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Abstract
This is a solution manual for Understanding Analysis, 2nd edition, by Stephen Abbott.

[Abbott 1.3.7] Let A C R be nonempty and bounded above and let ¢ € R.
Define the set ¢ + A by

c+A ={ct+a:ac A}
Then, sup(c + A) = ¢ + sup A.

Proof.

Since A is non-empty, bounded subset of R, by the Axiom Of Completeness,
there exists a least upper bound of A; we denote it by sup A.

By the definition of least upper bound, we are required to prove that:
(1) ¢ + sup A is an upper bound of ¢ + A.

(2) If w is an upper bound of ¢ + A, then ¢ + sup A < w.

(1) We know that, a < sup A4, forall a € A.

So,c+a <c+supAforallc+a € c+ A. So, ¢+ sup A is an upper bound of
c+ A.

(2) Let u be an arbitrary upper bound of ¢ + A. Then, ¢ +a < uforalla € A.
Thus, a < u—cforalla € A. Thus, u—cis an upper bound for A. Consequently,
supA < u —c. Thus, c+sup A < u. As u was arbitrary to begin with, this is
true for all such upper bounds.

Consequently, sup(c + A) = ¢ + sup A.

Lemma1.3.8. Assume s € Risanupperbound foraset A C R. Then, s = sup A
if and only if, for all € > 0, there exists an element a € A satisfying s — ¢ < a.

Proof.



—direction.

We are given that, s be an upper bound for the set A C R. We proceed by
contradiction. Assume that s = sup A, such that there exists ¢y > 0, such that
foralla € A, s — ¢p > a. Clearly, s — ¢y is an upper bound for A. But, s — ¢y <
s = sup A. This is a contradiction. Hence our initial assumption is false.

It follows, that if s = sup A, then for all ¢ > 0, there exists a € A, such that
s—e<ac<s.

«=djirection.

s is an upper bound for A. We are given that, for all ¢ > 0, da € A, such that
s — € < a. We proceed by contradiction. Assume that s is not the supremum of
A. Then, there exists an upper bound ¢ for A4, such that ¢ < s.

Pute = s —t. Then, Ja € A, such that s — (s — t) =t < a. But, this contradicts
the fact that ¢ is an upper bound for A. Hence, our initial assumption is false.
s =sup A.

[Abbott 1.3.1. (a) ] Write a formal definition in the style of definition 1.3.2 for
the infimum or the greatest lower bound of a set.

Definition (Greatest Lower Bound). A real number [ is the greatest lower
bound for a set A C R, if it meets the following two criteria:

(i) I is a lower bound for A.
(ii) If m is an arbitrary lower bound for 4, m <.
(b) Now, state and prove a version Lemma 1.3.8. for the greatest lower bound.

Let ! be a lower bound for A C R.Then, [ = inf 4, if and only for all € > 0, there
existsa € A, suchthata <[+ e.

=direction. [ is a lower bound for A. We are given that [ = inf A. We proceed
by contradiction. Assume that J¢y > 0, such thatVa € A, a > [+ €. Thus, I + ¢
is a lower bound for A. But, [ + ¢y > [ = inf A. This is a contradiction. Hence,
our initial assumption is false.

Ve > 0,3da € A,such thata <[ +e.
+—=direction.

lis a lower bound of A. We are given that, Ve > 0, Ja € A, such thata <[ +e.
We proceed by contradiction. Assume that [ is not the infimum of A. Then,
there exists a lower bound m for A, such that m > [.



Put e = m — [. Tt follows that, there exists a € A, sucha <1+ (m —1) = m.
But, this contradicts the fact that m is a lower bound for A. Hence, our initial
assumption must be false.

[ =inf A.

[Abbott 1.3.2] Give an example of each of the following, or state the request is
impossible.

(a) A set B with inf B > sup B.

It is impossible for a set to satisfy inf B > sup B. For a singleton set, inf B =
sup B.

(b) A finite set that contains its infimum but not its supremum.

This request is impossible. A finite set always contains its infimum and supre-
mum.

(c) A bounded subset of Q, that contains its supremum but not it’s infimum.
Consider A = {r: 0 <r <1, r € Q}. This is a bounded subset of Q.
Wehave, inf A=0.0¢ A.supA=1.1€ A

[Abbott1.3.4] Let Ay, Ay, A3, ... bea collection of non-empty sets, each of which
is bounded above.

N
(a) Find a formula for sup(A; U As). Extend this to sup (U Ak> .
k=1

Proof.

Our claim is that sup(A; U As) = max {sup A;,sup As}.
Let s; = sup A; and sy = sup Ay. Let m = max{sy, s2}.
(a)Claim: m is an upper bound for A; U A,.

Let a be an arbitrary element of A; U A. Then, either a € A; or a € A, or both
are true. Consequently, either ¢ < s or a < s5 or both are true. Since, s; < and
sy < m, in both cases, we must have that, a < m.

(b)Claim: If u is an upper bound for A; U Ay, then m < w.
Let u be an upper bound for A; U A,. Then, a < uforalla € A; U As.

So,a’ <wuforalla’ € Ay and a” < u for all a” € As. So, u is an upper bound



for A; and A;. So, s1 < wand s < u are both true. Consequently, m < u.
From (a) and (b) it follows that, m = sup(4; U As).
We can extend this to finite V.

Claim: Ur_, Ag) = Ay,
sup (Up_; Ak) Bax sup A

The claim is true for k¥ = 1 and k = 2. We proceed by the principle of mathe-
matical induction.

Assume that P(n) is true. That is, we assume that

Sl][) LJn ]A = Imax Sl][)A
()ur lllduCtlve }ly P()t}leses 1S:

+1
sup (U7 A;) = max supA
p (UiZi4) 1<k<n+1 P2k

We have:

sup (Ut Ag) = sup ((Up—; Ak) U Apy1)
= max {sup (Up_; 4x) ,sup 441}
= max {1?}?%(71 {sup Ak} ,sup 4,41 }

= A
1§r1?§av)z(+1 {sup Ax}

(b) Consider sup < U A k) . Does the formula in (a) extend to the infinite case?
k=1

[Abbott 1.4.1] Recall that I stands for the set of irrational numbers.
(a) Show that if a, b € Q, then ab and a + b are elements of Q as well.

Proof.

m
Leta=—,b= P \yith n and g matural numbers, m and p as integers in Z.
n q

The addition of rational numbers a + b is defined as :

_|_

313

P ._ mq + np
q ng



Since, both n and g are non-zero, ng # 0. The product of two natural numbers
is a natural number so, ng € N. Moreover, mq + np € Z. Consequently, m/n +
p/q € Q. Hence, Q is closed under addition.

The product of rational numbers ab is defined as:

m
axb:—p
nq

Since, Z is closed under multiplication, mp € Z. Similarly, ng € N and ng # 0.
Consequently, the product a x b belongs to Q.

(b) Show thatifa € Qandt €I, thena+¢ € Iand at € I aslongas a # 0.

[Abbott 1.4.2] Let A C R be non-empty and bounded above, and let s € R

1 1
have the property that foralln € N, s + - is an upper bound for A and s — -
is not an upper bound for A. Show that s = sup A.

Proof.
Claim. s is an upper bound for A.
We proceed by contradiction.

Assume that s is not an upper bound for A. Then there exists ay € A, such that
s < ag. By the Archimedean property, there exists a natural number ny € N,
such that

— < ap—S
no
Thus, there exists ng € N such that:
1
s+ — < s+ (ag — )
no

1
s+ — < ag
no

1
That is, there exists ng € N, such that s + — is not an upper bound for A.
no

1
But, this is a contradiction. Vn € N, s + — is an upper bound for A.
n

Claim. If ¢ is any other upper bound for 4, s < t.

We proceed by contradiction.



Assume that there exists an upper bound ty, for A, such that ¢ty < s. By the
Archimedean property there exists my € N such that

1
7<S—t()
mo

So, there exists mg such that:

1
—— >s5—(s—1
S - s—(s—tog)

=ty

1
That is, there exists my € N, such that s — — is an upper bound for A.
mo

1
But this is a contradiction. Vm € N, s — — is not an upper bound for A.
m

This closes the proof. s = sup A.

1
[Abbott 1.4.3] Prove that N%%_ (O, 7) = (). Notice that this demonstrates that
n

the intervals in the Nested Interval Property must be closed for the conclusion
of the theorem to hold.

Proof.

1
Let I,, = <0, ﬁ) Let = be an arbitrary real number in I; = (0,1). By the

Archimedean property, there exists a natural number ny € N, such that

1

— <

o
Thus, « ¢ I,,, and therefore x ¢ N2, I,,.

Since « was arbitrary, this holds for all 0 < < 1.

Npe1ln = 0

Cantor’s Diagonalization Method

Cantor published his discovery that R is uncountable in 1874. Althoug it has
some modern polish on it, the argument presented in theorem 1.5.6 (ii) is ac-
tually quite similar to the one Cantor originally found. In 1891, Cantor offered



another proof of this same fact that is startling in its simplicity. It relies on dec-
imal representations for real numbers, which we will accept and use without
any formal definitions.

Theorem 1.6.1. The open interval (0,1) = {x € R: 0 < z < 1} is uncountable.
[Abbott 1.6.1] Show that (0, 1) is countable if and only if R is uncountable.

Proof. As with Theorem 1.5.6., we proceed by contradiction and assume that
there does exist a function f : N — (0, 1) thatis 1 —1 and onto. For eachm € N,
f(m) is a real number between 0 and 1 and we represent it using the decimal
notation

fm) = .am, Gmy Qs Oy - - -

What is meant here is that for each m,n € N, a,, is the digit from the set
{0,1,2,...,9} that represents the nth digit in the decimal expansion of f(m).
The 1—1 correspondence between N and (0, 1) can be summarized in the doubly
indexed array:

1) = .a11 a2 a3 aiy a5 G
2) .a21 @z G23 G24 G255 A26
3) .a31 a3z azz 434 azs 36
4) = .aq1 Q42 (43 Aga Q45 A4p
5)
6)

-a51 G52 G353 As54 A5 A56
= .061 Qg2 A3 G4 Ae5 A66

The key assumption abou this correspondence is that every real number in (0, 1)
is assumed to appear somewhere on the list.

Now for the pearl of the argument. Define a real number = € (0,1) with the
decimal expansion & = .b1babsbs . .. using the rule:

b 2 ifan, #2
"3 if an, =2

[Abbott 1.6.2] (a) Explain why the real number x = .b1b2b3bs ... cannot be
f(1).

Since the first digit b; in the decimal expansion of x differs from the first digit
a1 in the decimal expansion of f(1), x # f(1).



(b) Now, explain why = # f(2) and in general why x # f(n) for any n € N.

Since the second digit b; in the decimal expansion of 2 differs from the second
digit as2 in the decimal expansion of f(2), z # f(2).

In general, since the nth digit b,, in the decimal expansion of x differs from the
nth digit a,,, in the decimal expansion of f(n),  # f(n), foralln € N.

(c) Point out the contradiction that arises from these observations and conclude
that (0, 1) is uncountable.

This shows that = does not belong to the set { f(1), f(2), f(3), ... }. This contra-
dicts the fact that z € (0, 1). Hence our initial assumption is false. The set (0,1)
is uncountable.

[Abbott 2.2.1] What happens if we reverse the order of the quantifiers in defi-
nition 2.2.3?

Definition. A sequence (z,) verconges to x if there exists ¢ > 0 such that for all
N € N, itis true that n > N implies |z, — 2| < e.

Give an example of a vercongent sequence. Is there an example of a vercongent
sequence that is divergent? Can a sequence verconge to two different values?
What exactly is being described in this strange definition?

Proof.
1.

The sequence (z,,) = — is vercongent.
n

Consider the sequence ()0~ = (—1)". Picke = 2. Forall N € N, ifn > N, it
follows that

2, —0|=1<2=c¢
Thus, it is a vercongent sequence.

A sequence can verconge to two different values. Let (z,,) = (—1)".

Pick e = 2. For all N € N, if n > N, it follows that

1

1
Consequently, (z,,) also verconges to 5

[Abbott 2.2.2] Verify using the definition of the convergence of a sequence, that
the following sequences converge to the proposed limit.



(a) tim 221 _ 2
Sn+4 5

Solution.
. . 2n+1 2
We are interested to make the distance | — —| as small as we please.
on+4 5
Let’s explore the inequality:
|2n +1 2| <
bnt+d 5 - °
C5(2n +1) — 2(5n + 4)]
[5(5n + 4)]
_3 .
5(bn +4)
We know that 3 < 5 We can strengthen the inequality we wish to
5(Gn+4)  56n) & quattty

prove, by choosing an upper bound for the left hand side of the inequality. So,
we are interested to have:

3 <
— <€
25n

Let’s choose N > i To show that this choice of N indeed works, pick an
€
arbitrary € > 0. Then, n > N implies that:

n > 5=
1 3B¢
= a <%
— %ﬁq[ <€
2n+1
= |5z — 5l <e
2n?
b) lim —— =0.
(b) 513

Solution.

. . 2n?

We are interested to make the distance |m — 0] as small as we please.
n

Let’s explore the inequality:

2n?
n3 +3

| <e



Since all quantities are positive, we may write:

2n? <
— <€
n3 +3

2n? 2n?
Now, ﬁ < r% We can strengthen the condition we wish to prove by
replacing the left hand side of the above inequality by it’s upper bound. There-

fore, we are interested in making

2
— <€
n

2

We choose N > —. To show that this choice of N indeed works, we pick an
€

arbitrary € > 0. Then, for all n > IV, we have

2

no>7
S % <€
2
‘ 71231:-3 <€
. 2n?
Hence, lim ——— = 0.
nd+3
2
sinn
c) lim =0.
(c) im "5t
Proof.
. , sin n?
We are interested to make the distance | T | as small as we please.
n

Let’s explore the inequality :

sin n?

|37\/5| <€ 1)
We know that,
|sinn?| <1

We can strengthen the condition we are interested to prove by replacing left-
hand side in the inequality (1) by it’s upper bound. We have:




Let’s pick N > % Then, for all n > N, it follows that:
€

n >6i3
1
— W <€
B 2
— B <o
C tly, li Lnnz 0
n ntly, im = U.
onsequently, \3/77,

Example 2.2.4. Give an example of each or state that the request is impossible.
For any that are impossible, give a compelling argument for why that is the case.

(a) A sequence with an infinite number of ones that does not converge to one.
Proof.

Consider the sequence

(zn) =1(1,0,1,0,1,0,...)

This sequence does not converge to 1, but has an infinite number of 1s.

(b) A sequence with an infinite number of ones that converges to a limit not
equal to one.

