2]. So, E[|X|] ≤
E[|X|2] 12 or ‖X‖L1 ≤ ‖X‖L2 .

We have:

k∑
j=0

E
[∣∣Xnj+1

−Xnj

∣∣] ≤ k∑
j=0

E

[∣∣Xnj+1
−Xnj

∣∣2]1/2
= 1 +

1

2
+ . . .+

1

2k

= 2

(
1− 1

2k+1

)
≤ 2

236



Pick an arbitrary ε > 0.

Define Ak(ε) :=
∣∣Xnk+1

−Xnk

∣∣ > 1
2k/3 .

By Chebyshev’s inequality, we have:

P
(∣∣Xnk+1

−Xnk

∣∣ > 1

2k/3

)
= P

(∣∣Xnk+1
−Xnk

∣∣2 >
1

22k/3

)
≤ 22k/3E

[∣∣Xnk+1
−Xnk

∣∣2]
≤ 22k/3 · 1

2k
=

1

2k/3

ByBCL1(Borel-Cantelli Lemma), since
∑

P(Ak) converges, almost surely the eventAk(ε) =∣∣Xnk+1
−Xnk

∣∣ > ε occurs finitely many times. So, there exists K(ε), such that for all

nk ≥ nK , such that
∣∣Xnk+1

−Xnk

∣∣ ≤ ε, P-almost surely. It follows that, (Xnk
) is a

Cauchy sequence, P-almost surely.

(c) Show that ‖X −Xnk
‖L2

→ 0 as k → ∞. Conclude that ‖X‖ < ∞. (This shows

the convergence in L2 along the subsequence!)

Proof. We have:

X −Xnk
= Xnk+1

−Xnk
+Xnk+2

−Xnk+1
+ . . .

=
∑
j>k

(Xnj+1
−Xnj

)

So,

‖X −Xnk
‖L2 =

∥∥∥∥∥∥
∑
j>k

(Xnj+1 −Xnj )

∥∥∥∥∥∥
L2

≤
∑
j>k

∥∥(Xnj+1
−Xnj

)
∥∥
L2

{ Triangle Inequality}

≤ 1

2k
+

1

2k+1
+ . . .

=
1

2k

(
1 +

1

2
+

1

22
+ . . .

)
=

1

2k−1
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Thus, ‖X −Xnk
‖ → 0.

(d) Use again the Cauchy definition and the subsequence to show convergence of the whole

sequence that is, ‖X −Xn‖ → 0.

We have:

‖X −Xn‖ = ‖X −Xnk
+Xnk

−Xn‖
≤ ‖X −Xnk

‖+ ‖Xnk
−Xn‖

{Triangle inequality}

Pick an arbitrary ε > 0. There existsK1(ε) such that,
∥∥X −XnK1

∥∥ < ε/2. There exists

K2(ε) such that for all n > nK2
,
∥∥XnK2

−Xn

∥∥ < ε/2. Pick nK = max{nK1
, nK2

}.
Then, for all n > nK , ‖X −Xn‖ < ε. Consequently, ‖X −Xn‖ → 0.

Theorem 6.1. Let (Bt : t ≤ T ) be a standard Brownian motion on (Ω,F ,P). Let (Xt :

t ≤ T ) be a process in L2
c(T ). There exist random variables

∫ t

0
XsdBs, t ≤ T with the following

properties:

(1) Linearity: If X,Y ∈ L2
c(T ) and a, b ∈ R, then

∫ t

0

(aXs + bYs)dBs = a

∫ t

0

XsdBs + b

∫ t

0

YsdBs, t ≤ T

(2) Continuous Martingale: The process (
∫ t

0
XsdBs, t ≤ T ) is a continuous martingale for the

Brownian filtration.

(3) Ito’s Isometry: The random variable
∫ t

0
XsdBs is in L2(Ω,F ,P) with mean 0 and variance

E

[(∫ t

0

XsdBs

)2
]
=

∫ t

0

E[X2
s ]ds = E

[∫ t

0

X2
sds

]
, t ≤ T

In other words,

‖It(X)‖L2 = ‖X‖L2
c

Proof. Consider the process X = (Xt : t ≤ T ) in L2
c(T ). By the approximation lemma

(6.1), we can approximate X by a sequence of simple adapted processes (X
(n)
t : t ≤ T ).

In particular, that the sequence is Cauchy for the metric
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∥∥∥X(n) −X(m)
∥∥∥
L2

c

=

(∫ t

0

E[(X(n)
s −X(m)

s )2]dt

)1/2

(6.5)

The key step is the following. We know that the integral I(n) =
∫ t

0
X

(n)
s dBs is well de-

fined as a random variable in L2(Ω,F ,P). Moreover, we know from Ito Isometry, that

the L2−distance of the processes in equation (6.5) is the same as the L2 distance of the

I(n)(X)’s. Since (X(n)) is Cauchy in L2
c , it means that the sequence (I

(n), n ∈ N) is
Cauchy in L2. By Cauchy completeness property, I(n) converges in L2 to a random vari-

able that we denote by It or
∫ t

0
XsdBs. Furthermore, the limit It does not depend on the

approximating sequence (X(n)). We could have taken any other sequence to approximate
X and Ito isometry guarantees, that the corresponding integrals will converge to the same

random variable.

We now prove the properties.

(1) Linearity. It follows by using linearity propery in proposition (6.2) forX(n) and Y (n),

the two sequences of approximating processes of X and Y that:

I(aX(n) + bY (n)) = aI(X(n)) + bI(Y (n))

lim
n→∞

I(aX(n) + bY (n)) = a lim
n→∞

I(X(n)) + b lim
n→∞

I(Y (n))

I(aX + bY ) = aI(X) + bI(Y )

(2) Isometry. We refer lemma (6.2). The variance property now follows from the following

fact: If I
(n)
t → It in L

2, then E[
(
I
(n)
t

)2
] → E[I2t ] and E[I

(n)
t ] → E[It].

(3) Continuous Martingale. Write It =
∫ t

0
XsdBs. We must show that E[It|Fs] = Is

for any t > s. To see this, we go back to the definition of conditional expectations. The
random variable It must be Ft measurable by construction. Now, for a bounded random

variableW that is Fs-measurable, we need to show that:

E[WIt] = E[WIs]

This is clear for I
(n)
t , the approximating integrals, because (I

(n)
t , t ≤ T ) is a martingale.

The above then follows from the fact that WI
(n)
s converges to WIs in L2 (and thus

the expectation converges) and the same way for t. The fact that the path t → It(ω) is
continuous with probability one is a bit more involved. It uses Doob’s maximal inequality.

Example 6.5. (Sampling Ito Integrals) How can we sample paths of processes given by

Ito integrals? A very simple method is to go back to the integral on simple processes.
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Consider the process It =
∫ t

0
XsdBs, t ≤ T constructed from X ∈ L2

c(T ) and from a

standard brownian motion (Bt, t ≥ 0). To simulate paths, we fix the endpoint, say T and
a step-size 1/n. Then, we can generate the process at every tj =

jT
n by taking

Itj =

j−1∑
i=0

Xti(Bti+1
−Bti), j ≤ n

Here are two observations that makes this expression more palatable. First note that the

incrementBti+1
−Bti is a Gaussian random variable of mean 0 and variance

T
n for every

i. Second, we have Itj −Itj−1
= Xtj−1

(Btj −Btj−1
), so the values Itj can be computed

recursively.

Once the conclusions of theorem (6.1) are accepted, we are free to explore the beauty and

the power of Ito Calculus. As a first step, we observe that with Ito’s isometry, we can

compute not only variances, but also covariances between integrals. This is because an

isometry also preserves the inner product in L2 spaces.

Example 6.6. Increments of martingales are uncorrelated.

(a) Let (Mt : t ≥ 0) be a square integrable martingale for the filtration (Ft : t ≥ 0). Use
the properties of conditional expectation to show that for t1 ≤ t2 ≤ t3 ≤ t4, we have:

E[(Mt2 −Mt1)(Mt4 −Mt3)] = 0

(b) Let (Bt : t ≥ 0) be a standard brownian motion, and let (Xt : t ≤ T ) be a process in
L2
c(T ). Use part(a) to show that the covariance between integrals at different times t < t′

is:

E

[(∫ t

0

XsdBs

)(∫ t′

0

XsdBs

)]
=

∫ t∧t′

0

E[X2
s ]ds, t, t ≤ T

Solution.

(a) We have:

E [(Mt2 −Mt1)(Mt4 −Mt3)] = E [(Mt2 −Mt1)E[(Mt4 −Mt3)|Ft3 ]]

= E [(Mt2 −Mt1)(Mt3 −Mt3)|Ft3 ]]

= 0

(b) Let (Xt : t ≤ T ) be a process in L2
c(T ). We know that (Xt : t ≤ T ) can be

approximated by a simple process (X
(n)
t : t ≤ T ). Assume that t < t′. Now,
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E[I
(n)
t I

(n)
t′ ] =

p−1∑
j=0

q−1∑
k=0

E

[
Y

(n)
tj Y

(n)
tk

(Btj+1 −Btj )(Btk+1
−Btk)

]

=

p−1∑
j=0

q−1∑
k=0

E[Y
(n)
tj Y

(n)
tk

]E
[
(Btj+1

−Btj )(Btk+1
−Btk)

]
Since (Bt : t ≤ T ) is a martingale, non-overlapping increments are independent. So, we
are left with:

E[I
(n)
t I

(n)
t′ ] =

p−1∑
j=0

E

[(
Y

(n)
tj

)2]
E[(Btj+1

−Btj )
2]

=

p−1∑
j=0

E

[(
Y

(n)
tj

)2]
(tj+1 − tj)

=

∫ t

0

E

[(
X(n)

s

)2]
ds

By Ito-Isometry,
∥∥X(n)

∥∥
L2

c
=
∥∥I(n)∥∥

L2 . Thus,

E[I
(n)
t I

(n)
t′ ] =

∫ t∧t′

0

E

[(
X(n)

s

)2]
ds = E

(∫ t∧t′

0

X(n)
s dBs

)2
 = E

[(
I
(n)
t∧t′

)2]

But, I
(n)
t∧t′ is a random variable in L2 and the terms (I(n) : n ∈ N) form a Cauchy

sequence in L2 and converge to the Ito integral It∧t′ . It follows that:

E[ItIt′ ] = E[I2t∧t′ ]

That is:

E

[(∫ t

0

XsdBs

)(∫ t′

0

XsdBs

)]
=

∫ t∧t′

0

E[X2
s ]ds, t, t ≤ T

Corollary 6.1. Let (Bt : t ≤ T ) be a standard brownian motion, and let X ∈ L2
c(T ). We have:

E [ItIt′ ] = E

[(∫ t

0

XsdBs

)(∫ t′

0

XsdBs

)]
=

∫ t∧t′

0

E[X2
s ]ds, t, t ≤ T
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for any Y ∈ L2
c(T ), and

E

[(∫ t

0

XsdBs

)(∫ t

0

YsdBs

)]
=

∫ t

0

E[XsYs]ds, t ≤ T

Note that, when X is just a constant 1, we recover from the first equation the covariance of the Brownian

motion.

Proof. We just proved assertion (1) in the example (6.6). As for the second, we have on

one hand by Ito’s isometry:

E

[(∫ t

0

{Xs + Ys}dBs

)2
]
=

∫ t

0

E[(Xs + Ys)
2]ds

=

∫ t

0

E[X2
s ]ds+

∫ t

0

E[Y 2
s ]ds+ 2

∫ t

0

E[XsYs]ds

On the other hand, by linearity of Ito integral and of the expectation, we have:

E

[(∫ t

0

{Xs + Ys}dBs

)2
]
= E

[(∫ t

0

XsdBs +

∫
YsdBs

)2
]

= E

[(∫ t

0

XsdBs

)2
]
+ E

[(∫ t

0

YsdBs

)2
]

+ 2E

[(∫ t

0

XsdBs

)(∫ t

0

YsdBs

)]
By Ito’s Isometry, ‖Is(X)‖L2 = ‖X‖L2

c
and ‖Is(Y )‖L2 = ‖Y ‖L2

c
. Hence, by equating

the above two expressions, we conclude that:

E

[(∫ t

0

XsdBs

)(∫ t

0

YsdBs

)]
=

∫ t

0

E[XsYs]ds

Thus, Ito isometry also preserves inner products. 〈It(X), It(Y )〉L2 = 〈Xt, Yt〉L2
c
.

Example 6.7. Consider the processes (Bt : t ≤ T ) and (B2
t : t ≤ T ) for a given

standard Brownian motion. Note that these two processes are in L2
c(T ) for any T > 0.

By the existence theorem (6.1), the random variables

It =

∫ t

0

BsdBs, Jt =

∫ t

0

B2
sdBs
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exist and are in L2(Ω,F ,P). Their mean is 0 and they have variances

E[I2t ] =

∫ t

0

E[B2
s ]ds =

∫ t

0

sds =
t2

2

and

E[J2
t ] =

∫ t

0

E[B4
s ]ds =

∫ t

0

3s2ds = t3

The covariance by corollary (6.1) is :

E[ItJt] =

∫ t

0

E[B3
s ]ds = 0

The variables are uncorrelated.

Example 6.8. (A path-dependent integral) Consider the process Xt =
∫ t

0
BsdBs on

[0, T ] as in example (6.7). Note that the process (Xt : t ≤ T ) is itself in L2
c(T ). In

particular, the integral
∫ t

0
XsdBs is well-defined! (Note that the integrandXt isFt−mea-

surable but its value depends on the whole Brownian motion upto time t). The mean of
the integral is 0 and its variance is obtained by applying Ito’s isometry twice:

E

[(∫ t

0

XsdBs

)2
]
=

∫ t

0

E[X2
s ]ds

=

∫ t

0

(∫ s

0

E[B2
s ]ds

)
ds

=

∫ t

0

(∫ s

0

sds

)
ds

=

∫ t

0

(s2/2)ds

=
t3

6

In general, the Ito integral is not Gaussian. However, if the integrand X is not random,

the process is actually Gaussian. In this particular case, the integral is sometimes called the

Wiener Integral.
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Corollary 6.2. (Wiener Integral.) Let (Bt : t ≤ T ) be a standard Brownian motion and let

f : [0, T ] → R be a function such that
∫ T

0
f2(s)ds < ∞. Then, the process (It(f) : t ≤ T ) =

(
∫ t

0
f(s)dBs : t ≤ T ) is Gaussian with mean 0 and covariance:

Cov

(∫ t

0

f(s)dBs,

∫ t′

0

f(s)dBs

)
=

∫ t∧t′

0

f(s)2ds

Proof. We prove the case when f is continuous. In this case, we can use the proof of the
approximation Lemma (6.1). Let (tj : j ≤ 2n) be a partition of 2n intervals. The lemma
shows that the sequence of functions:

f (n)(t) =

2n−1∑
j=0

f(tj)1(tj ,tj+1](t), t ≤ T

approximates f . The Ito integral of f (n) is:

I
(n)
t =

2n−1∑
i=0

f(tj)(Btj+1
−Btj ), t ∈ (tj , tj+1]

This is a Gaussian process for any n. This is because for any choice of times s1, . . . , sm,

the vector (I
(n)
s1 , I

(n)
s2 , . . . , I

(n)
sm ) is Gaussian, since it reduces to linear combinations of

Brownian motion at fixed times. Moreover, the random variable
∫ t

0
f(s)dBs is the L

2

limit of I
(n)
t by existence theorem (6.1). It remains to show that anL2−limit of a sequence

of Gaussian vectors is Gaussian. This is sketched in the example below. The expression

for covariances follows from the collary on covariance of Ito integrals (6.1).

Exercise 6.2. L2−limit of Gaussians is Gaussian. Let (Xn : n ≥ 0) be a sequence of
Gaussian random variables that converge to X in L2(Ω,F ,P).

(a)Show that X is also Gaussian.

Hint: Use the characteristic function of a Gaussian random variable. Use also the fact that there is a

subsequence that converges almost surely.

(b) Find its mean and variance in terms of X .

Solution.

(a) The characteristic function of a random variable X is:

φX(t) = E[eitX ]
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Example 6.9. (Ornstein-Uhlenbeck process as an Ito Integral). Consider the function

f(s) = es. The Ornstein-Uhlenbeck process starting at X0 can also be written as:

Yt = e−t

∫ t

0

esdBs, t ≥ 0

To see this mathematically, not that (Yt : t ≥ 0) is a Gaussian process by corollary (6.2).
The mean is 0 and the covariance by corollary (6.1) is:

E[YtYs] = e−t · e−s

∫ s

0

e2udu = e−t−s ·
[
e2u

2

]s
0

= e−t−s ·
(
e2s

2
− 1

2

)
=

1

2
(e−(t−s) − e−(t+s)), s ≤ t

In this case, the process is stationary in the sense that (Yt : t ≥ 0) has the same distribution
as (Yt+a : t ≥ 0) for any a ≥ 0.

Exercise 6.3. Another application of Doob’s maximal inequality. Let (Bt : t ∈
[0, 1]) be a Brownian motion defined on (Ω,F ,P). The Brownian bridge (Zt : t ∈ [0, 1])
is the stochastic process with the distribution defined in example (3.18). Another way to

construct a Brownian bridge is as follows:

Zt = (1− t)

∫ t

0

1

1− s
dBs, t < 1

In this exercise, we prove that limt→1 Zt = 0 almost surely as expected.

(a) Show that limt→1 Zt = 0 in L2(Ω,F ,P).
Solution.

By Ito Isometry,

E[Z2
t ] = (1− t)2

∫ t

0

1

(1− s)2
ds

= (1− t)2
[

1

(1− s)

]t
0

= (1− t)2
(

1

1− t
− 1

)
= (1− t)2

(
t

(1− t)

)
= t(1− t)
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Thus, limt→1 E[Z
2
t ] = 0. Hence, limt→1 Zt

L2

→ 0.

(b) Using the Doob’s maximal inequality of example (5.28) show that:

P

 max
t∈

[
1− 1

2n ,1− 1

2n+1

] |Zt| > δ

 <
1

δ2
1

2n−1

Solution.

Pick an arbitrary δ > 0. Let An(δ) be the event that Zt exceeds δ in the interval[
1− 1

2n , 1−
1

2n+1

]
. ByDoob’smaximal inequality, the probability of this event is bounded

by:

P (An(δ)) ≤
1

δ2
E[Z2

1− 1

2n+1
]

=
1

δ2

(
1− 1

2n+1

)
1

2n+1

≤ 1

δ2
· 1

2n+1

≤ 1

δ2
· 1

2n−1

(c) Deduce that limt→1 Zt = 0 almost surely using Borel-Cantelli Lemma.

Solution.

Consider the infinite series
∑∞

n=1 P(An(δ)). We have:

∞∑
n=1

P(An(δ)) ≤
1

δ2

∞∑
n=1

1

2n−1

=
2

δ2

Since
∑∞

n=1 P(An(δ)) < ∞, by BCL1(Borel-Cantelli Lemma 1), the event An(δ) oc-
curs finitely many times, almost surely. There exists n0 ∈ N, such that for all n ≥ n0,

max
t∈

[
1− 1

2n ,1− 1

2n+1

] |Zt| ≤ δ with probability 1. But, limn→∞max
t∈

[
1− 1

2n ,1− 1

2n+1

] |Zt| =

Z1. Consequently, (∀δ > 0), P(Z1 ≤ δ) = 1.

Example 6.10. (Brownian bridge as an Ito Integral) We know that another way to con-

struct a Brownian bridge process is as follows:

Zt = (1− t)

∫ t

0

1

1− s
dBs

246



We know that limt→1 Zt = 0 almost surely. The process Z is a Gaussian process by

corollary (6.2). The mean is zero and the covariance is, by corollary (6.1) is given by:

E[ZtZs] = (1− s)(1− t)

∫ s

0

1

(1− s)2
dBs

= (1− s)(1− t)

[
1

(1− s)

]s
0

= (1− s)(1− t)

(
1

1− s
− 1

)
= (1− s)(1− t)

(
s

1− s

)
= s(1− t)

The above representations of the Ornstein-Uhlenbeck process and the brownian bridge

implies that they are not martingales.

6.3 Ito’s Formula.

The Ito integral was constructed in the last section in a rather abstract way. It is the limit of

a sequence of random variables constructed from Brownian motion. It is good to remind

ourselves that the classical Riemann integral is also very abstract! It is defined as the limit

of the sequence of Riemann sums. It does not always have an explicit form. For example,

the CDF of a Gaussian random variable

Φ(x) =
1√
2π

∫ x

−∞
e(−y2/2)dy

is a well-defined function of x, but the integral cannot be expressed in terms of the typical
elementary functions of calculus. But, in some cases a Riemann integral can be written

explicitly in terms of such functions. This is the content of the fundamental theorem of

calculus. It is useful to recall the theorem, as Ito’s formula is built upon it.

Let f : [0, T ] → R be a function for which the derivative f ′ exists and is a continuous

function on [0, T ]. We will say that such a function is in C1([0, T ]). The fundamental
theorem of calculus says that we can write:

f(t)− f(0) =

∫ t

0

f ′(s)ds, t ≤ T (6.6)

Note that, we often write this result in the differentnial form:
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df(t) = f ′(t)dt

The differential form has no rigorous meaning in itself. It is simply a compact and conve-

nient notation that encodes FTC (6.6).

The stochastic equivalent of the fundamental theorem of calculus is the Ito’s formula pro-

vided below. It related the Ito integral to an explicit function of Brownian motion. Note

that the function f must be in C2(R), that is, f ′ and f ′′ exist and are continuous on the

whole space R.

Theorem 6.2. (Ito’s Formula) Let (Bt : t ≤ T ) be a standard Brownian motion. Consider

f ∈ C2(R). Then, with probability one, we have:

f(Bt)− f(B0) =

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds, t ≤ T (6.7)

We will see other variations in proposition and later sections. Before giving an idea of the proof, we make

some important observations:

Remark. (1) Equation (6.7) is an equality of processes, which is much stronger than equality

in distribution. In other words, if you take a path of the process on the left constructed

on a given Brownian motion, then this path will be the same as the path of the on the

right constructed on the same Brownian motion. This equality holds in the limit where the

mesh of the partition of the interval [0, T ] goes to 0.

(2) Note the similarity with the classical formulation in (6.6), if we replace the Riemann

integral by Ito’s integral. We do have the additional integral of f ′′(Bs). As we will see
in the proof, this additional term comes from the quadratic term in the Taylor’s approx-

imation and from the quadratic variation of Brownian motion seen in theorem (4.5). As

in the classical case, it is very convenient to summarize the conclusion of Ito’s formula in

differential form:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt (6.8)

We stress that the differential form has no meaning by itself. It is a compact way to express

the two integrals in Ito’s formula and a powerful device for computations.

(3) An important consequence of Ito’s formula is that it provides a systematic way to con-

structmartingales as explicit functions of Brownianmotion. Tomake sure that,
∫ t

0
f ′(Bs)dBs, t ≤

T defines a continuous square integrable martingale on [0, T ], we might need to check that
(f ′(Bt), t ≤ T ) ∈ L2

c(T ). In general, the Ito integral makes sense as a local martingale.
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Corollary 6.3. (BrownianMartingales). Let (Bt : t ≤ T ) be a standard brownian motion. Consider

f ∈ C2(R) such that
∫ T

0
E[f ′(Bs)

2]ds < ∞. Then the process:

(
f(Bt)−

1

2

∫ t

0

f ′′(Bs)ds, t ≤ T

)
is a martingale for the Brownian motion.

Proof. This is straightforward from the Ito’s formula:

f(Bt)−
1

2

∫ t

0

f ′′(Bs)ds = f(B0) +

∫ t

0

f ′(Bs)dBs

The first term is a constant and the second term is a continuous martingale by proposition

6.1.

The integral we subtracted from f(Bt) is called the compensator. A simple case is given by
the function f(x) = x2. For this function the corollary gives that the processB2

t−t, t ≥ 0
is a martingale, as we already observed. The compensator was then simply t. In general, a
compensator might be random.

(4) The compensator is the Riemann integral
∫ t

0
f ′′(Bs)ds. It might seem to be a strange

object at first. The function f ′′(Bs) is random (it depends on ω), so the integral is a
random variable. There is no problem in integrating the random function f ′′(Bs) since
by assumption it is a continuous function of s, since f ′′ and Bs(ω) are continuous. In

fact, the paths of
∫ t

0
f ′′(Bs)ds are much smoother than the ones of Brownian motion in

general: the paths are differentiable everywhere (the derivative is f ′′(Bt)) and in particular
the paths have bounded variation.

To sum it up, Ito’s formula says that f(Bt) can be expressed as a sum of two processes:

one with bounded variation (the Riemann integral) and a (local) martingale with finite

quadratic variation (the Ito integral). In the next section, we study Ito processes in more

generality, which are processes that can be expressed as a sum of a Riemann integral and

an Ito integral.

Example 6.11. Let

f(x) = x3

In this case, Ito’s formula yields:

B3
t =

∫ t

0

3B2
sdBs +

1

2

∫ t

0

6Bsds

= 3

∫ t

0

B2
sdBs + 3

∫ t

0

Bsds
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We can look at a sample of a single path of each of these processes constructed from

the same Brownian motion. Note that they are almost equal (the discrepancy is only due

to discretization in the numerics)! From the above equation, we conclude that B3
t −

3
∫ t

0
Bsds is a martingale. See the figure below for a sample of its paths. The process

(
∫ t

0
Bsds, t ≥ 0) is not complicated. It is a Gaussian process since the integral is the

limit (almost sure and L2) of the Riemann sums :

n−1∑
j=0

Btj (tj+1 − tj)

and each term of the sum is a Gaussian random variable. Clearly, the mean of
∫ t

0
Bsds is

0. The covariance of the process can be calculated directly by interchanging the integrals
and the expectation:

E

[(∫ t

0

BsdBs

)(∫ t′

0

BsdBs

)]
=

∫ t

0

∫ t′

0

E[BsBu]dsdu =

∫ t

0

∫ t′

0

(s ∧ u)dsdu

Here the domain of integration is D = [0, t] × [0, t′]. Assume that t < t′. We can
divide the domain into two sub-domains D1 = {(x, y) : 0 ≤ x ≤ t, 0 ≤ y ≤ x} and
D2 = {(x, y) : 0 ≤ x ≤ t, x ≤ y ≤ t′}. Consequently, we can evaluate the above
double integral as:

I =

∫ t

0

∫ t′

0

min(x, y)dxdy

=

∫ t

0

∫ x

0

ydydx+

∫ t

0

∫ t′

x

xdydx

=

∫ t

0

[
y2

2

]x
0

dx+

∫ t

0

x [y]
t′

x dx

=

∫ t

0

x2

2
dx+

∫ t

0

x(t′ − x)dx

=

[
x3

6

]t
0

+ t′
[
x2

2

]t
0

−
[
x3

3

]t
0

=
t3

6
+

t′t2

2
− t3

3

= − t3

6
+

t′t2

2

In particular the variance at time t3/3. The paths of this process are very smooth, as can
be observed in the figure below. In fact, the paths are differentiable and the derivative at

time t is Bt.
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Example 6.12. Let

f(x) = cosx

In this case, the Ito’s formula gives:

cosBt − cosB0 =

∫ t

0

− sin(Bs)dBs +
1

2

∫ t

0

(− cos(Bs)ds

In particular, the process

Mt = cosBt +
1

2

∫ t

0

cosBsdBs = 1−
∫ t

0

sinBsds, t ≥ 0

is a continuous martingale starting at M0 = 1. It is easy to check that the process
(sinBt, t ≤ T ) is in L2

c(T ) for any T . sinBt is Ft−measurable since it is a function
of Bt. Moreover, Also, sin(x) is continuous, and the composition of continuous func-
tions is continuous.

Where does Ito’s formula come from? It is the same idea as for the proof of the Funda-

mental Theorem of Calculus(FTC). Let’s start with the latter. Suppose f ∈ C1(R); that is:
f is differentiable with a continuous derivative. Then, f admits a Taylor approximation
around s of the form:

f(t)− f(s) = f ′(s)(t− s) + E(s, t) (6.9)

(This is in spirit of the mean value theorem) Here, E(s, t) is an error term that goes to 0
faster than (t − s) as s → t (for example (t − s)2). Now, for a partition (tj , j ≤ n) of
[0, t], say tj =

jt
n , we can trivially write for any n:

f(t)− f(0) =

n∑
j=0

f(tj+1)− f(tj)

Now, we can use the equation (6.9) at s = tj :

f(tj+1)− f(tj) = f ′(tj)(tj+1 − tj) + E(tj , tj+1)
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Therefore, we have by taking the limit of large n:

f(t)− f(0) = lim
n→∞

n∑
j=0

f ′(tj)(tj+1 − tj) +
n∑

j=0

E(tj , tj+1) =

∫ t

0

f ′(s)ds+ 0

The idea for Ito’s formula is similar to the above with two big differences : first we will

consider a function of space and time. Second, we shall need a Taylor approximation to the

second order around a point x: if f ∈ C2(R) we have:

f(y)− f(x) = (y − x)f ′(x) +
1

2
(y − x)2f ′′(x) + E(x, y) (6.10)

where E(x, y) is the error term that converges to 0 faster than (x− y)2 as y → x.