This request is impossible. We proceed by contradiction. Assume that there
exists a sequence (z,,) with an infinite number of 1s and converges to a limit

14 1.

The sequence (z,) has infinite number of 1s. The distance between 1 and [ is
|t —1].

) I —1] .
Pick ¢ = — .For all N € N, it follows that there are atleast some terms of

the sequence (z,,) beginning with or after the Nth term, such that the distance
|z, — 1] > €9. Consequently, the sequence does not converge to [. This is a
contradiction.

Thus, there is no sequence (z,,).

(c) A divergent sequence such that for every n € N, it is possible to find conse-
ceutive ones somewhere in the sequence.

Solution.

Consider the sequence (z,) = (1,1,-1,1,1,-1,1,1,—1,...). This is a diver-

11



gent sequence, where for all n € N, it is possible to find consecutive ones in the
sequence.

[Abbott 2.2.6] Prove theorem 2.2.7. To get started, assume (a,,) — a and also
that (a,,) — b. Now argue that a = b.

Assume that (a,) — a and (a,,) — b. Pick an arbitrary ¢ > 0.

There exists N;(¢) € N such that forall n > Ny :

lan, —al <e€/2 (2)

There exists N2(€) € N such that foralln > N, :

|an, —b| < €/2 (3)

Pick N = max{Ny, Na}. For n > N, both the inequalities (1) and (2) are satis-
fied.

We have:

l(an —b) — (an —a)| < |an —b| +|an —a| {Triangle Inequality}
la—b] <§+§5=c¢

Since € was arbitrary to begin with, this is true for all € > 0. So, for all € > 0, the
distance |a — b| can be made smaller than e. Consequently, a = b.

[Abbott 2.3.1] Let ,, > 0 for alln € N.

(a) If (z,) — 0, show that (v/z,,) — 0.

Proof.

We are interested to make the distance |/z,,| as small as we please.

Let’s explore the inequality:

|VZn| <e€
2 2 2
|\/$n| :|<vxn) | =l|zn| <e
Pick an arbitrary € > 0. As (z,) — 0, we know that there exists N. € N such
that, for all n > N, we have:

|zn| < €2

12



Since e was arbitrary, it follows that for all € > 0, there exists N € N, such that,
foralln > N,

[Vl <e
(b) If (2,,) — , show that (v/Z,,) — V.
If x = 0, then (a) holds and we are done. Assume that = # 0.

We are interested to prove that the distance |,/z,, — v/z| can be made as small
as well please. Pick an arbitrary € > 0. Let’s explore the inequality :

IVZn — Vx| <€
This can be rewritten as:
|z — 2|
— < €
VT + T

1
We can strengthen the condition we wish to prove, by replacing ——— b
g p y rep g NN y
its upper bound. Since, x,, > 0, \/z,, > 0. So,

1 1
< PR
VIn +Vr  Jr
So, our claim is:
lzn—2]| <€
NG

thatis, |z, — 2| <eyz

Since (x,,) — z, there exists N € N, such that for all n > N, we have:

|z — x| <eyx
Thus, foralln > N,

[Van — V| <e
Consequently, (v/z,) — .

Abbott 2.3.2. Using only definition 2.2.3, prove that if (x,,) — 2, then

13



(a) (25’“""3’ 1) 1.

Proof.

2z, — 1
We are interested to make the distance % — 1] as small as we please.

Pick an arbitrary € > 0. We would like to have:

2z, —1
e
OI‘,|‘T:"% <€
2o, —2| <e
2, —2| <2

Since (z,) — 2, there exists N € N, such that foralln > N, |z, — 2| < 3¢/2.
Consequently, for all n > N the above inequality would be satisfied, and there-

2z, —1
fore |(2z, —1)/3 — 1| <e. Hence,< ° 3 ) — 1.

(b) We are interested to make the distance as small as we please. Pick

T,
an arbitrary € > 0.
We would like to show that:
1 1
E -3 < €
|20 —2]
Aan] <€

We can strengthen the condition we wish to prove by finding an upper bound
for the left hand side of the above inequality.

Let’s pick € = 1. Since (x,) — 2, there exists N; € N, such that for all n > Ny,
the distance |x,, — 2| < 1. In other words,

1<z, <3
Thus, |z,| > 1. Consequently,
|z, — 2] |z, — 2]
2|x,| 2
So, our claim is:
|1'n - 2| <
€
2

14



Since (x,,) — 2, there exists Ny € N, such that for all n > N», the distance

|z, — 2] < 2

We pick N = max{Ny, No}. To show that this choice of N works, let n > N.
We have:

P e
] 20" g T

1 1 |zn, —2f
x, 2|

Abbott 2.3.3. (Squeeze Theorem.) Show that if z,, < y,, < z, foralln € N,
and if lim z,, = lim z,, = [, then lim y,, = [ as well.

Proof.
Pick an arbitrary € > 0.

Since (x,,) — [, there exists N; € N, such that for all n > Ny:

l—e<a, <l+e

Since (y,) — I, there exists Ny € N, such that for all n > No:

l—e<y, <l+e

Pick N = max{Ny, N»}. Since, x,, < y,, < z,, for all n € N, we have that for all
n> N,

l—e<zp, <yp<zp<l+e
That is:

l—e<y, <l+e

As e was arbitrary to begin with, this holds true for all e. Consequently, (y,,) is
a convergent sequence and (y,,) — [.

Abbott 2.3.4. Let (a,) — 0 and use the Algebraic Limit Theorem to compute
each of the following limits (assuming the fractions are always defined):

15



. 1+ 2a,
(@) lim | ——m—r
1+ 3a, — 4a2
Proof.
: 1+2a, _ lim 1+2a,
lim 1+3;a—4ai = limlln—:-3:ni4ai
_ 1420
1+3-0—4-0
=1
(b) lim (M)
an
Proof.
lim ((an+2)274) — lim a?+4a,+4—4
An n
. ai+4an
= lim T
= lim% {Since a,, # 0}
= lim(a, + 4)
=4
Z+3
(c) lim | < .
a9
Proof.
li %""3 — i 2+3ay,
1m %_"_5 = 1m m
" — lim2+3a,
_ Bpggoen
1450
2

Abbott 2.3.5. Let (x,,) and (y,,) be given and define (z,) to be the shuffled se-
quence (1,Y1, T2, Y2, T3, Y3 - - - , Tn, Yn, - - - ). Prove that (z, ) is convergent if and

only if (z,,) and (y,) are both convergent with lim z,, = lim y,,.
Proof.

—direction.

We are given that (z,) is convergent. We are interested to prove that both (x,,)

and (y,) are convergent with lim z,, = lim y,,.

Assume that (z,) — [. Pick an arbitrary € > 0. There exists N € N, such that

for alln > N, we have:

16



l—e<z,<l+e

If N = 2M (even), then for all m > M, both (z,,) and (y,,,) fall in the interval
(Il—e€l+e).

If N =2K +1 (odd), then for all k > K, both (z}) and (y;) fall in the interval
(Il—¢€l+e).

In both cases, we are able to find a response to the given e—challenge and the
sequences (z,,) and (y,,) eventually settle in (I —¢, I +¢€). Consequently, lim z,, =
limy, = 1.

+=direction.

We are given that both (z,,) and (y,) are convergent sequences with limz,, =
limy,, and we are interested to prove that the shuffled sequence (z,,) is also
convergent.

Pick an arbitrary € > 0.

Since (x,,) — [, there exists N; € N, such that for all n > Nj, we have:

|z, — 1] <e

Since (y,) — I, there exists Ny € N, such that for all n > N5, we have:

|yn_l‘<€

Note that z,, = 29,1 and y,, = 22,,. Let N = max{2N; — 1,2N5}. Then for all
n > N, it follows that

l—e<z, <l+e€

Consequently, (z,) — .

[Abbott 2.3.6] Consider the sequence given by b,, = n — \/n? + 2n. Taking
(1/n) — 0 as given and using both the Algebraic Limit Theorem and the result
in exercise 2.3.1., show that lim b,, exists and find the value of the limit.

Proof.

We have:

17



i _ 2 . E _ 2 . ntvn242n
Iimn —+vn?2+2n =limn—+vn2+2n T o

__an
n+ \/2”2 +2n

1+/14+ 2
=-1

= —lim

__2
— 141

[Abbott 2.3.7] Give an example of each of the following, or state that such a
request is impossible by referencing the proper theorem(s):

(a) Sequences (z,,) and (y,), which both diverge, but whose sum (z,, + yy)
converges.

Proof.

Consider (z,) = n and (y,) = —n. Both (z,,) and (y,) are divergent sequences
but (z,, + y,) is constant zero sequence.

(b) sequences (z,,) and (y,,) where (z,,) converges, (y,) diverges and (z,, + yy)
converges.

Proof.
This request is impossible. We have:
Yn = (ln + yn) — Tn

limy, =lm[(z,+ yn)— zn]
= lim(x, + yn) — limx,

Since both lim(z,, + y,,) and lim x,, are well-defined, the sequence (y,,) must be
convergent.

(c) a convergent sequence (b, ) with b, # 0 for all n such that (1/b,,) diverges.

1 1
Let b,, := —. Then, b= n is a divergent sequence.
n

n

(d) an unbounded sequence (a,,) and a convergent sequence (b,,) with (a,, —b,,)
bounded.

Proof.
This request is impossible.

If (ay, — b,,) is a bounded sequence, then there exists M; € N, such that for all
n €N, |a, — by| < M.

18



By theorem 2.3.3, convergent sequences are bounded. So, (b,) is a bounded
sequence. Hence, there exists My € N such that |b,| < M, foralln € N.

We have:
|an| = |(an - bn) + bn|
<|(an —by)| + |bn| {Triangle Inequality}
< My + M,

Thus, (a,,) must be a bounded sequence.

(e) two sequences (a,,) and (b,,) where (a,,b,,) and (a,,) converge but (b,,) does
not.

Proof.

1
Consider (a,) = - and (b,) = n. The sequences (a,b,) = 1 and (a,) = —

converge but (b,,) = n does not.

Abbott 2.3.8. Let (z,,) — x and let p(x) be a polynomial.
(a) Show p(z,) — p(x).

Proof.

Let p(x) be the polynomial :

p(r) = ag + a1z + asx? +azx® + ...+ amz

The image sequence p(x,,) is defined as :

p(zn) = ag + ai(zn) + az(x,)? + az(z,)® + ...+ ap(2,)™

Taking limits on both sides, we have:

hmp(fn) = lim ao + al(xn) + a2(xn)2 + QS(zn)g +o+ am(xn)m

=limag + a1 limz,, + azlimz,, -limz,, + ... {Algebraic Limit Theorem}
=ag+ a1z + ax® + ...+ apx™
= p(z)

(b) Find an example of a function f(x) and a convergent sequence (z,) — =
where the sequence f(z,) converges, but not to f(x).
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Consider the function

and let (z,,) be the sequence

LTp =

~ 3=

Then, (z,) — 0, and f(x,) = %, so f(x,) — 0,but f(0) = 1.

Abbott 2.3.9. (a) Let (a,,) be abounded (not necessarily convergent) sequence,
and assume limb,, = 0. Show that lim(a,b,) = 0. Why are we not allowed to
use the Algebraic Limit Theorem to prove this?

Proof.

(a) We are interested to prove that the distance |a,,b,| can be made as small as
we please.

Pick an arbitrary ¢ > 0. Since (a,,) is a bounded sequence there exist M € N for
all n € N such that |a,| < M.

As (b,) — 0, there exists N € N, such that for all n > N, we have:

€

b | < U

Together, for all n > N, we have:

€

nbn <M -
Janbal < M- -

€
Thus, (anb,) — 0.

The Algebraic Limit Theorem is applicable, if and only if, the sequences (a,,)
and (b,,) are both convergent.

(b) Can we conclude anything about the convergence of (a,b,) if we assume
that (b,,) converges to some nonzero limit 5?

No, we cannot conclude anything about the convergence of (a,b,,). Consider
the sequence (a,,) = (—1)", (b,) = 1 + e Here, (a,,) is a bounded sequence.

(bn) — 1. But, (anb,) is divergent.

(c) Use (a) to prove theorem 2.3.3. part (iii) for the case when a = 0.
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Proof.
We are interested to prove that lim a,,b, = ab where a = 0.

We have that lima,, = 0. As (b,) is a convergent sequence, and convergent
sequences are bounded, so (b,,) is bounded. From (a) it follows that lim a,,b,, =
0.

Abbott 2.3.10. Consider the following list of conjectures. Provide a short proof
for those that are true and a counterexample for any that are false.

(a) If lim(a,, — b,) = 0, then lim a,, = lim b,,.

This proposition is false. Consider (a,,) = n and (b,) = n — % Then, lim(a,, —
b,) = 0, but both (a,,) and (b,,) are divergent sequences.

(b) If (b,) — b, then |b,,| — |b].

This proposition is true.

We are interested to make the distance ||b,,| — |b|| as small as we please.

Pick an arbitrary ¢ > 0. We are interested to prove that:

[lon| —[0l] <€

We can strengthen the condition we wish to prove by replacing the left-hand
side of the inequality by its upper bound. We know that, ||b,| — |b|| < |b, — b].
Thus, we shall prove that:

|b, — b| < €

Since (b,,) — b, there exists N € N such that for all n > N, we have:

|b, — b| < €

Consequently, |b,,| — [b].

(c) If (an) — aand (b, — an) — 0, then (b,) — a.
Proof.

This proposition is true.

By the Algebraic Limit Theorem,
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limb,, =lim(a, + (b, —an))
= lima,, + lim(b,, — a,)
=a+0
=a

Abbott 2.3.11. (Cesaro Means).

(a) Show that if (x,,) is a convergent sequence, then the sequence given by the
averages:

_x1+as2+...+xn
" n

also converges to the same limit.
Proof.

Let (z,,) — x. We are interested to make the distance |(z1 +z2+...+2,)/n— 1|
as small as we please. Pick an arbitrary e > 0.

We are interested to prove that:

Tit+xot.. Xy Z‘| < e

n
(:El+$2+4;1:+$n)_n$ <

Consider the expression:

(I1+JJ2+~,-’7:+Z71)_711' = %Kl'l — ZL‘) + (xg — l‘) + ($3 — ;v) + ...+ (mn — CU)|
<Lz — @)+ (w2 — @)+ ...+ o — x|+ ...+ |z, — )
< Zi—l ‘CY'L—:C| + Z?Zl-%—l |I1*I|

n n

Let ¢ > 0. Since, (z,) — z, we can pick [ such that forall &k > [, |z; — z| < €/2.
Now that [ is fixed, pick IV large enough so that for all » > N, we can make the
first term:

1
Ei:l |z; — x| €
P — < J—
n 2

It follows that for all n > N:

l n
D iy [T — 7 I Dz [T — | <y (n—1)(e/2) -

€
— €
n n 2 n
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Abbott 2.4.1. (a) Prove that the sequence defined by z; = 3 and

1

—x,

Tnt1 = 4

converges.