Proof. Recall that by assumption f ∈ C2(R). We will prove the particular case, where f
is 0 outside a bounded interval. This implies that both the derivatives are bounded, since
by the preservation of the compact set theorem, continuous functions preserve compact

sets. We first prove the formula for a fixed t. Then, we generalize to processes on [0, T ].
Consider a partition (tj : j ≤ n) of [0, t]. From the Taylor’s series expansion above:

f(Bt)− f(B0) =

n−1∑
j=0

f ′(Btj )(Btj+1 −Btj ) +
1

2

n−1∑
j=0

f ′′(Btj )(Btj+1 −Btj )
2 +

n∑
j=0

E(Btj , Btj+1)

(6.11)

As n → ∞, the first term converges (as a random variable in L2) to the Ito integral. This

is how we proved proposition (6.1) using simple processes. We claim that the second term

converges to the Riemann integral. To see this, consider the corresponding Riemann sum

:

n−1∑
j=0

f ′′(Btj )(tj+1 − tj)

This term converges almost surely to the Riemann integral
∫ t

0
f ′′(Bs)ds since f

′′ is con-

tinuous. It also converges inL2 by theorem by the dominated convergence theorem, since

f ′′(·) is bounded by assumption. Therefore, to show that the second term converges to

the same limit, it suffices to show that the L2-distance between the second term and the

Riemann sum goes to 0. That is,

lim
n→∞

E


n−1∑

j=0

f ′′(Btj )
{(

Btj+1
−Btj

)2 − (tj+1 − tj)
}2

 (6.12)
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This is in the same spirit as the proof of the quadratic variation of the Brownian motion

in theorem (4.5). To lighten the notation, define the variables :

Xj := (Btj+1
−Btj )

2 − (tj+1 − tj), j ≤ n− 1

We expand the square in (6.12) to get:

n−1∑
j=0

n−1∑
k=0

E
[
f ′′(Btj )f

′′(Btk)XjXk

]
For j < k, we condition on Ftk to get :

n−1∑
j=0

n−1∑
k=0

E
[
f ′′(Btj )f

′′(Btk)XjXk

]
= 2

n−1∑
j<k

E
[
E
[
f ′′(Btj )f

′′(Btk)XjXk

∣∣Ftk

]]
+

n−1∑
j=0

E

[(
f ′′(Btj )

)2
X2

j

]

The first term on the right hand can be expressed as :

2
n−1∑
j<k

E
[
E
[
f ′′(Btj )f

′′(Btk)XjXk

∣∣Ftk

]]
= 2

n−1∑
j<k

E
[
f ′′(Btj )f

′′(Btk)XjE [Xk| Ftk ]
]

{Taking out what is known}

The random variable E [Xk| Ftk ] turns out to be:

E [Xk| Ftk ] = E
[
(Btk+1

−Btk)
2
]
− (tk+1 − tk)

{∵ Btk+1
−Btk is independent of Ftk}

= (tk+1 − tk)− (tk+1 − tk)

= 0

So, the entire summand of the first term equals 0, and we are left with:

253



n−1∑
j=0

E

[(
f ′′(Btj )

)2
X2

j

]

=

n−1∑
j=0

E

[(
f ′′(Btj )

)2 {(
Btj+1

−Btj

)2 − (tj+1 − tj)
}2
]

=

n−1∑
j=0

E

[(
f ′′(Btj )

)2 {(
Btj+1

−Btj

)4 − 2
(
Btj+1

−Btj

)2
(tj+1 − tj) + (tj+1 − tj)

2
}]

=

n−1∑
j=0

E

[
E

[(
f ′′(Btj )

)2 {(
Btj+1

−Btj

)4 − 2
(
Btj+1

−Btj

)2
(tj+1 − tj) + (tj+1 − tj)

2
}∣∣∣Ftj

]]
{Conditioning on Ftj}

=

n−1∑
j=0

E

[(
f ′′(Btj )

)2
E

[{(
Btj+1

−Btj

)4 − 2
(
Btj+1

−Btj

)2
(tj+1 − tj) + (tj+1 − tj)

2
}∣∣∣Ftj

]]
{ Taking out what is known }

=

n−1∑
j=0

E

[(
f ′′(Btj )

)2
E

[{(
Btj+1

−Btj

)4 − 2
(
Btj+1

−Btj

)2
(tj+1 − tj) + (tj+1 − tj)

2
}]]

{ Independence }

=

n−1∑
j=0

E

[(
f ′′(Btj )

)2 (
3(tj+1 − tj)

2 − 2(tj+1 − tj)
2 + (tj+1 − tj)

2
)]

=2

n−1∑
j=0

E

[(
f ′′(Btj )

)2]
(tj+1 − tj)

2

Since f ′′(x) is bounded, the last result approaches 0, as the mesh size becomes finer and
finer and n → ∞. It remains to handle the error term in (6.11). This follows the same

idea as for the second term and we omit it.

To extend the formula to the whole interval [0, T ], notice that the processes of both sides
of the equation (6.7) have continuous paths. Since they are equal with probability one at

any fixed time by the above argument, they must be equal for any countable set of times. It

suffices to consider the processes on the rational times in [0, T ], which are dense in [0, T ].
Since the paths are continuous and they are equal on these times, they must be equal at all

times on [0, T ].

Recall from equation (6.8), that Ito’s formula can be written in the differential form:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt
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This notation has no meaning by itself. It is a compact way to write (6.7). This allows

us to derive an easy and useful computational formula: if we blindly apply the classical

differential to f to second order in the Taylor expansion, we formally obtain:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)(dBt)

2 (6.13)

Therefore, Ito’s formula is equivalent to applying the rule dt = dBt · dBt. In fact, it is

counterproductive to learn Ito’s formula by heart. It is much better to simply compute the

differential upto the second order and apply the following simple rules of Ito calculus:

· dt dBt

dt 0 0
dBt 0 dt

It is not hard to extend Ito’s formula to a function f(t, x) of both time and space:

f : [0, T ]× R 7→ R

(t, x) 7→ f(t, x)

Such functions have partial derivatives that are themselves functions of time and space.

We will use the following notation for the partial derivatives:

∂tf(t, x) =
∂f

∂t
(t, x), ∂xf(t, x) =

∂f

∂x
(t, x), ∂xx(t, x) =

∂2f

∂x2
f(t, x)

The reason for this notation is to avoid confusion between the variable that is being differ-

entiated and the value of time and space at which the derivative is being evaluated. It might

appear strange at first, but it will avoid confusion down the road (especially when dealing

with several space variables in a later section). To apply Ito’s formula, we will need that

the partial derivative with respect to time ∂tf exists and is continuous as a function on
[0, T ] × R and that the first and second partial derivatives in space ∂xf and ∂xxf ex-
ist and are continuous. We say that such a function f is in C1,2[0, T ] × R. Then, with

probability 1, we have for every t ∈ [0, T ]:

Proposition 6.3. (Ito’s formula) Let (Bt : t ≤ T ) be a standard brownian motion on [0, T ].
Consider a function f of time and space with f ∈ C1,2([0,T]×R). Then, with probability one, we have
for every t ∈ [0, T ],

f(t, Bt)− f(0, B0) =

∫ t

0

∂xf(s,Bs)dBs +

∫ t

0

{
∂tf(s,Bs) +

1

2
∂xxf(s,Bs)

}
ds

or in differential form we have:

df(t, Bt) = ∂xf(t, Bt)dBt +

(
∂tf(t, Bt) +

1

2
∂xxf(t, Bt)

)
dt
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Proof. The idea of the proof is similar as for a function of space only, as it depends on a

Taylor’s approximation and on the quadratic variation. Here, however, we need to apply

Taylor’s approximiation to second order in space and to the first order in time. We then

get something of the form:

f(t, Bt)− f(0, B0) =

n−1∑
j=0

∂xf(tj , Btj )(Btj+1 −Btj ) + ∂tf(tj , Btj )(tj+1 − tj)

+
1

2
∂xxf(tj , Btj )(Btj+1 −Btj )

2

+ ∂t∂xf(tj , Btj )(Btj+1
−Btj )(tj+1 − tj) + E

The first two lines becomes the integrals in the Ito’s formula. We see a new animal on the

last line: the mixed derivative ∂t∂xf . This term is related to the limit in the cross variation
between Bt and t given by:

lim
n→∞

n−1∑
j=0

(Btj+1
−Btj )(tj+1 − tj)

It can be shown that it goes to 0 in a suitable sense.

Let (tj : j ≤ n) be a sequence of partitions on [0, t]. We have:

E


n−1∑

j=0

(tj+1 − tj)(Btj+1 −Btj )

2
 ≤ ‖∆n‖2 E


n−1∑

j=0

(Btj+1 −Btj )

2


= ‖∆n‖2
n−1∑
j=0

E
[
(Bt+1 −Btj )

2
]

+ 2 ‖∆n‖2
∑
j<k

E
[
(Bt+1 −Btj )(Btk+1

−Btk)
]

Since E[(Btj+1 − Btj )(Btk+1
− Btk)] = 0 and E[(Btj+1 − Btj )

2] = (tj+1 − tj), we

find that the above variance is ‖∆n‖2 · t. As n → ∞, ‖∆n‖2 → 0. Consequently, the
cross-variation approaches 0 in the mean square sense.

This justifies the rule dt · dBt = 0. We can also justify the rule dt · dt = 0.

n−1∑
j=0

(tj+1 − tj)
2 ≤ ‖∆n‖

n−1∑
j=0

(tj+1 − tj)

= ‖∆n‖ · t
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As n → ∞, ‖∆n‖ → 0, and we get the desired result.

Once these facts are known, the rest of the proof is done similarly to the one for the

function of space only. We do notice though that the formula is easy to derive once we

accept the rules of Ito calculus. By writing the differential to second order in space, and to

first order in time and applying the rules of Ito calculus, we get:

df(t, Bt) = ∂xf(t, Bt)dBt +

{
∂tf(t, Bt) +

1

2
∂xxf(t, Bt)

}
dt

As in the one variable case, we get a corollary to construct Martingales:

Corollary 6.4. (Brownian Martingales) Let (Bt : t ≤ T ) be a standard Brownian motion. Consider
f ∈ C1,2([0, T ]× R) such that the process (∂xf(t, Bt) : t ≤ T ) ∈ L2

c(T ). Then, the process(
f(t, Bt)−

∫ t

0

{
∂sf(s,Bs) +

1

2
∂xxf(s,Bs)

}
ds, t ≤ T

)
is a martingale for the Brownian filtration. In particular, if f(t, x) satisfies the partial differential

equation ∂tf = − 1
2∂xxf , then the process (f(t, Bt), t ≤ T ) is itself a martingale.

We now catch a glimpse of the powerful connection between two fields of mathematics:

the study of martingales is closely connected to the study of differential equations. We will see this

connection in action in the gambler’s ruin problem in the next section.

Example 6.13. Consider the function f(t, x) = tx. In this case, we have: ∂tf = x,
∂xf = t and ∂xxf = 0. Ito’s formula yields:

d(tBt) = tdBt + xdt

Therefore, the processMt = tBt−
∫ t

0
Bsds is a martingale for the Brownian filtration. It

is also a Gaussian process by corollary (6.2). The mean is 0 and the covariance by corollary
(6.7) is:

E[MtMt′ ] =

∫ t∧t′

0

s2ds =
(t ∧ t′)3

3

Example 6.14. (Vasicek Interest Rate Model) Let (Bt : t ≤ T ) be a standard Brownian
motion. Vasicek assumed that the instantaneous spot rate under the real-world measure

evolves as an Ornstein-Uhlenbeck process with constant coefficients. Thus:
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drt = k(θ − rt)dt+ σdBt (6.14)

Rearranging the equation, multiplying both sides by the integrating factor and integrating

from s to t, we have:

drt = kθdt− krtdt+ σdBt

drt + krtdt = kθdt+ σdBt

ektdrt + krte
ktdt = kθektdt+ σektdBt

d(ektrt) = kθektdt+ σektdBt

ektrt − eksrs = θ(ekt − eks) + σ

∫ t

s

ektdBt

ektrt = rse
ks + θ(ekt − eks) + σ

∫ t

s

ektdBt

rt = rse
−k(t−s) + θ(1− e−k(t−s)) + σ

∫ t

s

e−k(t−u)dBu

for all t. By corollary (6.2),
∫ t

s
e−k(t−u)dBu is a Gaussian process with mean 0 and vari-

ance:

∫ t

s

e−2k(t−u)du = e−2kt

∫ t

s

e2kudu

=
e−2kt

2k
[e2ku]ts

=
e−2kt

2k
[e2kt − e2ks]

=
1

2k
(1− e−2k(t−s))

Thus, the Vasicek process is Gaussian with mean:

E[rt] = rse
−k(t−s) + θ(1− e−k(t−s))

and variance:

V ar[rt] =
σ2(1− e−2k(t−s))

2k
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Thus, rt can be negative with positive probability. The possibility of negative rates is
indeed a major drawback of the Vasicek model. However, the analytical tractability that

is implied by a Gaussian density is hardly achieved when assuming other distributions for

the process r. If we let t → ∞, we get E[rt] = θ. So, the drift of process (rt : t ≤ T )
is positive, whenever rt < θ and whilst it is negative, whenever rt > θ and so it pushed
everytime, to be closer on average to the level θ. Hence, it is mean reverting.

The solution of the stochastic differential equation (6.14) can also be verified using Ito’s

lemma. Let:

rt = r0e
−kt + θ(1− e−kt) + σ

∫ t

0

e−k(t−u)dBu

And consider the function:

f(t, x) = r0e
−kt + θ(1− e−kt) + σe−ktx

where (Xt, t ≤ T ) =
∫ t

0
ekudBu

Then,

∂xf(t,Xt) = σe−kt

∂tf(t,Xt) = −r0ke
−kt + kθe−kt − σkXte

−kt = −kf(t, x) + kθ

∂xxf(t,Xt) = 0

By Ito’s Lemma:

df(t,Xt) = σe−ktdXt + (−kf(t, x) + kθ)dt

df(t,Xt) = k(θ − f(t, x))dt+ σdBt

Example 6.15. (Cox-Ingersoll-Ross (CIR) Model). Let (Bt : t ≥ 0) be a Brownian
motion. The Cox-Ingersoll-Ross model for the instantaenous spot interest rate process rt
is:

drt = k(θ − rt)dt+ σ
√
rtdBt

They introduced a square-root term in the diffusion coefficient of the instantaneous short-

rate dynamics proposed by Vasicek. The resulting model has been a benchmark for many

years because of its analytical tractability and the fact, that contrary to Vasicek (1977)
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model, the instantaneous short rate is always positive. The condition 2kθ > σ2 has to

be imposed to ensure that the origin is inaccessible to the process. Unlike the Vasicek

equation the CIR solution does not have a closed-form solution.

Although, we cannot derive a closed-form solution , the expectation and variance of rt
can be be computed.

Consider the function f(t, x) = ektx, where Xt = rt. We have:

∂xf(t, x) = ekt

∂tf(t, x) = kektx

∂xxf(t, x) = 0

By the Ito’s-Lemma, we have:

df(t,Xt) = ektdXt + kektxdt

= ekt(k(θ − rt))dt+ ektσ
√
rtdBt + kektrtdt

d(ektrt) = ektkθdt+ ektσ
√
rtdBt

Integrating both sides of the equation, we have:

ektrt|t0 = kθ

∫ t

0

ektdt+ σ

∫ t

0

ekt
√
rtdBt

ektrt − r0 = θ(ekt − 1) + σ

∫ t

0

ekt
√
rtdBt

rt = r0e
−kt + θ(1− e−kt) + σ

∫ t

0

√
rtdBt

We know that, (It =
∫ t

0

√
rtdBt, t ≤ T ) is an Ito integral with mean 0. So, the mean of

the process (rt : t ≤ T ) is :

E[rt] = r0e
−kt + θ(1− e−kt)

The variance of the Ito integral is given by:
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V ar[It] = E[I2t ] =

∫ t

0

E[
(√

rt
)2
]dt

=

∫ t

0

E[rt]dt

=

∫ t

0

(r0e
−kt + θ(1− e−kt))dt

= (r0 − θ)

∫ t

0

e−ktdt+ θ

∫ t

0

dt

= (r0 − θ)
(e−kt − 1)

−k
+ θt

=
(r0 − θ)

k
(1− e−kt) + θt

Example 6.16. (Geometric Brownian Motion revisited). Consider an asset price process

that satisfies

St = f(t, Bt) = S0e

(
µ−σ2

2

)
t+σBt

Thus, f(t, x) = S0e

(
µ−σ2

2

)
t+σx

. ∂xf(t, Bt) = S0σe
(µ−σ2/2)t+σBt = σSt, ∂xxf(t, Bt) =

S0σ
2e(µ−σ2/2)t+σBt = σ2St and ∂tf(t, Bt) =

(
µ− σ2

2

)
St. Therefore, by Ito’s

Lemma:

dSt = σStdBt +

{
1

2
σ2St + µSt −

σ2

2
St

}
dt

= µStdt+ σStdBt

In integral notation, the asset price (St : t ≤ T ) is given by:

St = S0 + σ

∫ t

0

f(t, Bt)dBt +

∫ t

0

µf(t, Bt)dt

6.4 Gambler’s ruin for Brownian Motion with a Drift.

We solved the Gambler’s ruin problem for the standard Brownian motion in example

(5.20). We now deal with the case where a drift is present. Consider the Brownian motion

with a drift:

Xt = σBt + µt

where (Bt, t ≥ 0) is a standard Brownian motion.
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7 Multivariate Ito Calculus.

7.1 Multidimensional Brownian motion.

Definition 7.1. (Brownian motion in Rd). Take d ∈ N. Let B(1), . . . , B(d) be indepen-

dent standard Brownian motions in (Ω,F ,P). The process (Bt : t ≥ 0) taking values in
Rd defined by :

Bt = (B
(1)
t , . . . , B

(d)
t ), t ≥ 0

is called a d−dimensional Brownian motion or a Brownian motion in Rd.

The Brownian filtration (Ft : t ≥ 0) is now composed of the information of all Brownian
motions. In other words, it is given by the sigma-fields:

Ft = σ(B(i)
s , 1 ≤ i ≤ d, s ≤ t)

For every outcome ω, the path of trajectory of a d−dimensional Brownian motion is a
curve in space parametrized by the time t:

t 7→ Bt(ω) = (B
(1)
t (ω), B

(2)
t (ω), . . . , B

(d)
t (ω))

Of course, this curve is continuous, since each coordinate is. The below numerical project

gives an example of one path of a two-dimensional brownian motion. This is a very rugged

and intertwined curve! We might wonder, what it does as t → ∞. Does it wander

around (0, 0) ad infinitum or does it eventually escape to infinity? We will answer this

question in a later section. For doing so, we shall need a version of Ito’s formula for multi-

dimensional Brownian motion. We finish this section by noticing that it is also easy to

construct Brownianmotions in higher dimensions for which the coordinates are correlated.

Example 7.1. (Example of Brownian motion with correlated coordinates) Let (Bt : t ≥
0) be a two dimensional brownian motion. Let −1 < ρ < 1. We construct the two

dimensional process as follows: Wt = (W
(1)
t ,W

(2)
t ) where:

W
(1)
t = B

(1)
t

W
(2)
t = ρB

(1)
t +

√
1− ρ2B

(2)
t

W
(1)
t = B

(1)
t is Gaussian with mean 0 and variance t. Since, B

(1)
t and B

(2)
t are inde-

pendent gaussian random variables and the sum of IID Gaussians is Gaussian, W
(2)
t is

Gaussian with mean 0 and variance t. The covariance betweenW
(1)
t andW

(2)
t is:
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E[W
(1)
t W

(2)
t ] = E[B

(1)
t (ρB

(1)
t +

√
1− ρ2B

(2)
t )]

= E[ρ(B
(1)
t )2 +

√
1− ρ2B

(1)
t B

(2)
t ]

= ρt

Hence, the coordinates at time t are not independent.

Exercise 7.1. 2D Brownian Motion. Consider a two-dimensional Brownian motion

(B
(1)
t , B

(2)
2 ) starting at (0, 0).

(a) Plot one path of this Brownian motion on the plane R2 on the plane in R2 on the time

interval [0, 5] using a discretization of 0.005 and 0.001.

Solution.

0 1 2

−0.5

0

0.5

1

1.5

2

x

y

Two dimensional brownian motion

(b) Consider now the process (Wt : t ≥ 0) for ρ = 1/2 as in example (7.1). Plot one path
of this process on the plane R2 on the time-interval [0, 5] using a discretization of 0.001.

263



−1 −0.5 0 0.5

−2

−1.5

−1

−0.5

0

x

y

Correlated Brownian motionW (t) = (W
(1)
t ,W

(2)
t )
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Correlated Brownian motion paths

7.2 Ito’s Formula.

Theorem 7.1. Ito’s Formula. Let (Bt : t ≥ 0) be a d−dimensional brownian motion. Consider

f ∈ C2(Rd). Then, we have with probability one that for all t ≥ 0:
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f(Bt)− f(B0) =

d∑
i=1

∫ t

0

∂xi
f(Bs)dB

(i)
s +

1

2

∫ t

0

d∑
i=1

∂2
xi
f(Bs)ds (7.1)

Remark. We stress that, as in the one-dimensional case, in theorem (6.7), Ito’s formula

is an equality of processes (and not an equality in distribution). Thus, the processes on

both sides must agree for each path. Interestingly, the mixed partials ∂xixjf(Bs), i 6= j
do not appear in the formula! We see from Ito’s formula that the process f(Bt) can be
represented as a sum of d+ 1 processes: d Ito integrals and one Riemann integral (which
is a process of finite variation). In vector notation, the formula takes the form:

f(Bt)− f(B0) =

∫ t

0

∇f(Bs)
T dBs +

1

2

∫ t

0

∇2f(Bs)ds

where it is understood that the first term is the sum of the d Ito integrals in the equation.

The symbol ∇2 is the Laplacian of f :
∑d

i=1
∂2

∂x2
i
f(B

(1)
s , . . . , B

(d)
s )ds

In differential form, Ito’s formula becomes very neat:

df(Bt) =

d∑
i=1

∂xi
f(Bs)dB

(i)
t +

1

2

d∑
i=1

∂2
xi
f(Bs)dt = ∇f(Bt)

T dBs +
1

2
∇2f(Bt)dt

Example 7.2. Consider the functions (1) f(x1, x2) = x2
1+x2

2 (2) f(x1, x2) = ex1 cosx2

and the processes (Xt : t ≥ 0) and (Yt : t ≥ 0). If we apply Ito’s formula to the first
process, we have:

Xt =

∫ t

0

2B(1)
s dB(1)

s +

∫ t

0

2B(2)
s dB(2)

s +
1

2

∫ t

0

(4dt)

=

∫ t

0

2B(1)
s dB(1)

s +

∫ t

0

2B(2)
s dB(2)

s + 2t

The second process gives:

Yt = cosB(2)
s

∫ t

0

eB
(1)
s dB(1)

s − eB
(1)
s

∫
sinB(2)

s dB(2)
s +

1

2

∫ t

0

(
eB

(1)
s cosB(2)

s − eB
(1)
s cosB(2)

s

)
dt

= 1 + cosB(2)
s

∫ t

0

eB
(1)
s dB(1)

s − eB
(1)
s

∫
sinB(2)

s dB(2)
s
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Exercise 7.2. Cross-Variation of B
(1)
t and B

(2)
t . Let (tj : j ≤ n) be a sequence of

partitions of [0, t] such that maxj |tj+1 − tj | → 0 as n → ∞. Prove that:

lim
n→∞

n−1∑
j=0

(B
(1)
tj+1

−B
(1)
tj )(B

(2)
tj+1

−B
(2)
tj ) = 0 in L2

This justifies the rule dB
(1)
t · dB(2)

t = 0.

Hint : Just compute the second moment of the sum.

Solution. We have:

E


n−1∑

j=0

(B
(1)
tj+1

−B
(1)
tj )(B

(2)
tj+1

−B
(2)
tj )

2


=

n−1∑
j=0

E[(B
(1)
tj+1

−B
(1)
tj )2(B

(2)
tj+1

−B
(2)
tj )2]

+2
∑
j<k

E

[
(B

(1)
tj+1

−B
(1)
tj )(B

(1)
tk+1

−B
(1)
tk

)(B
(2)
tj+1

−B
(2)
tj )(B

(2)
tk+1

−B
(2)
tk

)
]

=

n−1∑
j=0

E[(B
(1)
tj+1

−B
(1)
tj )2] · E[(B(2)

tj+1
−B

(2)
tj )2]

+2
∑
j<k

E

[
(B

(1)
tj+1

−B
(1)
tj )
]
E

[
(B

(1)
tk+1

−B
(1)
tk

)
]
E

[
(B

(2)
tj+1

−B
(2)
tj )
]
E

[
(B

(2)
tk+1

−B
(2)
tk

)
]

≤ max
j

|tj+1 − tj |
n−1∑
j=0

(tj+1 − tj) + 0

Passing to the limits, as n → ∞, maxj |tj+1 − tj | → 0. Consequently,
∑n−1

j=0 (B
(1)
tj+1

−
B

(1)
tj )(B

(2)
tj+1

−B
(2)
tj ) → 0 in the L2 sense.

Proof. The proof of the formula follows the usual recipe: Taylor’s theorem together with

the quadratic variation and the cross-variation. In this case, we do get a cross-variation

between the different Brownian motions. More precisely, consider a partition (tj : j ≤ n)
of [0, t]. Then we can write:

f(Bt)− f(B0) =

n−1∑
j=0

(f(Btj+1
)− f(Btj ))
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We can apply the Taylor’s series expansion for each j to get:

f(Bt)− f(B0) =

n−1∑
j=0

∇f(Btj )(Btj+1
−Btj )

+
1

2

n−1∑
j=0

(Btj+1
−Btj )

THf(Btj )(Btj+1
−Btj ) + E

where Hf is the Hessian matrix of f . We wrote the expansion using the vector notation
to be economical. Let’s keep in mind that each term is a sum over the derivatives. The first

term will converge to d Ito integrals as in the one-dimensional case. Now, the summand
in the second term is:

(B
(1)
tj+1

−B
(1)
tj , . . . , B

(d)
tj+1

−B
(d)
tj )

 ∂2
x1
f(Btj ) . . . ∂2

x1xd
f(Btj )

...
. . .

∂2
xdx1

f(Btj ) ∂2
xd
f(Btj )




B
(1)
tj+1

−B
(1)
tj

...

B
(d)
tj+1

−B
(d)
tj


So, (B

(i)
tj+1

− B
(i)
tj ) is pre-multiplied with the term ∂2

xixk
f(Btj ) and it is post-multiplied

(B
(k)
tj+1

− B
(k)
tj ). Consequently, the second term in the Taylor’s series expansion can be

re-written as:

n−1∑
j=0

 d∑
i=1

∂2
xi
f(Btj )(B

(i)
tj+1

−B
(i)
tj )2 +

∑
1≤i<k≤d

∂2
xixk

f(Btj )(B
(i)
tj+1

−B
(i)
tj )(B

(k)
tj+1

−B
(k)
tj )


The second term on the right converges to 0 in the L2 sense when i 6= k, from exercise

(7.2). This explains why the mixed derivatives disappear in the multi-dimensional Ito’s for-

mula. As for the case i = k, it reduces to the quadratic variation as in the one-dimensional
case. This is where the Riemann integral arises, after suitable conditioning on Ftj , the

sigma-field generated by Bs, s ≤ tj .

As in the one-dimensional case,it is not necessary to learn Ito’s formula by heart. It suffices

to write the differential of the function f to second order. We can then apply the rules of
multivariate Ito calculus:

· dt dB
(1)
t dB

(2)
t . . .

dt 0 0 0 0

dB
(1)
t 0 dt 0 0

dB
(2)
t 0 0 dt 0

. . . 0 0 0 dt
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Note that the rule dB
(i)
t dB

(j)
t = 0 for i 6= j is being motivated by the cross-variation

result (7.2).

How can we construct martingales using the Ito’s formula? Recall that an Ito integral

(
∫ t

0
XsdBs, t ≤ T ) is a martingale whenever the integrand is in L2

c(T ), the space of
adapted processes with continuous paths and for which:

∫ T

0

E[X2
s ]ds < ∞

The only difference here is that the integrand is a function of many Brownian motions.

However, the integrands involved in the Ito integrals of the multidimensional Ito’s formula

(7.1) are clearly adapted to the filtration (Ft : t ≥ 0) of (Bt : t ≥ 0) as they are functions
of the Brownian motion at the time. The arguments of Ito integral in (6.2) and (6.1) apply

verbatim, if we take the definition ofL2
c(t)with the filtration (Ft : t ≥ 0) of (Bt : t ≥ 0).

With this in mind, we have the following corollary.

Corollary 7.1. (Brownian Martingales) Let (Bt : t ≥ 0) be a Brownian motion in Rd. Consider

f ∈ C2(Rd) such that processes (∂xi
f(Bt), t ≤ T ) ∈ L2

c(T ) for every i ≤ d. Then, the process :

f(Bt)−
1

2

∫ t

0

∇2f(Bs)ds, t ≤ T

is a martingale for the Brownian filtration.

For example, consider the processesXt = (B
(1)
t )2+(B

(2)
t )2 andYt = exp(B

(1)
t ) cos(B

(2)
t ).

Then, we have :

1

2

∫ t

0

∇2Xsds =
1

2

∫ t

0

4ds = 2t

and

1

2

∫ t

0

∇2Ysds =
1

2

∫ t

0

0 · ds = 0

Thus, the processes Xt − 2t and Yt are martingales for the Brownian filtration. In one

dimension, there are no interesting martingales constructed with functions of space only.

Indeed, (f(Bt) : t ≥ 0) is a martingale if and only if f ′′(x) = 0 for all x. But, such
functions are of the form f(x) = ax + b, a, b ∈ R. In other words, in one dimension,

Brownian martingales of the form f(Bt) are simply aBt + b. Not very surprising! The
situation is very different in higher dimensions. Indeed, corollary (7.1) implies that f(Bt)
is a martingale whenever f is a harmonic function:
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Definition 7.2. A function f : Rd → R is harmonic in Rd if and only if∇2f(x) ≡ 0 for
all x ∈ Rd. More generally, a function f : Rd → R is harmonic in the region O ⊂ Rd if

and only if ∇2f(x) ≡ 0 for all x ∈ O.

Note that the function f(x) = ex1 cosx2 is harmonic in R
d. This is why the process

Yt = exp(B
(1)
t ) cos(B

(2)
t ) is a martingale. The distinction to a subset of Rd in the above

definition is important since it may happen that the function is harmonic only in a subset

of the space; see for example equation. It is possible to define a Brownian martingale in

such cases by considering the process until it exits the region. This will turn out to be

important as we move ahead.

The multidimensional Ito’s formula generalizes to functions of time and space as in propo-

sition (6.3):

Definition 7.3. A function f : [0,∞) × Rd → R is in C1,2([0, T ] × Rd) if the partial
derivative in time :

∂

∂t
f(t, x)

exists and is continuous and the second order partial derivatives in space:

∂2

∂x2
i

f(t, x1, x2, . . . , xi, . . . , xd), 1 ≤ i ≤ d

exist and are continuous.

Theorem 7.2. (Ito’s formula) Let (Bt : t ≤ T ) be a d-dimensional Brownian motion. Consider a
function f ∈ C1,2([0, T ]× Rd). Then, we have with probability one for all t ≤ T :

f(t, Bt)− f(0, B0) =

d∑
i=1

∫ t

0

∂xi
f(s,Bs)dB

(i)
s +

∫ t

0

(
∂tf(s,Bs) +

d∑
i=1

∂2
xi
f(s,Bs)

)
ds

The martingale condition is then similar to the ones in corollary (7.1): if the processes

(∂xi
f(s,Bs), t ≤ T ) ∈ L2

c(T ) for every 1 ≤ i ≤ d, then the process

f(t, Bt)−
∫ t

0

{
∂tf(s,Bs) + +

d∑
i=1

∂2
xi
f(s,Bs)

}
ds, t ≤ T

is a martingale for the Brownian filtration. In particular, if f satisfies the partial differential
equation:

∂f

∂t
+

1

2
∇2f = 0

then the process (f(t, Bt) : t ≤ T ) itself is a martingale.
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7.3 Recurrence and Transience of Brownian Motion.

In one dimension, we established in example

8 Ito Processes and Stochastic Differential Equations.

Let’s start with the definition of Ito processes.