Proof.

Claim. (z,,) is a bounded sequence.

We prove using induction that (z,,) is a bounded sequence.
(1) Basecase: 0 < z; <3

(2) We assume that 0 < z,, < 3.

(3) We are interested to prove that 0 < z,4+1 < 3.

Clearly,

1 1
Tnpt = g - S gy o 1<

And,

Lo
4—x, ~4-0 4
By the principle of mathematical induction, 0 < z,, < 3 foralln € N.

Tnt+1 =

Claim. (z,,) is a monotonically decreasing sequence.
1
(1) Base case: 1 = 3 and z2 = 3" Thus, z1 > 5.

(2) We assume that z,, > 4.
(3) We are interested to prove that x,,11 > zp42.

We have:

— 1 _ 1

T 4z, 4_In+1

_ Ty — T 41

T (@-zn)(d-wnt)

> 1520 —2py1)  {zn >0Vn e N}

>0

Tn4+1 — Tn42

Consequently, by the principle of mathematical induction, z,, —z,11 > 0 for all
n € N.
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Thus, (z,,) is a monotonically decreasing and bounded sequence. By the Mono-
tone Convergence Theorem (MCT), (z,,) is a convergent sequence.

(b) Now that we know that lim z,, exists, explain why lim z,,1 1 must also exist
and equal the same value.

Pick an arbitrary € > 0. Since (z,) converges to z, there exists N(e) € N, such
that for all n > N, we have

r—e<x, <T+E€

Define N' = N + 1. If y,, = x,,41, then for all n > N’, we have:

.I‘—€<yn<33+€

So, (yn) — .

(c) Taking limits on both sides, we have:

r = 31—

4—x
z(d—z) =1
dr — 22 =1
2 —dr =-1

2?2 —4dr+1 =0
2
(2-2)?%-(V3)" =0
r=2++3
Since, (x,,) < 3, by the Order Limit Theorem, z < 3. So, x = 2 — V3.

Abbott 2.4.2. (a) Consider the recursively defined sequence y; = 1,

Yn+1 = 3= Yn

and set y = limy,,. Because (y,,) and (y,+1) have the same limit, taking the limit
across the recursive equation gives y = 3 — y. Solving for y we conclude that
limy, = 3/2. What is wrong with this statement?

Proof.

This is incorrect, as we do not whether the sequence (y,,) is convergent. Looking
at the first few terms of the sequence:
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(yn) =(1,2,1,2,1,2,...)
it is indeed a divergent sequence.

1
(b) This time set (y1) and (y,n+1) = 3 — —. Can the strategy in (a) be applied

to compute the limit of this sequence?
Proof.

The first few terms of the sequence are :

5 13 34 )
n) = 172777 ) PR
(n) ( 25 13

Claim. The sequence (y,,) is bounded. 1 < y,, < 3 for alln € N.
Base Case: P(1)istrue. 1 <y < 3.

Hypotheses : Assume that P(n) is true. We assume that 1 < y,, < 3.

Inductive step : We are interested to prove that 1 < y,41 < 3.

We have:
1
Ynt1 =3 — — >3 —-1=2
Also,
1 8
nil=3— — <3——-=-<
Yn+1 N 3 3
Consequently:
1< yny1 <3

Thus, by the principle of mathematical induction 1 < y,, < 3 foralln € N.
Claim. The sequence (y,) is monotonically increasing. y,, < y,+1 foralln € N.
Proof.

Base Case: y1 < ys.

25



Hypotheses : Assume that y,, < yp41, thatis yp,41 —y, > 0.

Inductive step: Consider

Yn+2 — Yn+1 = (13 - ynlfr1) B (3 B i)

Yn Yn+1
— Ynt17Yn

T YnYnt1

>0 {yn >0V¥n € N,
Yn+1 — Yn Z 0}

By the principle of mathematical induction (y,,) is a monotonically increasing
sequence.

By the Monotone convergence theorem, (yn) is convergent and lim y,, exists.
The strategy in (a) can be applied to compute the limit of this sequence. Let
y = lim y,,. We have:

y =3-4
y? =3y—1
y—3y+1 =0
_ 3+v9—411 _ 3+£5
y = 21 =73
3 5
Since (y,,) > 1, by the order limit theorem y > 1. So, y = +2\[.

Abbott. 2.4.3. (a) Show that :

V2, V24 V2 2+ V24 V2,

converges and find the limit.
Proof.

This sequence is recursively defined as :

Yn+1 = \/2+yn

(a) Claim. The sequence (y,,) is bounded. 0 < y,, < 2.
Base Case. P(1)is true. 0 < y; < 2.
Hypotheses. We assume that 0 < y,, < 2.

Inductive Step. We are interested to prove that:
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0<Ynt1 <2

We have:
Yn+1 =V 24 Yn
> \@ {yn > O}
>0
Moreover,
Yn+1 = 24 Yn
<+V24+2
=2

Thus, by the priniciple of mathematical induction, 0 < y,, < 2 foralln € N.
Claim. The sequence (yy,) is monotonically increasing. y, < y,+1 foralln € N.
Base Case. y1 < ys.

Hypotheses. We assume that y, < yy,41.

Inductive step. We have:

Yn S Yn+1
(2 + yn) < (2 + yn+1)
2+yn)® <Q2+Ynr1)?
y721+1 < y?z+2
Ynt1 < Ynt2 {Asy, >0Vn €N,
we can take square roots on both sides.}

Consequently, the sequence (y,,) is a monotonically increasing sequence.

By the Monotone Convergence Theorem, (y,,) is a convergent sequence. Let
limy,, = y. Then,

I I
coocow

[\)

< +

<

<
\
<
\
NN e
I

Y -2y +y-—
y(y—2) + Ly —2)
(y—2)(y+1)

Sincey > 0,y = 2.
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(b) Does the sequence

V2,V 2v2,\V 2V 2V2, . ..

converge? If so find the limit.
Solution.

This sequence can be recursively defined as:

Yn4+1 = 2yn

Let’s prove that this sequence is bounded. Our claim is that v2 < y,, < 2 for all
n € N.

Base case. V2 <y <2

Hypotheses. We assume that, v2 < y,, < 2.

Inductive step. We are interested to prove that V2 < Yng1 < 2.

We have:
Yn+1 =V 2yn
>\/2V2
>V2-1=12
Also,
Ynt1 < V2-2
=2

Thus, by the principle of mathematical induction, the sequence (y;,) is bounded
and

\/igyn<2
for alln € N.

Let’s prove that this sequence is monotonically increasing. Our claim is that
Yn < Yny1 foralln € N.

Base Case. We have y; < ys.
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Hypotheses. We assume that y, < 1.

Inductive step. We are interested to prove that y,+1 < yp4+2. We have:

Yn+2 =/ 2yn+1
> \/yn+1 : yn+1

= Yn+1

By the principle of mathematical induction, (y,,) is a monotonically increasing
sequence.

Since, (yy) is a bounded and monotonically increasing sequence, by the Mono-
tone Convergence Theorem, (y,,) is a convergent sequence. Letlimy,, = y. Then
we have:

y=v2
Vi (Vi —v2) =0
Sy =2
Abbott 2.4.4. (a) In section 1.4, we used the Axiom of Completeness(AoC) to
prove the Archimedean property of R. Show that the Monotone Convergence

Theorem can also be used to prove the Archimedean property without making
any use of the AoC.

Proof.

Archimedean Property of Real Numbers. Given any real number = € R, there
exists a natural number n € N, such that z < n.

Proof.

We proceed by contradiction. We are given a real number z € R. Assume
that for all natural numbers n € N, we have n < z. Thus, N is a bounded
set. Moreover, (z,) = n is a monotonically increasing sequence. Hence, by
the Montone Convergence Theorem, (z,,) = n is a convergent sequence. Let
| = limz,,.

By the definition of convergence, for all € > 0, there exists V € N, such that for
alln > N, |z, — | < e. Pick ¢g = 1. Then,

I—-1<N<lI+1

But, N + 2 and all the successive natural numbers do not belong to this e-
neighbourhood. This is a contradiction.
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Hence our initial assumption is false.

(b) Use the Monotone Convergence Theorem to supply a proof for the Nested
Interval Property that doesn’t make use of AoC.

These two results suggest that we could have used the Monotone Convergence
Theorem in place of AoC as our starting axiom for building a proper theory of
real numbers.

Proof.
Abbott 2.4.5. (Calculating Square roots). Let ;1 = 2 and define z,y; =

1( +2)
|z +—).
2 Ty

(a) Show that - is always greater than or equal to 2, and then use this to prove
that z,, — 11 2 0. Conclude that lim z;,, = V2.

(b) Modify the sequence () so that it converges to /c.

Proof.

()

Let us prove that (z,) is a bounded sequence. We claim that 1 < z,, < 2. P(1)
is true. 7 = 2. We assume that P(n) is true. So, 1 < z,, < 2. We have:

b = (o0 2)
> 1053
And,
Ln+1 :%( +a:
<3(2+1)=

By the principle of mathematical induction, 1 < x,, < 2foralln € N.

We are interested to prove that (z,) is a monotonically decreasing sequence.
Our claim is x,, — xpy1 > 2 foralln € N.

We are also interested to prove that 22 > 2. We will induct on n.
Base Case. xf = 4. So, xf > 2

Hypotheses. Our claim is that z2 > 2.
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Inductive step. We have:

224120 =122 +2
1’% —22,Tpy1+2 =0

We know that z,, is real and 1 < z,, < 2. For this equation to have real roots,
we must have b*> — 4ac > 0 or 4x%+1 —4(2) > 0. Consequently, a:fl+1 > 2,

By the principle of mathematical induction, 2 > 2 for all natural numbers

n € N.

1 2 1 2 3
mrsecase 2= (s 2) = 1 (24 2) < Lsorm o
ase Case. ro 5 x1+x1 5 +2 5 0, T1 = T2

Hypotheses. We assume that =, — 2,41 > 0.

Inductive step. We have:

1 2
Tn+l = Tnt2 = Tp41 — 3 (CL’n+1 + zn+1)
- Tnpr 1
Tn+1
_ xi+1—2
2Ty 41
>0 {22,,>2,1<2, <2}

Thus, (z,,) isabounded and monotonically decreasing sequence. Consequently,
by the Montone Convergence theorem, (z,,) is a convergent sequence. Letlim z,, =
x. Then,

v =3(x+3)

2x za:—&—%

r =2

2 =2

x =2 {since 1 <z <2}

(b) Modify the sequence (z,,

~—

so that it converges to /c.

1
Letz,41 = 3 (xn + i) This sequence converges to Ve.

n

Abbott 2.4.6. (Arithmetic-Geometric Mean).

(a) Explain why /zy < (x + y)/2 for any two positive real numbers z and y.
(The geometric mean is always less than or equal to the arithmetic mean).

Proof.
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We have:

(z—y)?*>0

for any two real numbers z and y. Thus,

(z+y)?—dzy >0
(=) z

2 > xy
o 2 /Ty
(b) Now let 0 < x7 < y; and define
Ty +
Tn+1 = \/TnYn and Yn+1 = "Ty"

Show that lim z,, and lim y,, both exist and are equal.
Proof.

We claim that 0 < z,, < y,, foralln € N. P(1) is true. 0 < 27 < y;. We assume
that P(n) is true. We are interested to prove that 0 < 2,41 < Yp41.

We have that:

GM < AM
Thus,

VEG < L)

SoZngl S Ynta

Moreover, since x,, and y,, are non-negative, ,1 > 0 and s00 < 41 < Ynt1-
Thus, by the principle of mathematical induction,

0<z,<y, VYneN

Also, consider the sequence (y,,).

Yn+1 -
S YnTYn Yn

Consequently, (y,) is a monotonically decreasing and bounded below by 0. By
the Montone Convergence Theorem, lim y,, exists.
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Furthermore, if we consider the sequence (z,,):

= /TnYn
> VIn *Tn = Tn

So, (xy,) is a monotonically increasing sequence and bounded above by y;. By
the Montone Convergence Theorem, lim x,, exists.

xn+1

Consider the expression y,,+1 = (x, + yn)/2. Taking limits on both sides, we
have:

limy,+1 = % (lim z,, + limy,,)

limy, = ? (limz,, +limy,) {since limy, =limy,4+1}
% limy, = j5limz,

limy, =limx,

Abbott 2.4.7. Let (a,,) be a bounded sequence.
(a) Prove that the sequence defined by y,, = sup{ai : k > n} converges.
Proof.

We are given that (a,,) is a bounded sequence. Consider the set:

A={a,:neN}

By Axiom Of Completeness (AoC), A has an infimum and supremum. Thus,
sup A and inf A exist.

We propose that (y,,) is a decreasing sequence. We have
yn =sup{ay : k >n}
= max {an,sup{ag : k >n+1}}
> sup{ay : k>n+1}
= Yn+1

By the principle of mathematical induction, y,, > y,+1 foralln € N.
Thus, (y,) is a monotonically decreasing sequence.
Moreover, define (z,) = inf{ax : k > n}. We know that, inf{ay : kK > n} >

inf{ay : K > 1} = inf A. Thus, we can write:

SUpA=y1>...2 Yy, >...>22,>...>2z=inf A
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Thus, the sequence (y,) is bounded by inf A. By the Montone Convergence
Theorem, (y,) is a convergent sequence and lim y, exists.
n—oQ

(b) The limit infimum of (a,,) or liminf a,, is defined by:

liminf a,, = lim z,,

Since, (z,) is a montonically increasing and bounded sequence, by the Mono-
tone Convergence Theorem, (z,) is a convergent sequence.

(c) Prove that lim inf a,, < limsup a,, for every bounded sequence, and give and
example of a sequence for which the inequality is strict.

Proof.
We have that z,, < y, for alln € N. Since both (y,,) and (z,,) are convergent

sequences, by the Order Limit Theorem,

lim z,, < limy,
liminfa, <limsupa,

Consider the sequence

1
n) — " <1 *)
(an) = (-1 (14—
We observe that:
limsupa, =1

liminfa, =-1

Thus, for this sequence, lim inf a,, < limsup a,.

(d) Show that liminf a,, = limsup a,, if and only lim a,, exists. In this case, all
three share the same value.

Proof.
— direction.

We are given that lim inf a,, = lim sup a,,. We are interested to prove that lim a,,
exists.