Definition 8.1. (Ito Process). Let (B(t) : t ≥ 0) be a standard brownian motion defined
on (Ω,F ,P). An Ito process (X(t) : t ≥ 0) is of the form:

X(t) = X(0) +

∫ t

0

V (s)dB(s) +

∫ t

0

D(s)ds (8.1)

where (V (t), t ≥ 0) and (D(t), t ≥ 0) are two adapted processes for which the integrals
make sense in the sense of Ito and Riemann. We refer to (V (t) : t ≥ 0) as the local volatility
and to (D(t) : t ≥ 0) as the local drift.

We will often denote an Ito process (X(t) : t ≥ 0) in differential form as:

dX(t) = D(t)dt+ V (t)dB(t) (8.2)

This form makes no rigorous sense; when we write it, we mean (8.1). Nevertheless, the

differential equation has two great advantages:

(1) It gives some intuition on what drives the variation of X(t). On one hand, there is a
contribution of the Brownian increments which are modulated by the volatility V (t). On
the other hand, there is a smoother contribution coming from the time variation which is

modulated by the drift D(t).

(2) The differential notation has computational power. In particular, evaluating Ito’s for-

mula is reduced to computing differentials, as in classical calculus, but by doing it upto the

second order.

An important class of Ito processes is given by processes for which the volatility and the

drift are simply functions of the position of the process.

Definition 8.2. Let (B(t) : t ≥ 0) be a standard Brownian motion. An Ito process
(X(t) : t ≥ 0) of the form

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), X(0) = x (8.3)
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where µ and σ are functions from R to R, is called a time-homogenous diffusion. An

Ito-process (Y (t), t ≥ 0) of the form:

dY (t) = µ(t,X(t))dt+ σ(t,X(t))dB(t) Y (0) = y (8.4)

whereµ andσ are now functions [0,∞)×R → R is called a time-inhomogenous diffusion.

The equations above are called stochastic differential equations (SDE) of the respective process

(X(t)) and (Y (t)).

In other words, a diffusion (X(t), t ≥ 0) is called an Ito process whose local volatility
V (t) and local driftD(t) at time t depend only on the position of the process at time t and
possibly on the time t itself. It cannot depend on the path of the process before time t or
on the explicit values of the driving Brownian motion at that time (which is not the process

X(t) itself). The class of diffusions, and of the Ito processes in general, constitutes a huge
collection of stochastic processes for stochastic modelling.

Note that an SDE is a generalization of ordinary differential equations or ODEs. Indeed,

if there were no randomness, that is, no Brownian motion, the SDE would be reduced to

dX(t) = µ(X(t))dt

This can be written for X(t) = f(t) as:

df

dt
= µ(f)

This is a first-order ordinary differential equation. It governs the deterministic evolution

of the function X(t) = f(t) in time. An SDE adds a random term to this evolution that

is formally written as:

dX

dt
= µ(X(t)) + σ(X(t))

dB(t)

dt

We know very well, that Brownian motion is not differentiable; hence the above is not

well-defined. The ill-defined term dB(t)/dt is sometimes called white noise. However,
equation (8.3) is well-defined in the sense of the Ito process. These types of equations are

well-suited to model phenomena with intrinsic randomness.

Here are some examples of diffusions:
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Example 8.1. (Brownian Motion with a drift). If we take X(t) = σB(t) + µt for some
σ > 0 and µ ∈ R, then we can write X(t) as:

X(t) =

∫ t

0

σdB(t) +

∫ t

0

µdt, X(0) = 0

In the differential form this becomes

dX(t) = µdt+ σdB(t)

In this case, the local drift and the local volatility are constant.

Example 8.2. (Geometric Brownian Motion). We consider the process S(t) = exp((µ−
σ2/2)t+ σB(t)). To find the stochastic differential equation, we apply the Ito’s Lemma
to

f(t, x) = exp((µ− σ2/2)t+ σx)

We have:

df(t, x) =

(
(µ− σ2/2) +

1

2
σ2

)
exp((µ− σ2/2)t+ σx)dt+ σ exp((µ− σ2/2)t+ σx)dB(t)

= µS(t)dt+ σS(t)dB(t)

Note that the local drift and the local volatility are now proportional to the position. So,

the higher S(t), the higher the volatility and drift.

Example 8.3. (Any smooth function of Brownian motion). Ito’s formula gurarantees

that any smooth function f(t, B(t)) of time and a Brownian motion is an Ito process
with volatility V (t) = ∂tf(t, B(t)) and drift D(t) = ∂xf(t, B(t)) + 1

2∂xxf(t, B(t)).
We will see in further ahead, that, in general, any reasonable function of an Ito process

remains an Ito process.

Example 8.4. (An Ito process that is not a diffusion) Consider the process

X(t) =

∫ t

0

B2(s)dB(s)

This is an Ito process with local volatility V (t) = B(t)2 and local drift D(t) = 0. How-
ever, it is not a diffusion, because the local volatility is not an explicit function of X(t).

It turns out that the Brownian bridge is a time-inhomogenous diffusion and that the

Ornstein-Uhlenbeck process is a time-homogenous diffusion. To understand these ex-

amples, we need to extend Ito’s formula to Ito processes.
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8.1 Ito’s Formula.

The first step towards a general Ito’s formula is the quadratic variation of an Ito process.

Proposition 8.1. (Quadratic variation of an Ito process). Let (B(t), t ≥ 0) be a standard Brownian
motion and (X(t) : t ≥ 0) be an Ito process of the form dX(t) = V (t)dB(t) +D(t)dt. Then,
the quadratic variation of the process (X(t) : t ≥ 0) is:

< X,X >t = lim
n→∞

n−1∑
j=0

(X(tj+1)−X(tj))
2 =

∫ t

0

V (s)2ds (8.5)

for any partition (tj , j ≤ n) of [0, t], where the limit is in probability.

Remark. Note that the quadratic variation is increasing in t, but it is not deterministic
in general! The quadratic variation is a smooth stochastic process. (It is differentiable)

Observe that we recover the quadratic variation for the Brownian motion for V (t) = 1
as expected. We also notice that the formula follows easily from the rules of Ito Calculus,

thereby showing the consistency of the theory. Indeed we have:

d < X,X >t = (dX(t))2 = (V (t)dB(t) +D(t)dt)2

= V (t)2(dB(t))2 + 2V (t)D(t)dB(t) · dt+D2(t)(dt)2

= V (t)2dt

Proof. The proof is involved, but it reviews some important concepts of stochastic cal-

culus. We prove the case when the process V is in L2
c(T ) for some T > 0. We write

I(t) =
∫ t

0
V (s)dB(s) and R(t) =

∫ t

0
D(s)ds. We first show that only the Ito integral

contributes to the quadratic variation and the Riemann integral does not contribute, so

that:

< X,X >t =< I, I >t (8.6)

We have that the increment square of X(t) is:

(X(tj+1)−X(tj))
2 = (I(tj+1)− I(tj))

2 + 2(I(tj+1)− I(tj))(R(tj+1)−R(tj)) + (R(tj+1)−R(tj))
2

The Cauchy-Schwarz inequality implies :

n−1∑
j=0

(I(tj+1)− I(tj))(R(tj+1)−R(tj)) ≤

n−1∑
j=0

(I(tj+1)− I(tj))
2

1/2n−1∑
j=0

(R(tj+1)−R(tj))
2

1/2
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Therefore, to prove equation (8.6), it suffices to show that
∑n−1

j=0 (R(tj+1)−R(tj))
2 → 0

almost surely. Since D(s) is an almost surely continuous process, the stochastic process

R(t) =
∫ t

0
D(s)ds has continuous paths with probability 1. Therefore:

n−1∑
j=0

(R(tj+1)−R(tj))
2 = max

1≤j≤n
|R(tj+1)−R(tj)|

n−1∑
j=0

(R(tj+1)−R(tj))

Since, R(t) is continuous on the compact set [0, t], it is uniformly continuous a.s. So, as
|tj+1 − tj | → 0, by uniform continuity it follows that max |R(tj+1)−R(tj)| → 0 a.s.

It remains to prove that< I, I >t=
∫ t

0
V (s)2ds. We first prove the case whenV ∈ S(T )

is a simple adapted process. Consider a partition (tj : j ≤ n) of [0, t]. Without loss of
generality, we can suppose that V is constant on each [tj , tj+1) by refining the partition.
We then have:

n−1∑
j=0

(I(tj+1)− I(tj))
2 =

n−1∑
j=0

V (tj)
2(B(tj+1)−B(tj))

2

Now, we have seen in the proof of Ito’s formula (6.12) thatE
[{∑n−1

j=0 V (tj)
2((B(tj+1)−B(tj))

2 − (tj+1 − tj)
}2
]
→

0, so
∑n−1

j=0 V (tj)
2(B(tj+1)−B(tj))

2 approaches
∑n−1

j=0 V (tj)
2(tj+1−tj) in themean

square sense. As the mesh size becomes finer, the L2-limit is
∫ t

0
V (t)2dt.

The case V ∈ L2
c(T ) is proved by approximating V by a simple process in S(T ). More

precisely, we can find a simple process V (ε)(t) that is ε-close to V in the sense:

||I(ε) − I|| = ||
∫
(V εdB(t)−

∫
V dB(t)|| =

∫ t

0

E[(V (ε)(t)− V (t))2]ds < ε

(8.7)

To prove the claim, we need to show that for t ≤ T ,

E

∣∣∣∣∣∣
n−1∑
j=0

(I(tj+1)− I(tj))
2 −

∫ t

0

(V (s))2ds

∣∣∣∣∣∣
→ 0 as n → ∞

L1-convergence implies convergence in probability of the sequence
∑n−1

j=0 (I(tj+1) −
I(tj))

2. We now introduce the V (ε)(t) approximation inside the absolute value as well as

its corresponding integral I(ε)(t) =
∫ t

0
V (ε)(s)ds. By the triangle inequality, we have:
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E

∣∣∣∣∣∣
n−1∑
j=0

(I(tj+1)− I(tj))
2 −

∫ t

0

(V (s))2ds

∣∣∣∣∣∣


=E

∣∣∣∣∣
n−1∑
j=0

(I(tj+1)− I(tj))
2 − (I(ε)(tj+1)− I(ε)(tj))

2 + (I(ε)(tj+1)− I(ε)(tj))
2 −

∫ t

0

(V (ε)(s))2ds

+

∫ t

0

(V (ε)(s))2ds−
∫ t

0

(V (s))2ds

∣∣∣∣∣
]

≤E

∣∣∣∣∣∣
n−1∑
j=0

(I(tj+1)− I(tj))
2 − (I(ε)(tj+1)− I(ε)(tj))

2

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣
n−1∑
j=0

(I(ε)(tj+1)− I(ε)(tj))
2 −

∫ t

0

(V (ε)(s))2ds

∣∣∣∣∣∣


(8.8)

+ E

[∣∣∣∣∣
∫ t

0

(V (ε)(s))2ds−
∫ t

0

(V (s))2ds

∣∣∣∣∣
]

We show that the first and third terms converge uniformly and that the second term goes

to 0 as n → ∞.

The second term goes to 0 asn → ∞ by the argument for simple processes. < I(ε), I(ε) >t=∫ t

0
V (ε)(s)2ds.

For the third term, the linearity of the integral and the Cauchy Schwarz inequality (applied

to E
∫ t

0
) imply that it is:

E

[∣∣∣∣∣
∫ t

0

(V (ε)(s))2ds−
∫ t

0

(V (s))2ds

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣
∫ t

0

(V (ε)(s)− V (s))2ds

∣∣∣∣∣
]1/2

E

[∣∣∣∣∣
∫ t

0

(V (ε)(s) + V (s))2ds

∣∣∣∣∣
]1/2

The first factor is smaller than the square root of ε by equation (8.7), whereas the second
factor is bounded.

The first term in equation (8.8) is handled similarly. The linearity of the Ito integral and

the Cauchy-Schwarz inequality applied to E
[∑n−1

j=0

(∫ tj+1

tj
·
)]
give that the first term is:
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E

∣∣∣∣∣∣
n−1∑
j=0

∫ tj+1

tj

(V (t))2dB(s)−
∫ tj+1

tj

(V ε(t))2dB(s)

∣∣∣∣∣∣


=E

∣∣∣∣∣∣
n−1∑
j=0

∫ tj+1

tj

(V (s)− V ε(s))dB(s)

∫ tj+1

tj

(V (s) + V ε(s))dB(s)

∣∣∣∣∣∣


≤E

n−1∑
j=0

(∫ tj+1

tj

(V (s)− V ε(s))dB(s)

)2
1/2

E

∣∣∣∣∣
n−1∑
j=0

(∫ tj+1

tj

(V (s) + V ε(s))dB(s)

)2∣∣∣∣∣
1/2

By Ito isometry, the first factor in the above expression can be simplified:

E

n−1∑
j=0

(∫ tj+1

tj

(V (s)− V ε(s))dB(s)

)2
1/2

=

n−1∑
j=0

E

(∫ tj+1

tj

(V (s)− V ε(s))dB(s)

)2

=

n−1∑
j=0

∫ tj+1

tj

E[(V (s)− V ε(s))2]ds

By equation (8.7), this factor is smaller than ε. The second factor equals
∑n−1

j=0

∫ tj+1

tj
E[(V (s)+

V ε(s))2]ds by Ito-isometry and is uniformly bounded. This concludes the proof of the
proposition.

Note that quadratic variation < I, I >t=
∫
(V (s))2ds is computed path-by-path and

hence the result is random. On the other the variance of the Ito integral V ar(I(t)) =
E[I2t ] =

∫
E[V 2

s ]ds is the mean value of all possible paths of the quadratic variation and
hence is non-random. We are now ready to state Ito’s formula for Ito processes. We write

the result in differential form for conciseness.

Theorem 8.1. (Ito’s formula for Ito processes). Let (B(t) : t ≥ 0) be a standard brownian motion,
and let (X(t) : t ≥ 0) be an Ito process of the form dX(t) = V (t)dB(t) +D(t)dt. Consider a
function f(t, x) ∈ C1,2([0, T ]× R). Then we have with probability one for all t ≤ T :

df(t,X(t)) = ∂xf(t,X(t))dX(t) + ∂tf(t,X(t))dt+
1

2
∂xxf(t,X(t))d < X,X >t

This can also be written as:

df(t,X(t)) =∂xf(t,X(t))V (t)dB(t) +

[
∂xf(t,X(t))D(t) + ∂tf(t,X(t)) +

1

2
(V (t))2∂xxf(t,X(t))

]
dt
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The proof of the theorem (8.1) is again a Taylor approximation with the form of the

quadratic variation of the process. We will omit it.

Example 8.5. (Ornstein-Uhlenbeck Process). Consider the Ornstein-Uhlenbeck process

(Y (t) : t ≥ 0):

Y (t) = Y (0)e−t + e−t

∫ t

0

esdB(s)

Note that this process is an explicit function of t and of the Ito process X(t) = Y (0) +∫ t

0
esdB(s). Indeed, we have:

Y (t) = e−tX(t)

Let f(t, x) = e−tx. Then, fx(t, x) = e−t, fxx(t, x) = 0 and ft(t, x) = −e−tx. So, by
Ito’s lemma,

df(t, x) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))d < X,X >t

dY (t) = −Y (t)dt+ e−tdX(t)

dY (t) = −Y (t)dt+ e−t(etdB(t))

dY (t) = −Y (t)dt+ dB(t) (8.9)

This is the SDE for the Ornstein Uhlenbeck process.

The SDE has a very nice interpretation: The drift is positive if Y (t) < 0 and negative if
Y (t) > 0. Moreover, the drift is proportional to the position (exactly like a spring pulling
the process back to the x-axis following the Hooke’s law!). This is the mechanism that

ensures that the process does not venture too far from 0 and is eventually stationary.