Let liminf a,, = lim sup a,, = a. We know that:

inf{ar : k >n} <a, <sup{ar:k>n}
Zn < an S Yn
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Since, lim z,, = lim y,,, by the Squeeze Theorem, lim a,, exists and lima,, = [

<+ direction.

For the sake of an example consider the sequence (a,,) = (=1 . By the Alge-
n

braic limit theorem,

1
lima,, = lim(—1)" - lim — = lim(—1)" -0 = 0.
n

Pick an arbitrary € > 0. Since (a,,) — a, there exists N € N, such that for all
n>N:

an € (a—€/2,a+¢/2)
Since yn = sup{aj : k € N}, wemusthaveyy € [a—¢/2,a+¢€/2] C (a—e, a+e).
k>N

In fact, for alln > N, Yn € (@ —€,a+ ¢).

Also, since zy = kigjfv{ak : k € N}, we must have zy € [a — €/2,a + €/2] C

(a—€,a+e). Infac{, forallm > N, 2z, € (a — ¢,a +¢).
Consequently, lim y,, = a and lim z,, = a. And we have:
limy, =limz, =lima, =a

Abbott 2.4.8. For each series, find an explicit formula for the sequence of the
partial sums and determine if the series converges.

=1
(a) Z on

n=1
Proof.

Let (s,,) be the sequence of partial sums. We have:

Sk = me:l 2i
_1.,a=a/2m
T2 TI-(/2)
=1-5

The sequence (s,,) is monotonically increasing sequence and bounded above by
1. Consequently, the infinite series is convergent.
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s 1
®) ngl n(n+1)
Proof.

Let (s,,) be the sequence of partial sums. We have:

Sk = Z;o 1 n(n1+1)
:%2‘*‘23"‘ +k(k1+1) .
=7 +§—*+ +%—r_~_1
- k+

This is monotonically increasmg sequence bounded above by 1. Hence, the
infinite series is convergent.

o % w(22Y

n=1

Proof.

Again this can be written as a telescopic sum. Let (s,,) be the sequence of partial
sums. Then,

Sk = Zi 11og (n+1)

=log 2 +1log 2 +...+log &t
:log2—log1+log3 log2+ ..+logk+1—1logk
=logk+1

However, (sj) is unbounded and hence it is a divergent series.

Abbott 2.4.9. Complete the proof of the Cauchy condensation test theorem
2.4.6. by showing that if the series Z 2"byn diverges, then so does Z bp. Ex-

n=0 n=1
ample 2.4.5. may be a useful reference.

Proof.
(«<=direction)

We know that b, > 0 and decreasing. Let (s,,) be the sequence of partial sums
o0

of the infinite series Z b,,. We have:
n=0
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Soi =b1 +ba+b3+ ...+ bor
:bl+b2+(b3+b4)+(b5+b6+b7+b8)+...+(b2k—1+1+...+b2k)
> by + by + (by + bg) + (bg + bg + bg + bg) + ...+ 2F "Ly
:b1+%(2b2+4b4+8b8+...+2kb2k)

1 k n
= % +Zn:02 b2"

k o)
Since Z 2"byn is unbounded, Z by, is unbounded and divergent.

n=0 n=0

Abbott 2.5.1. Give an example of each of the following, or argue that such a
request is impossible.

(a) A sequence that has a subsequence that is bounded but contains no subse-
quence that converges.

Proof.

This request is impossible. Assume that a sequence (a,,) contains a bounded
subsequence (a,, ). By the Bolzanno Weierstrass Theorem, every bounded se-
quence has atleast one convergent subsequence. So, (a,, ) has atleast one sub-
sequence (ay, ) that is convergent. Since (an,, ) is a subsequence of the original
sequence (a,, ), the given request is impossible.

(b) A sequence that does not contain 0 or 1 as a term but contains subsequences
converging to each of these values.

Proof.

Consider the sequence:

= (L1218 )

1
where the odd term is given by as,_; = — and the even term is given by az,, =
n

1
1——.
n

(c) A sequence that contains subsequences converging to every point in the
infinite set {1,1/2,1/3,1/4,1/5,...}.

Proof.

Consider the sequence:

37



1 11 111 )
<171u§717§7§717§:§717”'

(d) A sequence that contains subsequences converging to every point in the
infinite set {1,1/2,1/3,1/4,1/5, ... } and no subsequences converging to points
outside of this set.

Solution.

This request is impossible. Consider the sequence

)

?

W =
=

<17 17}717171717}7
2°72°3 2
This contains a subsequence that converges to 0.

Abbott 2.5.2. Decide whether the following propositions are true or false, pro-
viding a short justification for each conclusion.

(a) If every proper subsequence of (z,) converges, then (z,) converges as well.
Solution.

Consider the tail subsequence (x,,);2,. Let z = lim{z, }5>,. Pick an arbitrary
e > 0. There exists N € N, such that foralln > N, z, € (z — ¢,z + ¢).
Consequently, (z,,) is a convergent sequence.

(b) If (z,,) contains a divergent subsequence, then (z,,) diverges.
Solution.
This proposition is true. We proceed by contradiction.

We are given that (z,,) contains a divergent subsequence. Assume that (z,,) is
a convergent sequence.

By Theorem 2.5.2, every subsequence of (xz,,) converges to the same limit as the
original sequence. This contradicts the fact that, (x,) contains a divergent sub-
sequence. Hence, our initial assumption is false. (z,,) is a divergent sequence.

(c) If (x,,) is bounded and diverges, then there exist two subsequences of (z,,)
that converge to different limits.

Proof.
This proposition is true.

We are given that (x,) is a bounded sequence and diverges. We proceed by
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contradiction.

Assume that all subsequences of (z,) converge to the same limit {. Then the
tail subsequence {z, }o2, converges to I. But this implies that (z,,) is a conver-
gent sequence and (x,,) — [. This contradicts the fact that (z,,) is a divergent
sequence.

Hence, our initial assumption is false. There exist two subsequences of (z,,) that
converge to two different limits.

(d) If (x,,) is monotone and contains a convergent subsequence, then (z,,) con-
verges.

Proof.
This proposition is true.

Let (z,,,) be a subsequence of (x,). Since (z,,) is convergent, it is bounded.
Thus, M > 0 for all k£ € N, such that |z,, | < M. Since, (x,) is monotone, we
must have:

Ly, < Tnp+1 < Ty +2 <...< Ly

or

Ty, Z Tnp+1 2 Tnp+2 2 e Z xnk,+1

Since, x,,,, and xy,,, belong to the closed interval [—M, M], we must have that
all intermediate terms x,,, 41, ...,%n,,, 1 of the sequence (x,) also lie in the
closed interval [—-M, M]. So, this is true for all of (x,,). Consequently, (z,,) is a
bounded sequence.

By the Montone Convergence Theorem, (z,,) is convergent.

Abbott 2.5.3. (a) Prove that if an infinite series converges, then the associative
property holds. Assume a; +ag +as+as+as+ ... converges to a limit L (that
is the sequence of partial sums (s,) — L). Show that any regrouping of the
terms

(a1 4+as+...+an,)+ (@n41+ -+ any) + (Gnpg1 + oo+ any) + ...
leads to a series that also converges to L.

Proof.
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The sequence of partial sums (s,,) — L. By Theorem 2.5.2, every subsequence
of a convergent equence converges to the same limit as the original sequence.
Therefore, the subsequence

(SnysSngs Sngy - -+ )

converges to L. That is the sequence:

(a1 4 ...+ an,)
(a1 4 ...+ an,) + (an41+ ...+ any)
+ (g1 + o F ng) + (Anpg1 + -+ Any)

(a1 + ...+ an,)

Consequently, any regrouping of the terms of the infinite series leads to a series
that also converges to L.

(b) Compare this result to the example discussed at the end of section 2.1 where
infinite addition was shown not be associative. Why doesn’t our proof in (a)
apply to this example?

Proof.

Our proof in (a) applies only to an infinite series if it is convergent. The example
at the end of section 2.1 is a divergent series. Consider the sequence of partial
sums (sy,):

(-1,0,—1,0,-1,0,...)

which as we know is divergent.

Example 2.5.4. The Bolzano-Weierstrass Theorem is extremely important and
so is the strategy employed in the proof. To gain some more experience with
this technique, assume that the Nested Interval Property (NIP) is true and use
it to provide a proof of the Axiom of Completeness. To prevent the argument

from being circular, assume also that (1/2") — 0. (Why precisely is this last
assumption needed to avoid circularity)?

Proof.

Let S be a subset of R bounded above by M. Our claim is that sup S exists.
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v

If S is a finite subset of R, then sup S = max{z : z € S}.

Let’s assume that S is an infinite set. Let I; = [a1, b1] be a closed interval such
that by = M, a1 < by with [ag, b1] containing an infinite number of terms of S.
We bisect I; into two intervals Ly = [a1, (a1 + b1)/2] and Ry = [(a1 + b1)/2, b1].

We define I, = Ly if R1 NS = () else I, = R;. In general,

L, ifR,NS=0
I = .
R, otherwise

Since

LD2LDLD.. DI DL D...

by the Nested Interval Property (NIP) there exists an element s € ﬂ 1.
k=1

Our claim is that s = sup S. Since (1/2)" — 0, for all € > 0, there exists N such

I
that foralln > N, I(I,) = l2;) < €. Thus, lima,, = limb,, = s.

(1) s is an upper bound for S.

Itis clear that all b,’s are an upper bound S. By the Order Limit Theorem, « < s
forallz € S.

(2) I;NS # @ for all k € N. Thus, forall € > 0, 3z € I, N S such that s — e < .
Consequently, by lemma 1.3.8, s = sup S.

Abbott 2.5.5. Assume that (a,) is a bounded sequence with the property that
every convergent subsequence of (a,) converges to the same limit a € R. Show
that (a,,) must converge to a.

Proof.
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We are given that (a,,) is a bounded sequence with the property that every con-
vergent subsequence (a,) converges to the same limit a € R. We proceed by
contradiction.

Assume that (a,,) is a divergent sequence.

From 2.5.2 (c), since (a,) is a bounded and divergent sequence, there exist
atleast two subsequences of (a,,) that converge to different limits. This contra-
dicts the fact that every convergent subsequence of (a,) converges to the same
limit a € R.

Hence, our initial assumption is false. (a,) must be a convergent sequence.

Abbott 2.5.6. Use a similar strategy to the one in example 2.5.3. to show that
b'/™ exists for all b > 0 and find the value of the limit.

Solution.

Assume that 0 < b < 1. Then, since

b< b2 < b/ </t <L
(by,) is a monotonically increasing sequence and bounded by 1, (b,) is a conver-

1/2
gent sequence. Let lim b,, = . Since, lim by, = lim (bl/ ”) / = /I, we have that
Vi=1.5S0,1=1.

Assume that b > 1. Then, since

b> b2 > pt/3 > pl/t >

(bl/ ") is a monotonically decreasing sequence bounded below by 1. Again,
(bl/ ”) — 1.

Abbott 2.5.7. Extend the result proved in example 2.5.3 to the case |b| < 1, that
is show that lim b" = 0 if and only if -1 < b < 1.

Proof.
(=) direction.
Assume that limb™ = 0. Then, lim [b"| = 0. We proceed by contradiction.

Assume that |b| > 1. Then:

L<pl<pP<pP<...<p"<...
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Since (|b|") is convergent, by the Order Limit Theorem:

1 < lim |b|"

This contradicts the fact that lim ||™ = 0.
(«=) direction.

Assume that —1 < b < 0. Pick an arbitrary € > 0. We pick N € N such that,

N < e
that is :
Nlog|b| <ce
N> o
Then, for all n > N, we have:
b" € (—e,€)

Consequently, lim b" = 0.

If b = 0, then the constant sequence (0,0,0,...) converges to 0.
Abbott 2.6.1. Suppy a proof for the Theorem 2.6.2.

Every convergent sequence is a Cauchy sequence.

Proof.

Let (z,) be a convergent sequence. Assume that (z,) — z. Pick an arbitrary
€ > 0. There exists N € N, for all n > N, the distance
|z, — x| < €/2

Now, consider the expression |z,, — z,,,| where m,n > N. We have:

Ty — 2| + |Tm — ] {Triangle Inequality }

Thus, (z,,) is a Cauchy sequence.
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Abbott 2.6.2. Give an example of each of the following or argue that such a
request is impossible.

(a) A Cauchy sequence that is not monotone.
Proof.
(="

n
over, it is not monotone.

Consider a,, =

. This is a convergent sequence and hence Cauchy. More-

(b) A Cauchy sequence with an unbounded subsequence.
Solution.

This request is impossible. By Lemma 2.6.3, Cauchy sequences are bounded.
Thus, there exists M > 0, for all n € N, such that |z, | < M. Let (x,,) be any
arbitrary subsequence of (z,,). Then it follows that, |z, | < M forall £ € N.

Thus, all subsequences of a Cauchy sequence are bounded.
(c) A divergent montone sequence with a Cauchy subsequence.
Solution.

This request is impossible. A divergent monotone sequence cannot contain a
Cauchy subsequence. We proceed by contradiction.

Let (z,,) be a divergent monotone sequence. Assume that, there exists a Cauchy
subsequence (z, ) of (z,).

We know, from theorem 2.6.4, that if a sequence is convergent <=-the sequence
is Cauchy. So, Cauchy sequences are convergent. Thus, if a sequence is diver-
gent, it is not Cauchy. Thus, (z,,) is not Cauchy.

Carefully negating the definition of a Cauchy sequence, we have that 3¢y > 0,
for all N € N, such that for some n > m > N, it follows that |z,, — z,,| > €.

We know that (z,, ) is Cauchy. Pick € = ¢j. There exists C' € N, such that for
all ng41 > ny > C, it follows that |z, , — 2, | < €o.

Since (z,,) is monotone, it follows that all the intermediate terms {z,, : n €
N,ny < n < npy1} lie between z,,, and z,,, ., on the real line. Consequently,
the distance amongst them must be smaller than ¢,. Thus, we conclude that,
foralln >m > C, |z, — m| < €o.

This is a contradiction. Our initial assumption is false.

(d) An unbounded sequence containing a subsequence that is Cauchy.
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Consider the sequence formed by juxtaposing the terms of the sequence (a,,) =
(0,0,0,0,...)whichis Cauchy and (b,,) = (1,2, 3,4, 5, ...) whichis unbounded.
The shuffle sequence (¢,) = (0,1,0,2,0,3,...) is unbounded and contains a
Cauchy subsequence.

Abbott 2.6.3. If (z,,) and (y,,) are Cauchy sequences, then one easy way to prove
that (z,, + y») is Cauchy is to use the Cauchy criterion. By theorem 2.6.4, (z,,)
and (y,) must be convergent, and the Algebraic Limit Theorem the implies that
(2, + yn) is convergent and hence Cauchy.