The SDE (8.9) is now easily generalized by adding two parameters for the volatility and

the drift:

dY (t) = −kY (t)dt+ σdB(t), k ∈ R, σ > 0 (8.10)

It is not hard to check that the solution to the SDE is:

Y (t) = Y (0)e−kt + e−kt

∫ t

0

eksσdB(s) (8.11)
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Exercise 8.1. The Ornstein-Uhlenbeck process with parameters. Use the Ito’s for-

mula to show that the equation (8.11) is the solution to the Ornstein-Uhlenbeck SDE

(8.10).

Solution.

Let X(t) = Y (0) +
∫ t

0
eksσdB(s), so dX(t) = ektσdB(t). Then, Y (t) = e−ktX(t).

Let f(t, x) = e−ktx. Then, by Ito’s formula:

df(t, x) = −ke−ktX(t)dt+ e−ktdX(t)

dY (t) = −kY (t)dt+ e−ktektσdB(t)

dY (t) = −kY (t)dt+ σdB(t)

The latest version of Ito’s formula is another useful tool for producing martingales from

a function of an Ito process. We start with two examples generalizing martingales for

Brownian motion.

Example 8.6. (A generalization of (B(t))2 − t). Let (V (t) : t ≤ T ) be a process in
L2
c(T ). Consider an Ito process (X(t) : t ≤ T ) given by dX(t) = V (t)dB(t). Note

that ((X(t))2 : t ≤ T ) is a submartingale by Jensen’s inequality, since E[X2(t)|Fs] ≥
(E[X(t)|Fs)

2 = X2(s). We show that the compensated process

M(t) = X2(t)−
∫ t

0

V 2(s)ds, t ≤ T

is a martingale for the Brownian filtration. (This is another instance of the Doob-Meyer

decomposition). By the Ito’s formula for f(x) = x2, we have:

df(x) = fx(X(t)dX(t) +
1

2
fxx(X(t))d < X,X >t

= 2X(t)dX(t) + (V (t))2dt

df(X(t)) = 2X(t)V (t)dB(t) + (V (t))2dt

In Integral form this implies:

(X(t))2 = (X(0))2 + 2

∫ t

0

X(s)V (s)dB(s) +

∫ t

0

(V (s))2ds

M(t) = (X(t))2 −
∫ t

0

(V (s))2ds = (X(0))2 + 2

∫ t

0

X(s)V (s)dB(s)
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We conclude that (M(t) : t ≤ T ) is a martingale, provided X(t)V (t) ∈ L2
c(T ).

There is another more direct way to prove that (M(t) : t ≤ T ) is a martingale whenever
(V (t) : t ≤ T ) ∈ L2

c(T ). This is by using increments: for t
′ < t ≤ T ,

E[X2
t′ |Ft] = E[(Xt + (Xt′ −Xt))

2|Ft]

= E[X2
t + 2Xt(Xt′ −Xt) + (Xt′ −Xt)

2|Ft]

= X2
t + 2XtE[Xt′ −Xt|Ft] + E[(Xt′ −Xt)

2|Ft]

Since (Xt : t ≥ 0) is a martingale, E[(Xt′ − Xt)|Mt] = 0, so the middle term equals

zero and we are left with:

E[X2
t′ |Ft] = X2

t + E[(Xt′ −Xt)
2|Ft]

By conditional Ito Isometry,

E[(Xt′ −Xt)
2|Ft] =

∫ t′

0

V 2
s ds−

∫ t

0

V 2
s ds =

∫ t′

t

V 2
s ds

Example 8.7. (A generalization of the geometric Brownian motion). Let σ(t) be a con-
tinuous, deterministic function such that |σ(t)| ≤ 1, t ∈ [0, T ]. The process

M(t) = exp

(∫ t

0

σ(s)dB(s)− 1

2

∫ t

0

σ2(s)ds

)
, t ≤ T

is a martingale for the Brownian filtration. To see this, note that we can write M(t) =

f(t,X(t)) where f(t, x) = exp(x − 1
2

∫
σ2(s)ds) and X(t) =

∫ t

0
σ(s)dB(s), so

dX(t) = σ(t)dB(t). Ito’s formula gives:

df(t, x) = ft(t,X(t)dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))d < X,X >t

dM(t) = −1

2
σ2(t)M(t)dt+M(t)σ(t)dB(t) +

1

2
M(t)σ2(t)dt

= M(t)σ(t)dB(t)

M(t) = M(0) +

∫ t

0

M(s)σ(s)dB(s)

Observe also that:
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E[M2
t ] = e−

∫ t
0
σ2(s)dsE[e2

∫ t
0
σ(s)dB(s)] = e

∫ t
0
σ2(s)ds

since
∫ t

0
σ(s)dB(s) is a Gaussian random variable with mean 0 and variance

∫ t

0
σ2(s)ds.

So, E[e2
∫ t
0
σ(s)dB(s)] = exp[ 12 × 4×

∫ t

0
σ2(s)ds] = exp(2

∫ t

0
σ2(s)ds).

We conclude from the equation that (M(t), t ≥ 0) is a martingale.

Example 8.8. (Martingales of Geometric Brownian Motion). Let

S(t) = S(0) exp(σB(t)− σ2t/2)

be a geometric brownian motion. We find a PDE satisfied by f(t, x) for f(t, S(t)) to be
a martingale. It suffices to apply Ito’s formula of theorem (8.1). We get:

df(t, S(t)) = ft(t, S(t))dt+ fx(t, S(t))dS(t) +
1

2
fxx(t, S(t))dS(t) · dS(t)

Now note from the earlier result that dS(t) = S(t)σdB(t). So, dS(t) · dS(t) =
1
2σ

2(S(t))2dt. So,

df(t, S(t)) =

{
∂f

∂t
+

1

2
σ2(S(t))2

∂2f

∂x2

}
dt+ σS(t)

∂f

∂x
dB(t)

Finally, the PDE for f(t, x) is obtained by setting the factor in front of dt to 0, because we
want f to be a martingale process. It is important to keep in mind, that the PDE should
always be written in terms of the time variable t and the space variable x. Therefore, the
PDE of f as a function of time and space is:

1

2
σ2x2 ∂

2f

∂x2
(t, x) +

∂f

∂t
(t, x) = 0

No more randomness appears in the PDE!

Here is a specific case where we can apply the Ito’s formula to construct martingales of

Ito processes.

Example 8.9. Consider the process given by the SDE:

dX(t) = X(t)dB(t), X(0) = 2
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Let’s find a PDE for which f(t,X(t)) is a martingale for the Brownian filtration. We have
by Ito’s formula that:

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))d < X,X >t

=

(
∂f

∂t
+

1

2
(X(t))2

∂2f

∂x2

)
dt+X(t)

∂f

∂x
dB(t)

Setting the drift term to 0 gives the PDE:

∂f

∂t
+

1

2
x2 ∂

2f

∂x2
= 0

It is then easy to check that X(t) is a martingale and so is t + log(X(t))2, since the
functions f(t, x) = x and f(t, x) = t + logx2 satisfy the PDE. However, the process

tX(t) is not, as the function f(t, x) = xt is not a solution of the PDE.

Now, consider the stopping time τ = min{t ≥ 0, X(t) ≥ 3, or X(t) ≤ 1}. We will
show that P(Xτ = 1) = 1/2.

By the optional stopping theorem, we know that a stopped martingale is a martingale. And

E[Xτ ] = E[X0]. We have:

2 = E[X0] = E[Xτ ] = 1P(Xτ = 1) + 3P(Xτ = 3)

= 1P(Xτ = 1) + 3(1− P(Xτ = 1))

= 3− 2P(Xτ = 1)

P(Xτ = 1) = 1/2

8.2 Multivariate Extension.

Ito’s formula can be generalized to several Ito processes. Let’s start by stating an example

of a function of two Ito processes. Such a function f(x1, x2) will be a function of two
space variables. Not surprisingly, it needs to have two derivatives in each variable and they

need to be a continuous function; we need f ∈ C2×2(R× R).

Theorem 8.2. (Ito’s formula for many Ito processes) Let (X(t) : t ≥ 0) and (Y (t) : t ≥ 0) be
two Ito processes of the form:

dX(t) = V (t)dB(t) +D(t)dt

dY (t) = U(t)dB(t) +R(t)dt (8.12)
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where (B(t) : t ≥ 0) is a standard Brownian motion. Then, for f ∈ C2×2(R× R), we have:

df(X(t), Y (t)) = fx(X(t), Y (t))dX(t) + fy(X(t), Y (t))dY (t) +
1

2
fxx(X(t), Y (t))d < X,X >t

+ fxy(X(t), Y (t))d < X, Y >t +
1

2
fyy(X(t), Y (t))d < Y, Y >t

The idea of the proof is the same as in theorem 8.1 : Taylor’s expansion and quadratic

variation, together with the cross-variation of two processes.

dX(t) · dY (t) = (V (t)dB(t) +D(t)dt)(U(t)dB(t) +R(t)dt)

= U(t)V (t)dt

Example 8.10. (Product Rule) An important example of this formula is Ito’s product rule.

Let X(t) and Y (t) be as in equation (8.12). Then:

d(X(t)Y (t)) = Y (t)dX(t) +X(t)dY (t) + dX(t) · dY (t)

Exercise 8.2. Let (Ω,F ,P) be a probability space and let (Bt : t ≥ 0) be a standard
brownian motion. Using integration by parts, show that

∫ t

0

B(s)ds =

∫ t

0

(t− s)dB(s)

and prove that
∫ t

0
B(s)ds ∼ N (0, t3/3).

Is

X(t) =

{
0 t = 0
√
3
t

∫ t

0
B(s)ds t > 0

a standard Wiener process?

Solution.

Using integration by parts:

∫
u

(
dv

ds

)
ds = uv −

∫
v

(
du

ds

)
ds
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We set u = B(s) and dv/ds = 1. Then:

∫ t

0

B(s)ds = sB(s)|t0 −
∫ t

0

sdB(s)

= tB(t)−
∫ t

0

sdB(s)

=

∫ t

0

(t− s)dB(s)

Thus,
∫ t

0
B(s)ds is a Gaussian random variable with:

E
[∫ t

0

B(s)ds

]
= E

[∫ t

0

(t− s)dB(s)

]
= 0

and

E

[(∫ t

0

B(s)ds

)2
]
=

∫ t

0

(t− s)2ds

=
(t− s)3

3

∣∣∣∣t
0

=
t3

3

Thus, using the properties of Ito Integral,
∫ t

0
B(s)ds =

∫ t

0
(t− s)dB(s) is a martingale.

Now the quadratic variation < M,M >t= 0, and this can be a bit tricky. Remember,〈∫ t

0
f(s,Bs)dB(s),

∫ t

0
f(s,Bs)dB(s)

〉
=
∫ t

0
f2(s,Bs)ds if and only if f is a function

of the time s and the position of the Brownian motion B(s). Since, f is a function of t
as well, this rule cannot be applied.

By first principles, we can show that, the quadratic variation is indeed 0:

lim
n→∞

E

n−1∑
j=0

(I(tj+1)− I(tj))
2

 = lim
n→∞

E

n−1∑
j=0

B2
tj (tj+1 − tj)

2


= lim

n→∞
max

1≤j≤n
|tj+1 − tj | · E

n−1∑
j=0

B2
tj (tj+1 − tj)


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Since the paths ofBt are continuous, so are the pathsB
2
t on the compact interval [0, t]. So,

(B2
s , s ∈ [0, t]) is uniformly bounded. Thus, the expectation term is bounded. As n →

∞, the mesh size approaches zero, and consequently the quadratic variation approaches

zero.

Exercise 8.3. (Generalized Ito Integral). Let (Ω,F ,P) be a probability space and let
(Bt : t ≥ 0) be a standard brownian motion. Given that f is a simple process, show that:

∫ t

0

f(s,Bs)dBs = Btf(t, Bt)−
∫ t

0

[
Bs

∂f

∂t
+

∂f

∂x
+

1

2
Bs

∂2f

∂x2

]
ds

−
∫ t

0

Bs
∂f

∂x
dBs

and

∫ t

0

f(s,Bs)ds = tf(t, Bt)−
∫ t

0

s

[
∂f

∂t
+

1

2

∂2f

∂x2

]
ds−

∫ t

0

s
∂f

∂x
dBs

Solution.

I suppress (t, Bt) for simplicity. Applying the product rule to Btf , we get:

d(Btf) = fdBt +Btdf + dBt · df

= fdBt +Bt

(
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

)
+ dBt ·

(
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

)
= fdBt +

(
Bt

∂f

∂t
+

∂f

∂x
+

1

2
Bt

)
dt+Bt

∂f

∂x
dBt

Btf =

∫ t

0

fdBs +

∫ t

0

(
Bs

∂f

∂t
+

∂f

∂x
+

1

2

∂2f

∂x2
Bs

)
ds+

∫ t

0

Bs
∂f

∂x
dBs∫ t

0

fdBs = Btf −
∫ t

0

(
Bs

∂f

∂t
+

∂f

∂x
+

1

2

∂2f

∂x2
Bs

)
ds−

∫ t

0

Bs
∂f

∂x
dBs

Applying product rule to tf(t, Bt), we get:
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d(tf) = fdt+ tdf + dt · df

= fdt+ t

(
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

)
+ dt

(
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

)
= fdt+ t

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt+ t

∂f

∂x
dBt

tf =

∫ t

0

fds+

∫ t

0

s

(
∂f

∂t
+

1

2

∂2f

∂x2

)
ds+

∫ t

0

s
∂f

∂x
dBs∫ t

0

fds = tf −
∫ t

0

s

(
∂f

∂t
+

1

2

∂2f

∂x2

)
ds−

∫ t

0

s
∂f

∂x
dBs

The following example will be important when we discuss the Girsanov theorem.

Example 8.11. (A generalization of theGeometric BrownianMotion). Consider (
∫ t

0
V (s)dB(s), t ≥

0) an Ito process. Define the positive process:

Mt = exp

(∫ t

0

VsdBs −
∫ t

0

V 2
s ds

)
, t ≥ 0

Consider

8.3 Martingale Representation and Levy’s characterization

We know, very well, by now that an Ito integral is a continuous martingale with respect

to the Brownian fitration, whenever the integrand is in L2
c(T ). What can we say about

the converse? In other words, if we have a martingale with respect to some Brownian

filtration, can it be expressed as an Ito-integral for some integrand (V (t) : t ∈ [0, T ]).
Amazingly the answer to this question is yes.

Theorem 8.3. (Martingale Representation Theorem). Let (B(t) : t ∈ [0, T ]) be a Brownian

motion with filtration (Ft : t ≥ 0) on (Ω,F ,P). Consider a martingale (M(t) : t ∈ [0, T ]) with
respect to this filtration. Then, there exists an adapted process (Vt : t ≤ T ) such that:

Mt = M0 +

∫ t

0

VsdBs, t ≤ T (8.13)

One striking fact of this result is that (Mt : t ≤ T ) ought to be continuous. In other words,
we cannot construct a process with a jump that is a martingale adapted to a Brownian

motion!
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Instead of proving the theorem, we will see how the result is not too surprising with

stronger assumptions. Instead of supposing that Mt is Ft-measurable, take that Mt is

σ(Bt)-measurable. In other words,Mt = h(Bt) for some function h. In the case that h
is smooth, then it is clear by the Ito’s formula that the representation that the representation

in equation (8.13) holds and Vs = h′(Bt).