(a) Give a direct argument that (x,, + y,) is a Cauchy sequence that does not
use the Cauchy criterion or the Algebraic Limit Theorem.

Proof.
Pick an arbitrary € > 0.

Since () is a Cauchy sequence, there exists N; > 0, such that for all n > m >
N1, we have |z,, — x| < €/2.

Since (y,,) is a Cauchy sequence, there exists N, > 0, such that for all n > m >
N, we have |y, — ym| < €/2.

Consider two arbitrary terms z,,, z,, of the sum sequence (z,) = (x, +y»), such
that m,n > N = max{Ny, No}. We have:

|Zn_Zm| |xn+yn_(xm+ym)‘

|Zp, — T | + |yn — Ym| {Triangle Inequality}
g
)

A A

Thus, by definition, (z,) is a Cauchy sequence.
(b) Do the same for the product (z,y»)-
Proof.

Pick an arbitrary € > 0.

Consider two arbitrary terms z,,, z,, of the product sequence (z,,) = (zny,). We
have:

Zn — Z7n| = ‘xnyn - x'rnym|

‘xnyn — TmYn + TmYn — xmym|

|ZnYn — TmYn| + [TmYn — Tmym| {Triangle Inequality}
‘ynHmn - xm| + |$m‘|yn - ym|

VANl

Since (z,,) and (y,,) are Cauchy sequences and Cauchy sequences are bounded,
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it follows that (x,,) and (y,,) are bounded. There exists M; > 0, for alln € N,
such that |z,| < M;. There exists My > 0, for all n € N, such that |y, | < Mo.

Since (z,) is a Cauchy sequence, there exists N; > 0, such that for all n > m >
N, we have |z, — x| < €/2Ms.

Since (y,,) is a Cauchy sequence, there exists N, > 0, such that for all n > m >
Ny, we have |y, — ym| < €/2M;.

Thus, for all n > m > N = max{N;, Ny}, we can write:

<M2-ﬁ+M1-ﬁ=e

Consequently, (z,) is Cauchy.

Abbott 2.6.4. Let (a,,) and (b,,) be Cauchy sequences. Decide whether each of
the following sequences is a Cauchy sequence justifying each conclusion.

(a) en = |an — by
Proof.

If (a,,) and (b,,) are Cauchy sequences, by the Cauchy criterion, (a,,) and (b,)
are convergent. Applying the algebraic limit theorem, (a,, — b,,) is a convergent
sequence. Moreover, if (z,,) is a convergent sequence, then from Exercise 2.3.10,
|z, | is a convergent sequence. Thus, |a,, —b,,|is a convergent sequence, and there
Cauchy.

() ¢, = (=1)"ay,.
This conclusion is false. Consider the counterexample:
1 1 . )
cn = (—1)" <1 + ﬁ) where a,, = 1+ o (@) is Cauchy, but (¢,,) is not a Cauchy
sequence.
(c) en = [[an]] where [[z]] is the greatest integer less than or equal to x.

Proof.

(-1

This proposition is false. Consider the sequence a,, =

1 11 1 >
n) — _1777_7777_77'“
(an) ( 2° 34 5

so (a,) — 0 whilst
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(CTL) = <_1707 _1a0a _1707 . )

s0 (¢;,) is not a Cauchy sequence.

Abbott 2.6.5. Consider the following (invented) definition: A sequence (s,)
is pseudo-Cauchy if for all € > 0, there exists an N such that if n > N, then
[$nt1 — Sn| < €.

Decide for which one of the following two propositions is actually true. Supply
a proof for the valid statement and a counterexample for the other.

(i) Pseudo-Cauchy sequences are bounded.
Solution.

This proposition is false.

n
Consider the sequence of partial sums s,, = Z % This is a pseudo-cauchy
k=1
sequence. The difference between successive terms can be made as small as
possible. However, the sum keeps increasing ever-so slowly, and does not stop
even if you took one million, one billion or one trillion terms.

image[mc://users/ec70f086d36050429d70122065f9a453 / contents/cd362e2d1daba4cb43f2ec8530e0dcae-
loDju9eElt-harmonic,eries.png]

(ii) If (xy,) and (y,) are pseudo-Cauchy, then (z,, + y,) is Pseudo-Cauchy as
well.

This proposition is true.
Pick an arbitrary € > 0.

Since () is pseudo-cauchy, 3N; such that for all n > N7, we have:

|Tnt1 — x| < €/2

Since (y,,) is pseudo-cauchy, 3N, such that for all n > N,, we have:

‘yn—i-l - yn| < 6/2
Let N = max{Ny, N2}

Then, for all n > N, we have:
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= [(Tn41 — Tn) + Yn+1 — Yn)|
<|(@n+1 — xn)| +|(Ynt1 — yn)| {Triangle Inequality}
<sts5=c¢

|<xn+1 + yn+1) — (@n + yn)l

Thus, (z,, + y,) is pseudo-Cauchy.

Abbott 2.7.1. Proving the Alternating Series Test (Theorem 2.7.7) amounts to
show that the sequence of partial sums

S, =a1—as+asg—...%xa,

converges. Different characterizations of completeness lead to different proofs.
(a) Prove the Alternating Series Test by showing that (s,,) is a Cauchy sequence.
Proof.

Firstly, we have a; > a, for all n > 1. Taking limits on both sides, by the Order
Limit theorem, a; > lim a,, = 0. Similarly, we can conclude

(a) Consider the distance |s,, — s,,|. We are interested to make this distance as

small as we please.

|5n - sm‘ = ‘(_1)ma'rn+1 +...+ (_1)nan|

(b) Consider the sequence of partial sums (s1, s2, $3, 54, ... )
LetS = {81,82,83, AN }

o0

80:0

The sequence of partial sums (sy)

Define I; = [0, s1]. We bisect the interval I; into two halves L; and R;. We let:

I R, if Ry NS contains an infinite number of points
2 L, otherwise

In general, we let:

Ry, if R; NS contains an infinite number of points of S
Ipir = .
L; otherwise
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We have [;; D I;11. By the Nested Interval Property, there exists s € ﬂ 1.
k=1
Our claim is that (s,,) — s. Pick an arbitrary e > 0.

We can pick K such that:

S1

Then, for all k > K, since s € I}, we must have that |s; —s| < e. Thus, (s;) — s.

(c) We find that:

Sok+2 = Sak + (G2k41 — A2k42)
> Sok {Since (a2k+1 — a2k+2) > 0}
And,
S2k+3 = S2k+1 — G2k+2 T A2k+3
= Sokt1 — (Gory2 — G2k43)
< S2k+1 {since (agx12 — azrt3) > 0}

Thus, the subsequence (s2,,) is a monotonically increasing sequence. And (s2y,41)
is a monotonically decreasing sequence. Moreover,

S2n = S2n41 — A2n+1
< Sant1

And therefore we conclude:

0<s3<s4<s6<

oS Sop S Sopg1 S ... <85 <83 <81

Since (s25,) is monotonically increasing and bounded above by all (s2,,+1)’s, by
the Monotone Convergence Theorem (MCT), (s2,,) is a convergent sequence.

Since (s2p+1) is monotonically increasing and bounded below by all (s2,,)’s, by
the Monotone Convergence Theorem (MCT), (s2,+1) is a convergent sequence.

The limits of (s2,,) and (s2,+1) could be different. We will prove that the limits
are same.

Let s = lim s9,,. Pick an arbitrary ¢ > 0. Consider the e—neighbourhood (s —
€8+ €).

There exists N; € N, such that for all n > Ny, so,, € (s — €, 5 + €).

There exists Ny € N, such that for all n > Ny, |ag, 11| < €/2
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Let N = max{Ny, No}. Then, 2N +1 >2N; +1 > 2N; and 2N +1 > 2N, + 1.
Consider the distance:

[sen+1 — San + San — S|
|sen+1 — San| + |san — 3]
laan 11| + |san — s
5+5=c¢€

|san+1 — 8]

<
<

50, son and san 41 belong to (s — €, s + ¢€). Since,

s—€< SNy <Sany2 < ... < Son43 S Song1 < Ste€

we have that foralln > N, s,, € (s — ¢, s + €). Consequently, (s,,) — s.

Abbott2.7.2. Decide whether each of the following series converges or diverges:

> 1
@) 712::1 2" +n
We have:
1 1
0< <5
—2n4n T 2"
4 =1
Since the infinite seriesY | - , by th ision test,
ince the infinite serlesTZ:1 5 converges, by the comparision tes nz:; 7 +n
also converges.
. sin(n)
®) > =
n=1 n
We have:
| sin n| 1
0< 2 < w2

oo oo .
. 1 . . | sinn|
Since E —p converges if p > 1, by the comparision test, g 5 converges.
n=1 n=1

By the absolute convergence test, Z szn also converges.
n
n=1
3 4 5 6 7
l—— -+ === +...
©) 4 i 6 8 i 10 12 *
Solution.
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oo

The general term of this infinite series is a;, = Z(—l)
k=1

k+1k+1
2k

We know that, if Z an converges, a, — 0. Consequently, if lima,, # 0, then

n=1

Z a, diverges. This is called the nth term test. Clearly, both lim(—1)" and

n=1
lim n are non-zero, and hence by the nth term test, this series diverges.
1 1 1 1 1 1 1 1
dDl+-——-cF+ -+ =-—=+...
(Di+s-3+3t5 6 77 s ot
Solution.
We have:
S =1+1-2+3+1-3+14+3-1+.
>1+% %+%+é—%+%+%fé+”
:1+%+T+?+%+ﬁﬁ7%+i+”.

1 i i
>1+?+?+?+¥+T8+178+
=ltgtgdgtat...
=1+3(1+3+5+7+...)

Since the harmonic series is unbounded, S is unbounded and divergent.

1 1 1 1 1 1

to— -+

1
1— — 4+ - —
@©l-mr3 - Ets @ 7

Solution.

Let (ay,) be the sequence of terms

(1 11111 >
7227 3’ 427 5) 627"'
Clearly, a1 > a2 > a3 > a4 > .... And (a,) — 0. Therefore by the alternating
series test, Z(—l)"”an is convergent.

n=1
Abbott 2.7.3. (a) Provide the details for the proof of the Comparision Test using
the Cauchy Criterion for Series.

(b) Give another proof for the Comparison test, this time using the Monotone
Convergence Theorem.

Proof.
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(a) We have that 0 < a, < by, for all k£ € N.

(i) Suppose that Z b, is convergent.
k=0

Since, Z by, converges, by the Cauchy Criterion, for all e > 0, 3N € N, such

k=0
that, for all m,n > N, we have:

|1 + .+ bp] <€

Since, 0 < ai < by, it follows that:
|ams1 + .o Fan| < |bmgr +...+bu| <e€

Consequently, by the Cauchy criterion, Z aj, converges.

n=1

o0
(ii) Next, suppose that Z ay, is divergent.
k=0

There exists ¢y > 0, for all N € N, such that for some m,n > N, we have:

[@mi1 + ...+ an] > €

Since, |bymt1 + - -+ bn| > |ams1 + - - . + an/, it follows that, for some m,n > N:

[brmg1 + oo+ bn| > ame1 + ...+ an| > €

Consequently, by the Cauchy criterion, Z by, diverges.

n=1

(b) Give another proof of the Comparison Test, this time using the Monotone
Convergence Theorem.

Proof.

(1) We have that 0 < ay, < by. Let (a,) be the sequence of partial sums of the
oo

infinite series Z ay and let (3,,) be the sequence of partial sums of the infinite
k=0
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oo
series E bs..
k=0

We know that (5,,) is convergent. Let 8 = lim /3,,. We have:

o < B, <

since b,, > 0 foralln € N.

Thus, the sequence («,) is monotonically increasing and bounded by 3. By the
Monotone Convergence Theorem, the sequence of partial sums (c,) is conver-
gent.

(2) Suppose that («,) is divergent. Since, («,) is monotone and divergent, it is
unbounded. Thus, (5,,) is unbounded and therefore, (3,,) is divergent.

Abbott 2.7.4. Give an example of each or explain why the request is impossible
referencing the proper theorem(s).

(a) Two series an and Zyn that both diverge but where anyn con-
verges.

Solution.

1
Consid —1)"*! and Z. Both th ies di . but the alternati
onsiaer Z( ) an Z " O ese series 1verge u e alterna 1ng

( 1 ) n+1
harmonic series E ~———— converges.
n

(b) A convergent series Z z,, and a bounded sequence (y,,) such that Z TnUn
diverges.

1)n+1

Consider the infinite series Z (bl and the sequence (y,,) = (—1)""'. The

n
-1 n+1

alternating harmonic series Z (=1 is convergent and the sequence (y,,) =

4 (_1)27L+2 1

—1)""" is bounded in [—1,1]. But, the infinite series — = —

-1 1,1 e oy

diverges.

(c) Two sequences (z,,) and (y,,) where Z x, and Z(xn + y») both converge
but Z yn, diverges.

This request is impossible.
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Zyn = Z(xn +yn) — Tn
=>(Tn +Yn) — 2 Tn

By the Algebraic Limit Theorem for infinite series, if Z(:z:" +y,) — Aand
an — B, then Zyn — A - B.

(d) A sequence (z,,) satisfying 0 < z,, < 1/n where Z(—l)":pn diverges.

Abbott 2.7.5. Now that we have proved the basic facts about the Geometric
series, supply a proof for the Corollary 2.4.7.

Proof.

Corollary 2.4.7. The series Z 1/nP converges if and only if p > 1.

n=1

Proof.

= direction.

1

o0 oo
By the Cauchy condensation test, since Z b, converges, we have that Z 2™ bon
n=0 n=0
also converges.

Thus,

S :b1+2b2+22b4+23bg+...
_ 1 + 2 + 22 + 23 + 2% +
1P A A

- ]. + op—1 + W + W “e

But the latter is a geometric series which converges if and only if || < 1. Since
1 1

o1 > O forall p € R, we must have 0 < 21 < 1. Thus,2°"' >1sop—1>0
and therefore p > 1.

+= direction.
This direction should be trivial.

Abbott 2.7.6. Let’s say that a series subverges if the sequence partial sums con-
tains a subsequence that converges. Consider this (invented) definition for a
moment, and then decide which of the following statements are valid proposi-
tions about the subvergent series.
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(a) If (a,,) is bounded, then Z a, subverges.
Proof.
This proposition is false.

Consider the constant sequence (a,) = (1,1,1,1,...). (a,) is a bounded se-
quence. Consider the sequence of partial sums of Z .

(1,2,3,4,...)

No subsequence of of the partial sums is convergent.
(b) All convergent series are subvergent.

This proposition is true.

Let (s,,) be the sequence of partial sums of the infinite series Z ap. Since (sy,)
is convergent, so is (sy,)oes. Thus, (s,) is subvergent.

(o) If Z |a,,| subverges, then Z a, subverges as well.

Let (s,,) be the sequence of partial sums of the absolute value series Z |a,| and

let (¢,,) be the sequence of partial sums of the series Z G-

Since (s,,) subverges, there exists a subsequence (s,, ) of (s,) that converges.

Pick an arbitrary € > 0. By the Cauchy criterion, there exists N > 0, such that
for allm > 1 > N, we have:

Sn,, — Sny| < €

Thus,

lan 2]+ +fan, || <€

But,
lan 41|+ -+ lan, | = lan41] + - +lan,|

From the triangle inequality, we know that,

lan,+1+ -+ an, | <lan+1] + .- +lan, | <e€

Thus, form >1> N,
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ltn, =t <€

Thus, (t,, ) is Cauchy. Thus, Z ay is subvergent.

(d) If Z a, subverges, then (a,,) has a convergent subsequence.

This proposition is false.

Consider the sequence

(an) = (1,-1,2,-2,3,-3,4,—4,...)

The sequence of partial sums (s,,) of the infinite series Z an, is:

(sn) =(1,0,2,0,3,0,4,0,...)

The sequence of partial sums (s,,) has a convergent subsequence, (0,0, 0,0, ...).

Hence, the infinite series E ay, is subvergent. But, (a,,) has no convergent sub-
sequence.

Abbott 2.7.7. (a) Show thatif a,, > 0 and lim na,, = [, with [ # 0, then the series
Z an diverges.

Firstly, since na,, > 0, by the order limit theorem, [ > 0. We are given that [ # 0,
sol > 0. Pick e = [/2. Since na,, — I, there exists N € N, such that for all
n > N:

l
Z—§<nan<l—|—f

that is:

0<£< <3—l
2 nany 2

We multiply the above inequality throughout by 1/n. Since n # 0, and 1/n > 0,
we have:
0< L <ap

2n
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oo oo
l
Now, E — diverges and therefore by the comparison test, E ay is diver-
n=N 2n n=N

o0
gent. Thus, Z ay, is divergent.

n=1
(b) Assume that a,, > 0 and lim n?a,, exists. Show that Z @y, converges.

Let limn2a,, = [. Picke = |I|/2. There exists N € N, such that foralln > N, we
have:

1 _ o 3|1
< =< < —
0< 5 = na, < 5
Multiplying throughout by 1/n%:
|| 3|1
0S5 =S5
Since Z o2 is convergent, by the comparison test, Z ay, is also convergent.
n
n=N n=N

o0

Consequently, Z a, converges.

n=1

Abbott 2.7.8. Consider each of the following propositions. Provide short proofs
for those that are true and counterexamples for any that are not.

(a) If Z(an) converges absolutely, then Z a2 also converges absolutely.

Solution.

Pick an arbitrary ¢ > 0. Since Z ay converges absolutely, there exists N € N,
such that, foralln > m > N:

|ami1| + .. 4 |an] < Ve
Squaring both sides,

(lamr] + -+ lan])? <€
We have:

|am1* + o lanl® < (lama] + -+ fan])?
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So, for all n > m > N, it follows that:
|ama1]? + .o 4 lan? <€

Consequently, Z a2 converges absolutely.

(b) If Z a, converges and (b,,) converges, then Z anby, converges.

Solution.

This proposition is false.

(_1)n+1 (_1)71-‘1—1 , 1
As a counterexample, let a,, = ——=— and b,, = . And leta;,, = —.

vn vn vn

Sincea; > a, > ... and (a/,) — 0, by the alternating series test Z(—l)”“a’ is

n

convergent. Thus, Z ay, is convergent and (b,,) is a convergent sequence. But,

1
Z anb, = Z - is the harmonic series and we know this is divergent.

(c) If Z an converges conditionally, then Z n?a,, diverges.
Solution.

Let’s proceed by contradiction. We are given that Z an is convergent, but it is

not absolutely convergent. Assume that Z n*a,, converges.

Since Z n’a,, converges, by theorem 2.7.3, lim n?a, — 0. Pick ¢ = 1. There
exists N € N, such that, for all n > N, we have:

—-1< n2an <1
that is,

0<n?la, <1

which implies:

1
0§|an|<ﬁ

oo oo
By the comparison test, since Z — is convergent, it follows that Z |an| is
n

n=N n=N
oo
convergent, so adding a finite number N of terms to this, Z |ay| should also
n=1
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be convergent. Thus, Z ay, is absolutely convergent. This is a contradiction.

ence, our initial assumption is false. n“a,, diverges.
H tial t fal 20, d

oo
Abbott 2.7.9. Given a series Z ap, with a,, # 0, the ratio Test states that if (a,,)
n=1
satisfies:

anJrl

lim =r<l1

an

then the series converges absolutely.

(a) Let r’ satisfy r < v’ < 1. Explain why there exists an N such thatn > N
implies that |a,,+1| < |an |’

Proof.

Pick e = (r' — 7). There exists N € N, such that for all n > N, we have

6Ln+1

r—('—r)< <r+('-r)

2%

that is,

an+1
Qn

<r <1

or |an 1| < |an|r'.
(b) Why does |ay]| Z(r')” converge?
Proof.

Since |r'| < 1, the geometric series |ay| Z(r’)" is convergent.

(c) Now, show that Z |ay| converges, and conclude that Z a, converges.

Solution.
oo

Consider the series Z lan|. Let (s,) be the sequence of partial sums of this
n=1

infinite series. Since the terms of this series are non-negative, (s,) is a mono-
tonically increasing sequence. Moreover, let n > N, then we can write:
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Sn =lar|+ ...+ |an|+ lani1| + .-+ |an]
<lai|+ ...+ |an| + lan|r" + lan|(r")? + ... + |lan|(r")" 7!
<lar] + ... +lan] 2255, ()"
=lai|+ ...+ |an—1| + |1a_1\:|,

Thus, the sequence (s,,) has an upper bound that we found above. By the Mono-
tone convergence Theorem (MCT), (s,,) is a convergent sequence. So, Z |an]|

converges. By the absolute convergence test,z @y, converges.

[Abbott 2.7.11] Find examples of two series Z a, and Z b,, both of which
diverge but for which Z min{a,, b, } converges. To make it more challenging,
produce examples where (a,,) and (b,,) are strictly positive and decreasing.
Proof.

1

1
Let (a,,) be the sequence (0, 1,0,1,0,1,...)and (b,) be the sequence <1,0, 5,0, -,0,...

3 b b
Both Z a, and Z b, diverge. But, min{a,, b, } = 0 and thus, Z min{a,, b, }

n=1 n=1 n=1
converges.

This would also work, for example, with:

1

(an) = (17173727>
1 1

(bn) - (17272753

[Abbott 2.7.12] (Summation-by-parts). Let (z,,) and (y,) be sequences, let
Sp = %1+ X2 + ...z, and set sg = 0. Use the observation that z; = s; — s;_1 to
verify the formula

n n
Z TjYj = SnYn+1 — Sm—1Ym + Z Sj(yj - yj+1)
Jj=m j=m

Proof.

We can simplify the expression on the RHS as follows:
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Z;L:m $i(Yj — Yj+1) = Sm¥m — SmYm+1 + Smt+1Ym+1
—Sm4+1Ym+2 + - .- + SnYn — SnYn+1
= SmYm + ym+1(sm+1 - Sm) + ym+2(5m+2 - 5m+1)
+...+ yn(sn - snfl) — SnYn+1
= Sm¥Ym — Sn¥Yn+1 T Ym+1Tm+1 + Ym42Tm+2 + ... + Ynln
= SmYm — SnYn+1 + D51 LY
Z;L:m Sj (yj - yj+1) — Sm—1Ym = SmYm — Sm—-1Ym — Sn¥Yn+1 + E;'L:m+1 TjYj

= Ym(Sm — Sm—1) — SnYn+1 + Z;L:mﬂ TY;

Zgzm S (yj — yj+1) + SnYn+1 — Sm—1Ym = TmYm + Z?:erl T5Yj

D i Si(Y5 = Yjr1) F St = Smo1Ym = Doi_, LY

[Abbott2.7.13] (Abel’s Test). Abel’s test for convergence states that if the series

Z x), converges and if (yy) is a sequence satisfying:

k=1
Y1 2> Y2 = Y3z = >0
o0
then the series Z TrYr converges.
k=1

(a) Use Abbott 2.7.12 to show that:

n n
Zxkyk = Sn¥n+1 T Z Sk(Yk = Yr+1)
k=1 k=1

where s, = x1 +... + z,.
Proof.
By the formula for summation by parts, we have:
Dkt ThYR = SnYnt1 — SoY1 + 2p_y k(Y — Yk+1)
n
= snYnt1 = 0 y1+ 3 5y sk(Yk — Yrt1)
n
= Sn¥nt1 + 21 Sk(Uk — Yk41)

oo

(b) Use the comparison test to argue that: Z sk(Yr — Yr+1) converges abso-
k=1
lutely, and show how this leads directly to a proof of Abel’s test.

Proof.
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oo

Since Z xy, converges, (si) is a convergent sequence and hence it is bounded.
k=1
There exists M > 0 for all £ € N, such that |sg| < M. Thus,

Isk(Yr — Yer1)| < Mlyr — ypgr] < M(yr —yrs1) {0 Yk > Yrsa}

We know that (yr — yx+1) > 0. Let (¢;) be the sequence of partial sums of the

o0
infinite series Z(yk — Yi+1)- Since (tx) is a monotonically-increasing sequence

k=1
and

te = —y2)+ W2 —y3)+ ...+ Yk — Yrs1)
=N —Y2+Y2—Y3+Ys+ ...+ Yk — Yr+1
=Y1 — Yk+1
<wun

it is bounded by y;, by the Montone convergence theorem, ¢, is a convergent
o0

series. By the Algebraic limit theorem for infinite series, M - Z(yk —Yk4+1) isa
k=1
convergent series.
oo
Hence, by the comparison test, Z |sk(yr — Yk+1)| is a convergent series.
k=1

o
By the Absolute convergence test, Z sk(yr — Yr+1) is a convergent series.
k=1

Passing to the limits, we have:

hmn—>oo ZZ:l TrYk = limn—>oo [Snyn+1 + ZZ:I Sk (yk - yk+1)]

Note that, (y,,) isbounded by [0, y1] and is a monotonically decreasing sequence.
Hence, by MCT, it is a convergent sequence. (s,,) is also given to be a conver-
gent sequence. Hence, the limit of the right hand side of the expression can be
written as:

n n
nlgrolo SnYnt1 + kz_:l sk(Yk — Yrg1) | = nlgrolo SnYnt1 nlgréo ; sk(Yk — Yk+1)

Since both these limits exist, the limit on the right hand side exists. Thus, the
o0

product series E ZRpYk converges.
k=1
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[Abbott 2.7.14] (Dirichlet’s Test) Dirichlet’s test for convergence states that, if

the partial sums of Z xy, are bounded (but not necessarily convergent), and if
k=1
(yx) is a sequence satisfying y1 > y2 > y3 > ... > 0 with limy;, = 0, then the
oo

series E TRYE converges.
k=1

(a) Point out how the hypothesis of Dirichlet’s Test differs from that of Abel’s
test in Exercise 2.7.13, but show that essentially the same strategy can be used
to provide a proof.

Proof.

n
Since the sequence of partial sums s,, = Z x1. is bounded, there exists M > 0,
k=1
such that |s,,| < M for all n € N. We can use the same strategy as in part (a) of
exercise 2.7.13 to show that the infinite product series is convergent.

(b) Show how the Alternating Series Test (Theorem 2.7.7) can be derived as a
special case of the Dirichlet’s test.

Proof.
Letz, = (—1)]CJrl and y, = ag, suchthata; > as > a3 > ... > 0and lima; = 0.
oo

Since the partial sums (s) of the infinite series 2:(—1)’“+1 are bounded, by the
k=1
Dirichlet test, Z(—l)k“ak is convergent.
k=1

Abbott 3.2.1. (a) Where in the proof of theorem 3.2.3 part (ii) does the assump-
tion that the collection of open sets be finite get used?

Theorem 3.2.3 part (ii) The intersection of a finite collection {O; : 1 < ¢ <
N, N € N} of open sets is open.

Proof. This assumption is used to find a candidate e-neighbourhood for the
N

point z € ﬂ O;. We chose ¢ = min{ei,...,ex}. It would not be possible to

i=1
choose such a candidate should the collection of open sets be countably infinite
or uncountable. Consider the case we have a countable collection of open sets

1

01,04, ... and where ¢, = —. Then, ¢; > 0, and inf{e¢; : ¢ € N} = 0. So, we
n

would be unable to choose an e.

(b) Give an example of a countable collection of open sets {O1,02,0s, ...}
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o0

whose intersection ﬂ O,, is closed, not empty and not all of R.

n=1

Proof.

Consider O,, = (—%, %) We have: ﬁ O,, = {0} which is closed, not empty
and not all of R. "

[Abbott 2.8.1] Using the particular array (a;;) from section 2.1, compute lim s,,,.

n—oo
How does this value compare to the two iterated values for the sum already

computed?

Proof.
We have:
1 1 1 1 1
2 16
A
0 0o -1 s =
;i) = 2
@=\y o o 2 1
0 0 0 0o -1
We have:
s =-1
599 :2(—1)+1-% ——2+%
$33 :3(—1)+2~?+1 1 :—2+%
s =4(-1)+3-3+2 - H+1-% =-2+3
Snn =n(-)+n—-1)-24+n-2) 5 +...+1 557 =-2+ 57
Thus,
lim sp, =—24 lim =-2
n—00 n—oo 2n—1
Also, if we compute the row-wise sum, we get:
1( 1 1 ) 1 1
-1+-({14=-+=+...|]=—14+—=-+——=0
toltgtyet HERE GV

Thus, passing to the limits, we have:
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oo 0
D> ai=0

i=1j=1
whereas if we compute the column-wise sum, we get:

1 11 1 1 (1—(1/2)mh) 1
sl g+mt ot om) =y ey - =

2 2 " 22 (1—(1/2)) gn—1
Thus, passing to the limits, we have:
Zzaij:_(1+§+§+...) _
j=1j5=1

[Abbott 2.8.2] Show that if the iterated series

DD layl

i=1j=1
converges (meaning that for each fixed i € N the series Z la;j| converges to

j=1
some real number b;, and the series Z b; converges as well), then the iterated
i=1

series

PP

i=1j=1
converges.
Proof.
Claim. The row-wise sums are convergent.
Fixi € N.
Since Z la;j| is convergent, there exists N € N such that, (Vn > m > N),

Jj=1

@i mr1| + .o F faia] <e
o
We are interested to prove that Z a;; is convergent. We have, (Vn > m > N)
j=1

| mt1 + - F @in| < |aimer| +. Fain] <e
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Thus, for a fixed i, the (row-sum)

oo
E Qi
Jj=0
is convergent.