The relevance to hedging of this is that the only source of uncertainty in the model is

the Brownian motion appearing in theorem (8.3), and hence there is only one source of

uncertainty to be removed by hedging. This assumption implies that the martingale cannot

have jumps because Ito integrals are continuous. If we want to have a martingale with

jumps, we will need to build a model that includes sources of uncertainty different from

or in addition to Brownian motion.

9 Change of Probability.

9.1 Change of Probability for a Random Variable.

Consider a random variable X defined on (Ω,F ,P) with E[X] = 0. We would like to
change the mean ofX so that µ 6= 0. Of course, it is easy to change the mean of a random
variable: IfX has mean 0, then the random variableX+µ has mean µ. However, it might
be that the variable X + µ does not share the same possible values as X . For example,
takeX to be a uniform random variable on [−1, 1]. WhileX +1 has mean 1, the density
of X + 1 would be non-zero on [0, 2] instead of [−1, 1].

Our goal is to find a good way to change the underlying probabilityP, and thus the distribu-
tion ofX , so that the set of outcomes is unchanged. IfX is a discrete random variable, say

with P(X = −1) = P(X = 1) = 1/2, we can change the probability in order to change
the mean easily. It suffices to take P̃ so that P̃(X = 1) = p and P(X = −1) = 1 − p
for some appropriate 0 ≤ p ≤ 1.

If X is a continuous random variable, with a PDF fX , the probabilities can be changed
by modifying the PDF. Consider the a new PDF:

f̃X(x) = fX(x)g(x)

for some function g(x) > 0 such that
∫
f(x)g(x)dx = 1. Clearly, fX(x)g(x) is also a

PDF and fX(x) > 0 if and only if fX(x)g(x) > 0, so that the possible values of X are

unchanged. A convenient (and important!) choice of function g is:

g(x) =
eax∫

R
eaxfX(x)dx

=
eax

E[eaX ]
, a ∈ R (9.1)

assuming X has a well-defined MGF. Here a is a parameter that can be tuned to fit to a
specific mean. The normalization factor in the denominator is the MGF of X . It ensures
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that fX(x)g(x) is a PDF. Note that if a > 0, the function g gives a bigger weight to large
values of X . We say that g is biased towards the large values.

Example 9.1. (Biasing a uniform random variable). LetX be a uniform random variable

on [0, 1] defined on (Ω,F ,P). Clearly, E[X] = 1/2. How can we change the PDF ofX
so that the possible values are still [0, 1], but the mean is 1/4. We have that the PDF is
fX(x) = 1 if x ∈ [0, 1] and 0 elsewhere. Therefore, the mean with the new PDF with
parameter a as in the equation (9.1) is:

Ẽ[X] =

∫ 1

0

xf̃(x)dx

=

∫ 1

0

xeax

E[eaX ]
dx

=
a

ea − 1

∫ 1

0

xeaxdx

=
a

ea − 1

([
x
eax

a

]1
0

− 1

a

∫ 1

0

eaxdx

)

=
a

ea − 1

(
ea

a
− 1

a

ea − 1

a

)
=

ea

ea − 1
− 1

a

For ˜E[X]to be equal to 1/4, we get numerically a ≈ −3.6. Note that the possible values
of X remain the same under the new probability. However, the new distribution is no

longer uniform! It has bias towards values closer to zero, as it should.

Example 9.2. (Biasing aGaussian random variable). LetX be aGaussian random variable

with mean µ and variance σ2. How can we change the PDF ofX to have mean 0? Going
back to (9.1), the mean µ under the new PDF with parameter a is:

287



Ẽ[X] =

∫ ∞

−∞
xf̃(x)dx

=

∫ ∞

−∞
xg(x)f(x)dx

=

∫ ∞

−∞
x · eax

E[eaX ]

1√
2πσ

e
− 1

2

(
x−µ
σ

)2

dx

=
1

eµa+
1
2a

2σ2

1√
2πσ

∫ ∞

−∞
x · exp

[
−1

2

(
x2 − 2µx+ µ2 − 2aσ2x

σ2

)]
dx

=
1

eµa+
1
2a

2σ2

1√
2πσ

∫ ∞

−∞
x · exp

[
−1

2

(
x2 − 2(µ+ aσ2)x+ (µ+ aσ2)2 − 2µaσ2 − a2σ4

σ2

)]
dx

=
eµa+a2σ2/2

eµa+
1
2a

2σ2

1√
2πσ

∫ ∞

−∞
x exp

[
−1

2

(
x− (µ+ aσ2)

σ

)2
]
dx

=
1√
2πσ

∫ ∞

−∞
x exp

[
−1

2

(
x− (µ+ aσ2)

σ

)2
]
dx

For the specific choice of the parameter a = µ/σ2, we recover the PDF of a Gaussian

random variable with mean 0. But, we can deduce more. The new PDF is also Gaussian.
This was not the case for uniform random variables. In fact, the new PDF is exactly the

same as the one of X − µ. For if, a = µ/σ2, we have:

Ẽ[X] =
1√
2πσ

∫ ∞

−∞
x exp

[
− x2

2σ2

]
dx

and observe that if Y = X − µ, then:

FY (x) = P(X − µ < x)

= P(X ≤ x+ µ)

= FX(x+ µ)

d

dx
(FY (x)) =

d

dx
(FX(x+ µ))

fY (x) = fX(x+ µ) · d

dx
(x+ µ)

fY (x) = fX(x+ µ)

=
1√
2πσ

exp

[
−1

2

(
x+ µ− µ

σ

)2
]

=
1√
2πσ

exp

[
− x2

2σ2

]
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In other words:

For Gaussians, changing the mean by recentering is equivalent to changing the probability as in (9.1).

This is a very special property of the Gaussian distribution. The exponential and Poisson

distributions have a similar property.

Example (9.2) is very important and wewill state it as a theorem. Before doing so, we notice

that the change of PDF (9.1) can be expressed more generally by changing the underlying

probability measure(length, area, weights) P on the sample space Ω on which the random

variables are defined. More precisely, let (Ω,F ,P) be a probability space, and let X be a

random variable defined on Ω. We define a new probability P̃ on Ω as follows:

If E is an event in F , then:

P̃(E) = Ẽ[1E ] =
∫
R

1E · f̃(x)dx

=

∫
R

1E · g(x)fX(x)dx

=

∫
R

1E · eax

E[eaX ]
fX(x)dx

= E
[
1E

eaX

E[eaX ]

]
(9.2)

Intuitively, we are changing the probability of each outcome ω ∈ E , by the factor

eaX(ω)

E[eaX ]
(9.3)

In other words, if a > 0, the outcomes ω for whichX has large values are favored. Note

that equation (9.1) for the PDF is recovered, since for any function h of X , we have:

Ẽ[h(X)] = E
[

eaX

E[eaX ]
h(X)

]
=

∫
R

h(x)
eax

E[eaX ]
fX(x)dx

In this setting, the above example becomes the preliminary version of the Cameron-Martin-

Girsanov theorem:

Theorem 9.1. Let X be a Gaussian random variable with mean µ and variance σ2 defined on

(Ω,F ,P). Then, under the probability P̃ given by:

P̃(E) = E
[
1Ee

− µ

σ2 X+ 1
2

µ2

σ2

]
, E ∈ F (9.4)
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the random variable X is Gaussian with mean 0 and variance σ2.

Moreover, since X can be written as X = Y + µ where Y is Gaussian with mean 0 and variance σ2

under P, we have that P̃ can be written as:

P̃(E) = E
[
1Ee

− µ

σ2 X− 1
2

µ2

σ2

]
, E ∈ F (9.5)

It is good to pause for a second and look at the signs in the exponential of equations

(9.4) and (9.5). The signs in the exponential might be very confusing and is the source of

many mistakes in the Cameron-Martin-Girsanov theorem. A good trick is to say that, if

we want to remove µ, then the sign in front of X or Y must be negative. Then, we add

the exponential factor needed for P̃ to be a probability. This is given by the MGF ofX or

Y depending on how we want to express it.

The probabilities P and P̃, as defined in the equation (9.4) are obviously not equal since
they differ by a factor in (9.3). However, they share some similarities. Most notably, if

E is an event of positive P-probability, P(E) > 0, then we must have P̃(E) > 0, since
the factor in (9.3) is always strictly positive. The converse is also true: if E is an event of
positive P̃-probability, P̃(E) > 0, then we must have that P(E) > 0. This is because the
factor in (9.3) can be inverted, being strictly positive. More precisely, we have:

P(E) = E[1E ]

= E

[
1E

eaX(ω)

E[eaX ]

(
eaX(ω)

E[eaX ]

)−1
]

= Ẽ

[
1E

(
eaX(ω)

E[eaX ]

)−1
]

The factor
(

eaX(ω)

E[eaX ]

)−1

is also strictly positive, proving the claim. To sum it all up, the

probabilities P and P̃ essentially share the same possible outcomes. Such probability mea-
sures are said to be equivalent measures.

Definition 9.1. Consider the two probabilities P and P̃ on (Ω,F). They are said to be
equivalent, if for any event E ∈ F , we have P(E) > 0 if and only if P(E) > 0. Thus,
P and P̃ agree on the null sets. If A ∈ F is such that P(A) = 0, then P̃(A) = 0 and
vice-versa.

Keep in mind that two probabilities that are equivalent might still be very far from being

equal!
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9.2 The Cameron-Martin Theorem.

Theorem9.2. (Cameron-Martin Theorem for constant drift). Let ( ˜B(t), t ∈ [0, T ]) be aP−Brow-

nian motion with constant drift θ defined on (Ω,F ,P). Consider the probability P̃on Ω given by:

P̃(E) = E
[
e−θB̃(T )+ θ2

2 T 1E

]
, E ∈ F (9.6)

Then, the process (B̃(t), t ∈ [0, T ]) under P̃is distributed like a standard brownian motion. Moreover,

since we can write B̃t = θt+Bt for some standard brownian motion (Bt, t ∈ [0, T ]) on (Ω,F ,P),
the probability P̃ can also be written as:

P̃(E) = E
[
e−θB(T )− θ2

2 T 1E

]
(9.7)

It is a good idea to pause again and look at the signs in the exponential in equations (9.6)

and (9.7). They behave the same way as in theorem (9.1). There is a minus sign in front of

BT to remove the drift. Before proving the theorem, we make some important remarks.

(1) The end-point. Note that only the endpoint B̃(T ) of the Brownian motion is in-
volved in the change of probability. In particular, T cannot be+∞. The Cameron-Martin

theorem can only be applied on a finite interval.

(2) A martingale. The factor MT = e−θB(T )− θ2

2 T = e−θB̃(T )+ 1
2 θ

2T involved in the

change of probability is the end-point of a P−martingale, that is, it is a martingale under
the original probability P. To see this:

E[MT |Ft] = E
[
e−θB(T )− 1

2 θ
2T |Ft

]
= e−θB(t)E

[
e−θ(B(T )−B(t))|Ft

]
e−

θ2

2 T

{Using B(T )−B(t) ⊥ Ft}

= e−θB(t)E
[
e−θ(B(T )−B(t))

]
e−

θ2

2 T

= e−θB(t)e
θ2

2 (T−t)e−
θ2

2 T

= e−θB(t)− θ2

2 t

In fact, sinceB(t) is a P-standard Brownian motion,M(t) = e−θB(t)− θ2

2 t is a geometric

brownian motion.

Interestingly, the drift of B̃(t) becomes the volatility factor inMT ! E[M2
T ] = E[e−2θB(T )−θ2T ] =

e−θ2T · E[e−2θB(T )] = e−θ2T · e2θ2T = eθ
2T .
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The fact thatM(t) is a martingale is very helpful in calculations. Indeed, suppose we want
to compute the expectation of a function F (B̃(s)) of a Brownian motion with drift at
time s < T . Then, we have by theorem (9.2):

E[F (B̃(s))] = E[MTM
−1
T F (B̃(s))]

= Ẽ[M−1
T F (B̃(s))]

= Ẽ[eθB̃(T )− 1
2 θ

2TF (B̃(s))]

Now, we know that under P̃probability, (B̃(t), t ∈ [0, T ]) is a standard brownian motion,

or P̃-standard brownian motion for short. Therefore, the process eθB̃(t)− 1
2 θ

2t is a mar-

tingale under the new probability measure P̃, or a P̃-martingale for short. By conditioning
over Fs and applying the martingale property, we get:

E
[
F (B̃s)

]
= Ẽ[eθB̃(T )− 1

2 θ
2TF (B̃(s))]

= Ẽ[Ẽ[eθB̃(T )− 1
2 θ

2TF (B̃(s))|Fs]]

= Ẽ[eθB̃(s)− 1
2 θ

2sF (B̃(s))]

= E[eθB(s)− 1
2 θ

2sF (B(s))]

The last equality may seem wrong as removed all the tildes. It is not! It holds because

(B̃(t)) under P̃ has the same distribution as (B(t)) under P: a standard brownian motion.
Of course, it would be possible to directly evaluate E[F (B̃(s))] here as we know the

distribution of a Brownian motion with drift. However, when the function will involve

more than one point (such as the maximum of the path), the Cameron-Martin theorem is

a powerful tool to evaluate expectations.

(3) The paths with or without the drift are the same. Let (B(t), t ≤ T ) be a standard
Brownian motion defined on (Ω,F ,P). Heuristically, it is fruitful to think of the sample
space of Ω as the different continuous paths of Brownian motion. Since, the change of

probability from P to P̃simply changes the relative weights of the paths (and this change of
weight is never zero, similarly to equation (9.3) for a single random variable), the theorem

suggests that the paths of a standard Brownian motion and those of a Brownian motion

with a constant drift θ (with volatility 1) are essentially the same.

The form of the factorMT = e−θB̃T+θ2T can be easily understood at the heuristic level.

For each outcome ω, it is proportional to e−θB̃T (ω) (The term e(θ
2/2)T is simply to ensure

that P(Ω) = 1) Therefore, the factor MT penalizes the paths for which B̃T (ω) is large
and positive (if θ > 0). In particular, it is conceivable that the Brownian motion with
positive drift is reduced to standard Brownian motion under the new probability.

(4) Changing the volatility. What about the volatility? Is it possible to change the proba-

bility P to P̃ in such a way that the Brownian motion under P has volatility σ 6= 1 under P̃?
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The answer is no! The paths of the Brownian motions with different volatilities are inher-

ently different. Indeed, it suffices to compute the quadratic variation. If (Bt : t ∈ [0, T ])
has volatility 1 and (B̃t, t ∈ [0, T ]) has volatility 2. then the following convergence holds
for ω in a set of probability one (for a partition fine enough, say tj+1 − tj = 2−n. Then

Bt =
∫
1 · dBt and B̃t =

∫
2 · dBt

lim
n→∞

n−1∑
j=0

(Btj+1(ω)−Btj (ω))
2 =

∫ T

0

12 · ds = T

lim
n→∞

n−1∑
j=0

(B̃tj+1
(ω)− B̃tj (ω))

2 =

∫ T

0

22 · ds = 4T

In other words, the distribution of the standard brownian motion on [0, T ] is supported
on paths whose quadratic variation is T , whereas the distribution of (B̃t, t ≥ 0) is sup-
ported on paths where the quadratic variation is 4T . These paths are very different. We
conclude that the distributions of the two processes are not equivalent. Hence, a change

of probability from P to P̃ is not possible. In fact, we say that they are mutually singular,
meaning the set of paths on which they are supported are disjoint.

Proof.

Let (B̃t : t ∈ [0, T ]) be a Brownian motion with constant drift θ defined on (Ω,F ,P).
Thus, B̃t = θt+Bt.