As i was arbitrary, this must be true for all i € N.

Claim. The sum of these row-wise sums is convergent.

o0
Since Z b; is a convergent series, there exists L € N, such that for all (I > k£ >
i=1

L)

|bk+1+--«+bl‘<€

Since b,, > 0 for all n € N, it follows that

|bk+1+...+bl‘:bk+1+...+bl

Consider the expression:

Yotk ot 0 a| S ekl 4 ‘Z;‘;l al’j‘
< Z;il |ak+1’j| +...+ Z;il |al,j‘

:bk+1+...+bl
= |bk+1+...+bl|
<€
(VI >Fk>L).
oo oo
Consequently, the iterated seriesz Z a;; is a convergent series.
i=1 j=1

Theorem 2.8.1. Let {a;; : {,j € N} be a doubly indexed array of real numbers.
If

iiwﬂ

i=1 j=1
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oo o0 oo o0

converges, then both Z Z a;; and Z Z a;; converge to the same value. More-

i=1 j=1 j=1i=1
over,

oo 00 0o oo
lim Snn = E E Q5 = E E Qg4
n—00

=1 j=1 j=11i=1

n n
where s,,,, = g g aij.

i=1 j=1
Proof.

In the same way that we defined rectangular partial sums s,,, above in the
equation (1), define:

m n

tn = ZZ|aij|

i=1 j=1

[Abbott 2.8.3] (a) Prove that (¢,,) converges.
Proof.

We are given that:

iilaiﬂ

=1 j=1
is a convergent series. Our claim is that (¢,,,) is a Cauchy sequence.

Pick an arbitrary € > 0.

We are interested to produce an N € N, such that, (Vn > m > N),

n n
|tnn - tmm| = Z Z |aij| <€

i=m+41j=m+1

We know that, 3N € N, such that foralln > m > N,

n S
Z Z|aij| <€

i=m+1 j=0
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Thus, for all n > m > N, it follows that:

n n n oo
|tnn_tmm|: Z Z |a’bj|S Z Z'aij|<€

i=m+1 j=m+1 i=m-+1 ;=0

Consequently, (¢, ) is a Cauchy sequence and cauchy sequences are convergent.

(b) Now, use the fact that (¢,,,) is a Cauchy sequence to argue that (s,,,) con-
verges.

Proof.

Pick an arbitrary € > 0. Now, (¢,,) is a Cauchy sequence. So, (3N € N)(Vn >
m > N)([tnn — tmm| < €).

We have:

n n n n
|Snn_8mm‘: Z Z Qg5 < Z Z ‘aij|:|tnn_tmm‘<€

i=m—+1j=m+1 i=m+1j=m+1
foralln > m > N.
Consequently, (s, ) is a Cauchy sequence.

We can now set

S = lim s,,
n—oo

In order to prove the theorem, we must show that the two iterated sums con-
verge to this same limit. We first show that,

S=2 2 ay

i=1 j=1

Because {t,,,, : m,n € N} is bounded above, we can let

B = sup{tmn : m,n € N}

[Abbott 2.8.4] (a) Let € > 0 be arbitrary and argue that there exists an N; € N
such that m,n > Ny implies that B — €/2 < t,,,,, < B.

Proof.
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(tnn) is a convergent sequence. Itis a monotonically increasing sequence, bounded
above by B. We have:

t11 Stoo <33 <...<itpn

Pick an arbitrary ¢ > 0. By definition, 3N; € N, such that for all n > Ny,
B - % <tpwn < B< B+ g Since, for all m,n > Ny, tnn < tmn < B, it follows
that

€ €
B—=-<tow,<B<B+ -
2< < +2

for all m,n > Nj.

(b) Now, show that there exists an N such that:

[Smn — S| < €

forall m,n > N.
Proof.

We know that, (s,,,) is a Cauchy sequence and converges to .S.

[Abbott 3.2.2] Let

2
A:{(—l)”+—:n:1,2,3,...} and B={rcQ:0<z<1}
n
Answer the following questions for each set.
(a) What are the limit points?
(i) Enumerating the first few points of A, we have:
{1 2 142142 142142 }
) ) 3 ) 4 ) 5 ) 6 y
L = {—1,1} are the limit points of A.

(ii) [0, 1] are the set of all limit points of B. To see this, let y € [0, 1] be an arbi-
trary point. Pick an arbitrary € > 0 and consider the punctured neighbourhood
(y—e,y+e¢)—{y}. Since Q is dense in R, there exists a rational number z € Q,
such thaty < <y + €. Thus, (Ve(y) — {y}) N B # 0. Consequently y is a limit
point for B. Since y was arbitrary, [0, 1] is the set of all limit points of B.
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(b) Is the set open? Closed?

(i) A is not open. To see this, take the point = 1. This is a boundary point of
A. Consider the e-neighbourhood of 1: V(1) = (1 —¢,1 +¢€). Vi(1) € A, for all
e > 0.

Since L £ A, Aisnot closed.

(ii) Bisnot open. Let x be an arbitrary point of B. Consider the e—neighbourhood
of z: (x — ¢, + €). Since Q is dense in R, we know that there exists a rational
number r € Q such that:

xfef\@<r<x+ef\/§
So:

r—e<r+V2<uz+e

So, there always exists an irrational number in V(). Consequently, forall e > 0.
V.a) ¢ B.

0 is a limit point of B, that doesn’t belong to B. So, B is not closed.
(c) Does the set contain any isolated points?

(i) The set A contains an infinite number of isolated points. For n = 2m, pick

1 1 2 1
= 9m = = , then Ay, Ay, Ag, As, . ..
“Tom amt2  2m@m+2)  2m(mt1) B A6 s, ATE

isolated points.

(ii) All the points in B are limit points. Hence, B has no isolated points.
(d)

(i) c(A) = AU {-1}

(ii) ¢l(B) = [0,1]

Abbott 3.2.3. Decide whether the following sets are open, closed or neither. If
a set is not open, find a point in the set for which there is no e-neighbourhood
contained in the set. If a set is not closed, find a limit point that is not contained
in the set.

(@) Q.

Q is neither open nor closed.
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First, let z € Q, and consider any e-neighbourhood, V,(z) of the point x. There
exists an irrational number between any two real numbers, so there exists y € I,
such that z — € < y < x + e. Consequently, Ve > 0, 3z, such that V(z) € Q.

1 2
e 2
2 Tn

zo = 1. The sequence (z,,) C Q, and (z,,) — V2. Thus, V2 is a limit point for
Q, that does not belong to Q.

Next, consider the point V2 € I and the sequence T4+ =

(b) N.

Letn € N. Lete = 1. Then, Vi(n) = (n — 1,n+ 1) ¢ N. Consequently, N is not
open.

N has no limit points. Therefore, N is closed.
(c){reR:z#0}

R — {0} is open. Lety € R — {0}. If y > 0, then pick ¢ = y/2. (y/2,3y/2) C
R —{0}. If y < 0, pick e = |y[/2. Then, (y — [y|/2,y + |y[/2) € R — {0}.

R — {0} is not closed. 0 is a limit point for R — {0}, because for all e > 0, (—¢, €)
intersects the set in atleast one point other than 0. And 0 does not belong to the
set.

(d) {1+1/4+1/9+...41/n* :n e N}

This set is not open. Let (s,,) be the sequence of partial sums of the infinite series
1
Z 2 Then, the set consists of S = {s1,s2,83,...,8n,...}. Since, a, > 0,

sp, > 0and (s,,) is monotonically increasing. Pick ¢ = min{s, —s,-1, Sn+1—$n}-
Then, V. (s,) € S.

1
This set is not closed. We know that, Z — is convergent, if and only if p > 1.
npbP
1 1 2
So, Z 2 is convergent and in fact, Z 2= % Thus, the sequence (s,) —

2
%. So, 7 /6 is a limit point for S and does not belong to S.

() {1+1/24+1/3+...+1/n:n e N}.

This set is not open. Again let (s,,) be the sequence of partial sums of the infinite

1

series Z —. Then, the set S = {s1,52,...,s,}. The rest of the argument is
n

similar to part(d).

S is closed. The harmonic series Z E is divergent. Thus, S only has isolated
n
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points and no limit points.
Abbott 3.2.4. Let A be nonempty and bounded above so that s = sup A exists.
(a) Show that s € cl(A).

Proof.

1
By definition, Ve > 0, 3a € A, such that s — e < a < 5. Takee = — foralln € N.
n
Then, we can construct a sequence (a,,) C A, such that s — — < a, < s. If we
n

1

pick N > —, thenforalln > N, s—e < a, < s+e. So, (a,) — s. Thus, s is limit
€

point for A. Consequently, s € cl(A).

(b) Can an open set contain its supremum?

No, an open set cannot contain its supremum. Let O be an open set and let
s = sup O. Then, s is a limit point of O. We proceed by contradiction. Assume
that s € O. There exists V,, (s) such that V,, (s) € O, so V,(s) N1 O = 0.

Pick an arbitrary ¢ > 0. And let u be any point such that s — ¢ < s < u <
s+ e. Since, x < s for all z € O, we must have that u ¢ O, thatis u € o°.
Consequently, Ve > 0, V.(s) — {s} N O # 0.

This is a contradiction. Hence, our initial assumption is false. s ¢ O.
Abbott 3.2.5. Prove Theorem 3.2.8.

Theorem 3.2.8. A set ' C R is closed, if and only if every Cauchy sequence
contained in F has a limit that is also an element of F.

Proof.

= direction.

We are given that F is closed. We proceed by contradiction.

Assume that, there exists a Cauchy sequence (z,,) contained in F, such that
(zn,) = x, withz ¢ F. By Theorem 3.2.5, since (z,,) C F'and z,, # z, = is a limit

point of F'.

But this is a contradiction. Since F' is closed,  must belong to F'. Consequently,
our initial assumption is false.

VCauchy sequences contained in F, their limit is also an element of F.

<—djirection.
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We are given that, every Cauchy sequence contained in F' has a limit that is also
an element of F.

We proceed by contradiction. Assume that F' is not closed. Then, there exists a
limit point z of F, such that x ¢ F. Since, x is a limit point of F, there exists a
sequence (z,,) C F, such that x,, # z, and (x,,) — x. This is a contradiction.

Hence our initial assumption is false.

Abbott 3.2.6. Decide whether the following statements are true or false. Pro-
vide counterexamples for those that are false, and supply proofs for those that
are true.

(a) An open set that contains every rational number must necessarily be all of
R.

Proof.

This proposition is true. Let O be any open set containing R. We proceed by
contradiction. Assume that there exists € R, such that z ¢ O.

(b) The Nested Interval Property remains true if the term closed interval is
replaced by closed set.

Proof.
This proposition is false.
Counterexample.

Consider the set defined by I, = {n > k:n € N} fork =1,2,3,.... I1, I, ...

are nested closed sets. However, ﬂ I, = 0.

n=1
(c) Every non-empty open set contains a rational number.
Proof.
This proposition is true.

Let O be a non-empty open set. Let € O. Then, since « is an interior point,
there exists ¢y > 0, such that V,(z) C O. Since, Q is dense in R, there exists a
rational number r € Q, such thatz — e < r < x + ¢. Hence, r € O.

(d) Every bounded infinite closed set contains a rational number.

Proof.
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This proposition is false.
Counterexample.

Consider the set

S:{\/i-F%:nEN}U{\@}

Sisabounded set. V2 < z < V2+1forallz € S. S is infinite and contains all
its limit points, so S is closed. But, S does not have a rational number.

(e) The Cantor set is closed.
Proof.

Since

12 12
c=pa-{(33)v(5:5) (55) v}
it is the complementation of the set
<1 2) U (} 2) U (Z §) ...
373 9’9 9’9
(which is an open set) with respect to [0, 1]. Thus, C'is a closed set.
Abbott 3.2.7. Given A C R, let L be the set of all limit points of A.
(a) Show that the set L is closed.
Proof.
Let z be an arbitrary limit point of L.

Pick an arbitrary € > 0. Since z is a limit point of L, (z — ¢, x + ¢) intersects L in
some point [ other than . Thus, 3l € L, suchthatx —e <l <z +e.

Il—(x—€) (x+¢€) —1 |l—m|}'

2 ’ 2 T2
Then,V; (1) = (I — &,1 + &) intersects A for in some point other than ! and x.

Since, | € L, lisalimit point for A. Pick{ = min {

Thus, V. (z) intersects A in some point other than z. Since ¢ was arbitrary, this
is true for all e > 0. Consequently, « is a limit point for A. Thus, = belongs to L.
Since 2 was an arbitrary limit point of L and belongs to L, L is closed.

(b) Argue that if z is a limit point of AU L, then « is a limit point of A. Use this
observation to furnish a proof for theorem 3.2.12.
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Proof.
Let  be an arbitrary limit point of AU L.

Pick an arbitrary € > 0. There exists y € AU L, y # z, such thaty € Ve(z) N
(AU L). This implies that either y € Ve(z) N Aor y € Ve(z) N L or both.

If y € V.(x) N A, then since € was arbitrary, this must be true for all ¢ > 0. Thus,
x is a limit point of A.

Ify € Ve(z)NL, theny is a limit point of A. We can construct a tiny £&-neighbourhood
inside V,(x), determined by the rule:

S:min{y*(;’e),(wr;)*y’Iy;xl}

Since y is a limit point of A4, 3z, such that z # x and z # y with z € Ve(y) N A.

But this implies that, 3z, with z # =z, such that z € V,(z) N A. Since € was
arbitrary, this is true for € > 0. So, « is a limit point of A.

In both cases, x is a limit point of A.

If z is a limit point of A, x belongs to L and thus x € AUL. Since, x was arbitrary,
AU Lis closed.

[Abbott 3.2.8] Assume that A is an open set B is a closed set. Determine if the
following sets are definitely open, definitely closed, both or neither.

(a) cl(AU B)
We know, that the closure of any set S is closed, so c/(AU B) is definitely closed.
(b)y A\B={zxecA:x ¢ B}

We have A\ B = ANBY. BY is an open set AN B is definitely open, since the
intersection of a finite collection of open sets is open.

(c) (AU B)“.