Claim. B̃t is a P̃-martingale.
Let

Mt = f(t, Bt) = exp(−θBt − (θ2/2)t)

So:

dMt = −θ2

2
Mtdt− θMtdBt +

1

2
θ2M(t)dt

= −θMtdBt

Consider the product (MtB̃t). We have:

d(MtB̃t) = B̃tdMt +MtdB̃t + dMt · dB̃t

= −B̃tθMtdBt +Mt(θdt+ dBt)− θMtdBt(θdt+ dBt)

= −B̃tθMtdBt + θMtdt+MtdBt − θMtdt

= (−B̃tθ + 1)MtdBt
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Thus, by the properties of Ito integral,MtB̃t is a martingale under P. By the abstract Bayes
formula (9.4):

Ẽ[B̃t|Fs] =
1

Ms
E[MtB̃t|Fs]

=
1

Ms
·MsB̃s

= B̃s

Thus, B̃t is a P̃-martingale.

Claim. Our claim is that under the P̃ measure, B̃t ∼ N P̃(0, t) and to do this we rely on
the the moment-generating function.

By definition, for a constant Ψ:

MB̃t
(Ψ) = Ẽ

[
exp
(
ΨB̃t

)]
= E

[
MT exp

(
ΨB̃t

)]
= E

[
exp

(
−θB̃T +

θ2

2
T +ΨB̃t

)]
= E

[
exp

(
−θ(θT +BT ) +

θ2

2
T +Ψ(θt+Bt)

)]
= E

[
exp

(
−θBT − θ2

2
T +Ψθt+ΨBt)

)]
= E

[
exp

(
−θ(BT −Bt)−

θ2

2
T +Ψθt+ (Ψ− θ)Bt)

)]
= exp

(
−θ2

2
T +Ψθt

)
E (−θ(BT −Bt))E ((Ψ− θ)Bt)

= exp

(
−θ2

2
T +Ψθt

)
exp

[
1

2
θ2(T − t)

]
exp

[
1

2
(Ψ− θ)2t

]
= exp

[
−1

2

(
θ2 − 2Ψθ − (Ψ− θ)2

)
t

]
= exp

[
−1

2

(
θ2 − 2Ψθ − (Ψ2 − 2Ψθ + θ2

)
t

]
= exp(−Ψ2t)

Thus, B̃t ∼ N P̃(0, t).

Claim. Finally, to show that B̃t is indeed a P̃−standard brownian motion, we have the
following:
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(a) B̃0 = θ(0) +B0 = 0 and B̃t has almost surely continuous paths.

(b) We would like to prove that, for s < t, B̃t − B̃s ∼ N P̃(0, t− s). We have:

E[B̃t − B̃s] = Ẽ[B̃t]− Ẽ[Bs]

= 0

And,

Ẽ[(B̃t − B̃s)
2] = Ẽ[B̃2

t − 2B̃tB̃s + B̃2
s ]

= Ẽ[B2
t ]− 2Ẽ[B̃tB̃s] + Ẽ[B̃2

s ]

= t+ s− 2Ẽ[B̃tB̃s]

(c) The non-overlapping increments of a P̃-martingale are independent. To see this, sup-
pose t1 ≤ t2 ≤ t3:

Ẽ[(Bt3 −Bt2)(Bt2 −Bt1)] = Ẽ[Ẽ[(Bt3 −Bt2)(Bt2 −Bt1)|Ft2 ]]

= Ẽ[(Bt2 −Bt1)Ẽ[(Bt3 −Bt2)|Ft2 ]]

= Ẽ[(Bt2 −Bt1)(Bt2 −Bt2)]] = 0

Also, the covariance

Ẽ[B̃tB̃s] = Ẽ[(B̃t − B̃s)B̃s] + Ẽ[B̃2
s ]

= 0 + s

So, E[(B̃t − B̃s)
2] = t+ s− 2s = t− s.

Consequently, B̃t is a P̃-standard brownian motion.

Example 9.3. (Bachelier’s formula for Brownian motion with a drift) One of the most

interesting formulas we have seen so far is Bachelier’s formula for the maximum of the

Brownian motion in proposition

9.3 Radon-Nikodym Theorem.

Theorem 9.3. Let (Ω,F ,P) be a probability space. Let Q be another probability measure. Under

the assumption thatQ is absolutely continuous with respect to P, that is,Q(A) = 0 ⇐⇒ P(A) = 0,
there exists a non-negative random variable Z such that:
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Z :=
dQ
dP

and we call Z the Radon-Nikodym derivative of Q with respect to P.

At a heuristic level, as long as P andQ agree on the possible events (and null sets), we can

define a likelihood ratio of the little probability elements dQ(ω) and dP(ω). This is an
almost surely non-negative random variable with expectation 1.

It follows that:

Q(E) = EQ[1E ]

=

∫
Ω

1{ω∈E}dQ(ω)

=

∫
Ω

1{ω∈E}ZdP(ω)

= EP[Z1E ]

Since Q is a probability measure, Q(Ω) = EP[Z · 1Ω] = EP[Z] = 1.

and

EQ[X] = EP[ZX]

EP[X] = EQ[
1

Z
X]

Definition 9.2. (Density Process). We can define the Radon-Nikodym derivative(likelihood

ratio) process:

Z(t) =
dQ
dP

∣∣∣∣
t

= EP[Z|Ft]

Then, Z(t) is a P−martingale with Z(0) = EP[Z(t)] = 1. To see this:

EP[Z(t)|Fs] = EP[EP[Z|Ft]|Fs]

= EP[Z|Fs]

{Tower law}
= Z(s)
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Theorem 9.4. (Abstract Bayes’ Formula) Let (Ω,F ,P) be a probability space and letQ be any other

probability measure on it and suppose thatQ << P. By the Radon-Nikodym theorem, ∃Z = dQ/dP,
Z ≥ 0 a.s. with EP[Z] = 1. Then, we have:

EQ[X|Ft] =
EP[ZX|Ft]

EP[Z|Ft]

Proof. We use the definition of conditional expectations. Our claim is that for all A ∈ Ft,

∫
A

EP[ZX|Ft]dP =

∫
A

EP[Z|Ft]EQ[X|Ft]dP

For the left side:

∫
A

EP[ZX|Ft]dP =

∫
A

ZXdP

{Definition of conditional expectations}

=

∫
A

XdQ

{Radon-Nikodym Derivative}

For the right side:

∫
A

EP[Z|Ft]EQ[X|Ft]dP =

∫
A

EP[ZEQ[X|Ft]|Ft]dP

{Since EQ[X|Ft] is Ft −measurable}

=

∫
A

ZEQ[X|Ft]dP

{Definition of conditional expectations}

=

∫
A

EQ[X|Ft]dQ

{Radon-Nikodym Derivative}

=

∫
A

XdQ
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9.4 Change of Measure for processes.

Theorem 9.5. (Change of Measure). Let (Ω,F ,P) be a probability space and let M(t) be any

density process. Let X(t) be any Ft-measurable random variable. Then:

EQ[X(T )|Ft] = EP
[
M(T )

M(t)
X(T )|Ft

]
Proof. Recall thatM = dQ/dP. By the conditional Bayes’ formula:

EQ[X(T )|Ft] =
EP[MX(T )|Ft]

EP[M |Ft]

=
EP[E[MX(T )|FT ]|Ft]

M(t)

{Tower law; definition of density processM(t)}

=
EP[X(T )E[M |FT ]|Ft]

M(t)

{Taking out what is known}

=
EP[X(T )M(T )|Ft]

M(t)

=
EP[X(T )M(T )|Ft]

M(t)

= EP
[
M(T )

M(t)
X(T )|Ft

]

A density process may be used to artificially construct a new measure. Let M(t) be any
P-martingale withM(0) = 1. We choose a final horizon time T and define the Radon-

Nikodym derivative as Z = M(T ). The corresponding measure:

Q(A) = EQ[1A] = EP[M(T )1A]

9.5 Black-Scholes Merton Option Pricing Formulae.

Let (W (t), t ∈ [0, T ]) be a Brownian motion on the probability space (Ω,F ,P). The
Black-Scholes model consists of two assets (i) a stock and (ii) a risk-free bank account with

dynamics as follows:

298



dS(t) = µS(t)dt+ σS(t)dW (t)

Let f(x) = lnx. Then, by Ito’s lemma:

df(x) = fx(x)dx+
1

2
fxx(x)dx · dx

df(S(t)) =
1

S(t)
dS(t)− 1

2

1

S(t)2
dS(t)dS(t)

= µdt+ σdW (t)− 1

2

1

S(t)2
σ2S2(t)dt

d(lnS(t)) =

(
µ− 1

2
σ2

)
dt+ σdW (t)

ln

(
S(t)

S(0)

)
=

∫ t

0

(
µ− 1

2
σ2

)
dt+

∫ t

0

σdW (t)

S(t) = S(0) exp

[(
µ− 1

2
σ2

)
r + σW (t)

]
The dynamics of the locally risk-free bank account are:

dB(t) = rB(t)dt

The dynamics of the discounted stock price process are:

d(e−rtS(t)) = d(e−rt)S(t) + e−rtdS(t) + d(e−rt)dS(t)

= −re−rtdtS(t) + e−rt(µS(t)dt+ σS(t)dW (t))

= e−rtS(t)(µ− r)dt+ e−rtσS(t)dW (t)

= e−rtσS(t)

{
(µ− r)

σ
dt+ dW (t)

}
= e−rtσS(t)(θdt+ dW (t))

Define

dQ
dP

∣∣∣∣
t

= e−θW (t)− θ2

2 t

and
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WQ(t) = W (t) + θt

dWQ(t) = dW (t) + θdt

Then, by the Girsanov theorem, WQ(t) is a Q-standard brownian motion. WQ(t) ∼
NQ(0, t). Under Q, the dynamics of the discounted stock price is:

d(e−rtS(t)) = e−rtσS(t)dWQ(t)

The measure Q is said to be risk-neutral because it is equivalent to P (Q(A) = 0 ⇐⇒
P(A) = 0; they agree on null sets) and in addition it renders the discounted stock price
into a martingale. Indeed:

e−rtS(t) = S(0) +

∫ t

0

e−rtσS(u)dWQ(u)

and the process
∫ t

0
e−rtσS(u)dWQ(u) is an Ito-integral and therefore a Q-martingale.

The undiscounted stock price process (S(t), t ∈ [0, T ) is described by the Q-dynamics:

dS(t) = µS(t)dt+ σS(t)(dWQ(t)− θdt)

= µS(t)dt− σS(t) · µ− r

σ
dt+ σS(t)dWQ(t)

= µS(t)dt− µS(t)dt+ rS(t)dt+ σS(t)dWQ(t)

= rS(t)dt+ σS(t)dWQ(t)

and

S(t) = S(0) exp
[
(r − σ2/2)t+ σWQ(t)

]
By the risk-neutral pricing formula, the price of a derivative security with payoff V (T ) is:

V (t) = EQ[e−
∫ T
t

r(u)duV (T )|Ft]

We have r(u) ≡ r. And further, for a european call option: V (T ) = ((S(T ) − K) ·
1{ST>K}. Thus:
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V (t) = e−r(T−t)EQ[(S(T )−K) · 1{S(T )>K}|Ft]

= e−r(T−t)EQ[S(T ) · 1{S(T )>K}|Ft]− e−r(T−t)EQ[K · 1{S(T )>K}|Ft]

= e−r(T−t)EQ[S(T ) · 1{S(T )>K}|Ft]−Ke−r(T−t)EQ[1{S(T )>K}|Ft]

The second expectation is easily solved. We have:

EQ[1{S(T )>K |Ft] = Q{S(T ) > K|Ft]

Using the fact, that

Q{S(T ) > K|Ft} = Q{logS(T ) > logK|Ft}

= Q{logS(t) +
(
r − σ2

2

)
(T − t) + σ(WQ(T )−WQ(t)) > logK}

Let Z be a standard normal random variable following NQ(0, 1). Then, WQ(T ) −
WQ(t) =

√
T − tZ :

Q{S(T ) > K|Ft} = Q{logS(t) +
(
r − σ2

2

)
(T − t) + σ(WQ(T )−WQ(t)) > logK}

= Q{logS(t) +
(
r − σ2

2

)
(T − t) + σ

√
T − tZ > logK}

= Q{Z >
logK − logS(t)−

(
r − σ2

2

)
(T − t)

σ
√
T − t

}

= Q{Z ≤
log

S(t)
K +

(
r − σ2

2

)
(T − t)

σ
√
T − t

}

= Φ(d−(τ, S(t))), τ = T − t

The first expectation is typically solved using a change of numeraire.

Let Q̃ be another probability measure related toQ defined by the Radon-Nikodym deriva-

tive:

M =
dQ̃
dQ

:=
S(T )e−rT

S(0)
= exp

[
−σ2

2
T + σWQ(T )

]
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and correspondingly, let us define the Radon-Nikodym derivative process (M(t), t ∈
[0, T ]) as:

M(t) =
dQ̃
dQ

∣∣∣∣∣
t

= EQ[M |Ft]

Clearly,M(T ) is a non-negative random variable.

We note that:

EQ[M(T )] =
EQ[S(T )e−rT ]

S(0)

=
S(0)

S(0)
= 1

{Discount stock price is a martingale under Q}

Further,M(t) is an exponential Q-martingale. So:

M(t) =
S(t)e−rt

S(0)

By the change-of-measure theorem, the first expectation can be expressed as follows.

EQ̃[1{S(T )>K}|Ft] = EQ
[
S(T )e−rT

S(t)e−rt
· 1{S(T )>K}|Ft

]
S(t)EQ̃[1{S(T )>K}|Ft] = EQ

[
S(T )e−r(T−t) · 1{S(T )>K}|Ft

]
=⇒ EQ

[
S(T )e−r(T−t) · 1{S(T )>K}|Ft

]
= S(t)Q̃{S(T ) > K|Ft}

So, the value of a European call option can be written as:

V (t) = EQ̃[S(t) · 1{S(T )>K}|Ft]− e−r(T−t)EQ[K · 1{S(T )>K}]

or equivalently:

V (t) = S(t)Q̃{S(T ) > K|Ft} −Ke−r(T−t)Q{S(T ) > K|Ft}
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Finally:

Q̃{S(T ) > K|Ft} = EQ
[
M(T )

M(t)
1{S(T )>K}|Ft

]
= EQ

[
e−

σ2

2 (T−t)+σ(WQ(T )−WQ(t))1{S(T )>K}|Ft

]
Define Y := NQ(0, 1). Then,WQ(T )−WQ(t) =

√
(T − t)Y . Now, it is easy to see

that the event {ST > K} is the same as {Y < d−(τ, S(t))}. Thus:

Q̃{S(T ) > K|Ft} =

∫ d−(τ,S(t))

−∞
exp

(
−σ2

2
τ + σ

√
τy

)
fQ
Y (y)dy

=
1√
2π

∫ d−(τ,S(t))

−∞
exp

(
−σ2

2
τ + σ

√
τy

)
exp

(
−y2

2

)
dy

=
1√
2π

∫ d−(τ,S(t))

−∞
exp

[
−1

2

(
σ2τ + 2σ

√
τy + y2

)]
dy

=
1√
2π

∫ d−(τ,S(t))

−∞
exp

[
−1

2

(
y + σ

√
τ
)2]

dy

=
1√
2π

∫ d−(τ,S(t))+σ
√
τ

−∞
exp

[
−1

2
z2
]
dz

Let d+(τ, S(t)) = d−(τ, S(t)) + σ
√
τ . Then:

Q̃{S(T ) > K|Ft} = Φ(d+(τ, S(t))
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