(AC U B) is closed, since the finite union of closed sets is closed. Thus, (AC U B) ¢
is definitely open.

(d) (AnB)U (A° N B).

We can simplify this as,
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(AUA®)NB =8B

Thus, it is a closed set.
(e) (A’ nel (AC)

A% is closed, so cl (AC) = A% and so,

cl(A)° N AC = (cl(A) U A = (cl(A))°
Thus, it is definitely open.

[Abbott 1.2.5] (De-Morgan’s Laws) Let A and B be subsets of R.

(@) If z € (AN B)¢, explain why € AY U BY. This shows that (AN B)¢ C
A% U BC.

Proof.
Letz € (AN B)“.

Intuitively, = does not belong to both A and B. This is possible if and only if, =
does not belong to atleast one of A or B. So, either = ¢ Aorx ¢ B. So, z € A
orz € BY. Thus, z € (AC U BC).

Formally: (AnB)C

T e N

((x € A)A (z € B))
(re A)V (z € B)

z € A°) V (z € BY)
x € (AC U BC)

rree

(b) Prove the reverse inclusion (A N B)¢ D A° U B® and conclude that (4 N
B)Y = AU BC.

Letz € (A U B°).
Intuitively, = belongs atleast one of A“, B€. Thus, = does not belong to atleast

one of A, B. Naturally,  cannot belong to both A and B. So, z ¢ (AN B). Thus,
z e (AN B)°.
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Formally: (AC o

S @]
xeAcg\/(xeBc
E(zeA )/\(xEB ))
((x € A)A(z € B)

(x e (ANB))

z € (AN B)¢

fores

(c) Show that (AU B)Y = A° N B¢ by demonstrating inclusion both ways.
Letz € (AU B)“.

Intuitively, « is an element of (A U B)“. So, z belongs neither to A nor to B.
So, = must simultaneously be an element of both A° and B®. Consequently,
z e A9 N BC.

Formally: " B)C

T € U

(xr € (AU B))

((x € A)V (z € B))
(xe A)V (z € B)

(x € AC) V (z € BY)
x € (AC U BC)

11eey

Letx € (AC N BC).

Intuitively, = belongs to both A, B¢. So, = does not belong to both A and B.
Thus, z € (AN B)°.

11eey

[Abbott 3.2.9] A proof for De Morgan’s Laws in the case of two sets is outlined
in the exercise 1.2.5. The general argument is similar.

(a) Given a collection of sets {E) : A € A}, show that:

(U EA>C ﬂEf and (ﬂ EA>C U ES

A€A A€A AEA AEA

Proof.
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This proof is similar to the above exercise. So, we do not repeat it.
(b) Now, provide the details for the proof of the theorem 3.2.14.
(i) The union of a finite collection of closed sets is closed.

Let O1, O, ..., On be a finite collection of open sets. Let

- (0]

then from theorem 3.2.3, the intersection of a finite collection of open sets is
open. Taking complementation on both sides,

- (Ve

we must have that the union of a finite collection of closed sets is closed.
(ii) The intersection of an arbitrary collection of closed sets is closed.

Let {Ox : A € A} be an arbitrary collection of open sets. From theorem 3.2.3,
we know that:

o=(yo)

the union of an abitrary collection of open sets is open. Taking complementa-
tion on both sides, we have that:

0= o5
AEA

Since O is closed and each of the OY are closed, we must have that the inter-
section of an arbitrary collection of closed sets is closed.

[Abbott 3.2.10] Only one of the following three descriptions can be realized.
Provide an example that illustrates the viable description and explain why the
other two cannot exist.

Proof.
(i) A countable set contained in [0, 1] with no limit points.

This is not viable.
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Let S = {x, : n € N} be a countable set. Thus, (z,,) is an arbitrary sequence
in [0,1]. By the Bolzanno Weierstrass theorem, every bounded sequence has
atleast one convergent subsequence. So, there exists (z,,) C (x,) such that
(2, ) — . So, x is a limit point of S.

(ii) A countable set contained in [0, 1] with no isolated points.

Consider QN [0, 1]. Let x be an arbitrary rational number in (0, 1). Ve > 0, V¢ (z)
intersects Q in atleast one point other than z. So, all points in this set are limit
points. Therefore, Q N [0, 1] has no isolated points.

(iii) A set with an uncountable number of isolated points.
This is not viable.

Let S be such a set, that is uncountable, there are no holes and the set is complete
under the limiting operation. For all z € S, there exists a cauchy sequence
(zn) € S, such that (x,) — =.

Thus, every point of S is a limit point. S cannot have isolated points.
[Abbott 3.2.11] (a) Prove that c/(AU B) = cl(A) U cl(B).

Proof.

(= direction).

Let z € cl(A U B). Let L be the set of limit points of A U B. Since, c/(AU B) =
(AU B) U L, then atleast one of z € (AU B) or z € L holds true.

Ifx € (AU B), thenz € cl(A) U cl(B).

Suppose that € L. That is z is the limit point of A U B. By definition, there
exists a sequence (z,) C (AU B) such that z,, # = and (x,,) — z. There exists
a subset (z,,) C (z,), such that atleast one of (z,,) C A or (z,,) C B holds.
Every subsequence of a convergent sequence, converges to the same limit as the
original sequence. So, (z,,) — . Thus, z is either a limit point of A or z is a
limit point of B. Consequently, z € cl(A) U cl(B).

(<= direction).

Letz € cl(A) U cl(B).

x belongs to atleast one of c/(A) or cl(B). Suppose x € cl(A). Letcl(A) = AUL 4.
If x belongs to A, then € (AU B) and so z € cl(A U B) and we are done.

If = belongs to L4, then z is a limit point of A. So, there exists a sequence
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(z,) C A, such that z,, # = and (x,) — z. Therefore, (z,) € AU B. So, z is
also a limit point of AU B. Thus, z € cl(AU B).

We can similarly argue for the set B.

Consequently z € cl(AU B).

(b) Does this result extend to infinite unions of sets?
No, this result does not extend to infinite unions of sets.

Counterexample.

1 o0
Let A, = {— }, where n € N. Then, A,, is compact for all n € N. But, U A, is
n
n=1

not compact, since the limit point 0 does not belong to the infinite union.

[Abbott 3.3.1] Show that if K is compact and nonempty, then sup K and inf K
both exist and are elements of K.

Proof.

By the Heine Borel Theorem, K is a closed and bounded set. Since K is bounded,
by the Axiom Of Completeness (AoC), both inf K and sup K exist.

We are interested to prove that sup K is an element of K.

By definition, for all € > 0, there exists # € K,suchthats —e <z < s <s+e

1
Let ¢ = —. Then, we can construct a sequence (z,) in K. Given any arbitrary
n

1
e > 0, if we choose N > —, then foralln > N, x,, € (s —€,5s+¢€). So, (z,) — s.

€
Thus, s is a limit point of K. Since K is closed, s belongs to K.
We can argue similarly for inf K € K.

[Abbott 3.3.2.] Decide which of the following sets are compact. For those that
are not compact, show how definition 3.3.1. breaks down. In other words, give
an example of a sequence contained in the given set, that does not possess a
subsequence converging to a limit in the set.

(a) N.

N is not compact. Consider (z,,) = n, then no subsequence of (z,,) does con-
verges to a limit in the set. N is unbounded.

(b) QN 0,1].
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The set of rational numbers in [0, 1] is not compact. Consider the sequence (z,,)

1]
1 2
defined recursively as z,,+1 = B (xn + x—) withzy = 1. (z,) C Qand (z,) —

V2, which does not belong to Q. So, clearly, not all limit points belong to the
set.

(c) The Cantor Set.

The Cantor Set C' is compact. It is closed and since C' C [0, 1] it is bounded.
(d) {1+1/2°+1/3*+...+1/n” :n e N}.

The limit point 72 /6 does not belong to the set. So, it is not compact.

(e){1,1/2,2/3,3/4,4/5,...}

The general term is n T By the Algebraic Limit Theorem, lim i T =
n—oo N
fim P ~1

The set is closed and bounded. Hence, it is compact.

[Abbott 3.3.3.] Prove the converse of Theorem 3.3.4 by showing that if a set
K C R is closed and bounded, then it is compact.

Proof.
Let K be a closed and bounded set.

Let (z,,) be an arbitrary sequence in K. As K is bounded, the sequence (x,,)
is bounded. By the Bolzanno Weierstrass Theorem, there exists a converges
subsequence (x,, ) of (z,). Let (z,,) — [. Since K is closed, [ € K.

As (x,,) was arbitrary, it follows that, every sequence (z,,) in K has a subse-
quence that converges to a limit that is also in K. Hence, K is compact by defi-
nition.

[Abbot 3.3.4] Assume K is compact and F' is closed. Decide if the following
sets are definitely compact, definitely closed, both, or neither.

(a) KNF.
Proof.

Since K is closed, K N F is closed. Moreover, since K is bounded, K N F C K
and therefore bounded. So, K N F is definitely compact.

(b) cl (FC UK®)
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Proof.

Since F“ and K are both open sets, F° U K is an open set. The closure of
an open set is closed.

(c) K\ F.

Proof.

K \ F is neither compact nor closed.
(d) el (K N F°)

Since K N FY C K, it is a bounded set. Let x be an arbitrary limit point of the
set. Since K N F¢ is bounded, it’s limit point x must lie within the bounds.
Thus, cl (K N FC) is both closed and bounded. Hence, it is compact.

[Abbott 3.3.5] Decide whether the following propositions are true or false. If
the claim is valid, supply a short proof, and if the claim is false, provide a coun-
terexample.

(a) The arbitrary intersection of compact sets is compact.
Proof.
This claim is true.

The arbitrary intersection of closed sets is closed. Moreover, if the sets are
bounded, the intersection of the sets is also bounded. Consequently, the ar-
bitrary intersection of compact sets is compact.

(b) The arbitrary union of compact sets is compact.
Proof.

This proposition is false.
. . 1 2
We define z; = 1, with 2,11 = 3 (xn + —)

Let Ky = {x1} and define :

K, = {xn}
Then,
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(@

Ky

n=1

does not contain the limit point v/2 and is therefore not compact.

(c)Let A be arbitrary, and let K be compact. Then, the intersection A N K is
compact.

Proof.

This proposition is false.

Counterexample.

Let A= (0,1) and K = [0, 1] then AN K = (0, 1) which is not compact.

(d)If Fy D F5 D F3 D Fy DO F5 D ... is a nested sequence of nonempty closed

oo
sets, then the intersection m F, #0.

n=1

This proposition is false.

Counterexample.

oo
Consider the set ﬂ [n, 00). Each of [n, 00) is a closed set. But, their intersection
n=1
is empty.

As yet another example, let (s,,) be the sequence of partial sums of the infinite

1
series Z —. And consider the following closed sets:
n

F1 :{81782,83,..‘}
F2 :{82783,847...}
F3 = {s3,84,55,...}

Fn :{Snvsn+1;5n+27~~}

All of these sets are closed, because they do not have a limit point. And F; 2
F5 O .... But, their intersection is empty.

[Abbott 3.3.6] This exercise is meant to illustrate the point made in the opening
paragraph to the section 3.3. Verify that the following three statements are true
if every blank is filled in with the word finite. Which are true if every blank is
filled in with the word compact? Which are true if every blank is filled in with
the word closed?

83



(a) Every _______ set has a maximum.
Solution.
Every finite set has a maximum.

Every compact set is bounded, so it has a supremum and further sup K is a
limit point of the set, so it belongs to the set. Thus, every compact set has a
maximum.

(b) If Aand Bare _____ ,thenA+B={a+b:a€ Abe B}isalso ______.
Solution.

If A and B are finite, then A + B has at most # of elements of A times # of
elements of B, so A + B is finite.

If A and B is bounded, then there exists M; > 0, such that Va € A4, |a] < M;
and there exists My > 0, such that Vb € B, |b| < M,. Consequently, |a + b| <
la] + |b] < My + Ms, So, A + B is also bounded.

Consider A = {nJrl:nEN} and B = {—n :n € N,n # 2}. Both Aand B
n

have no limit points so they are closed, but A + B has a limit point 0 that does
not belong to the set A 4 B3, and hence it is not closed.

Suppose that A and B are compact. Let ¢ be a limit point of A+ B. There exists
a sequence (c,) € A + B such that ¢,, # ¢, with (¢,) — c¢. Every subsequence
of a convergent sequence also approached the limit point c.

Since ¢, € A + B, we can write (¢,,) as the sum of the sequences (a,,) C A and

(bn) C B. So:

¢, = an + by,

Now, since A is compact, by the Heine Borel Theorem, there is a subsequence
(an, ) of (a,) that converges to a limit in A. Let lima,,, = a,

Now, corresponding subsequence terms in B can be expressed as:

bn,, = Cn,, — On,

Taking limits on both sides, we have:

lim by, = lim(c,, — an,)
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Since both lim ¢,,, and lim a,,,, exist, we are allowed to apply the Algebraic Limit
Theorem, and thus:

limb,, =limc,, —lima,, =c—a

Consequently, (b,,) is a convergent subsequence. Let b = limb,,. Since B
is compact, b € B. Thus, there exists a € A, b € B, such that ¢ = a + b.
Consequently, ¢ € A+ B. Therefore, A + B is compact.

(c) If {4, : n € N} is a collection of ______ sets with the property that every
finite subcollection has a non-empty intersection, then ﬁ A, is non-empty as
well. i

Solution.

If {A, : 1 < n < N} is a collection of finite sets with the property that every
N

finite subcollection has a non-empty intersection, then ﬂ A, is non-empty as
n=1
well.

Consider A,, = [n,00). Each of the A,,’s are closed. The intersection of any
o0

finite subcollection of sets is non-empty, but ﬂ Ay, is empty.

n=1

Let {4, : n € N} bea collection of compact sets. Since the arbitrary intersection
of compact sets is compact, consider the sequence of sets

Bl :Al
BQ =A1 ﬂAQ
Bg :A1 ﬁAQﬁAg

B, = ﬂ?ﬂ A
Since, any finite subcollection has a non-empty intersection, each of the B;’s are

non-empty and compact. Moreover,

Blz_)BQ:_)B?,:_DB4:_)

By the Nested Compact set property, ﬂ B; = ﬂ A; is non-empty.

n=1 n=1

[Abbott 3.3.7] As some more evidence of the surprising nature of the Cantor
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set, follow these steps to show that the sum C'+C = {z +y : z,y € C} is equal
to the closed interval [0, 2]. (Keep in mind that C has zero length and contains
no intervals.)

Because C C [0,1], C+C C [0, 2], so we only need to prove the reverse inclusion
[0,2] C{z+vy:z,y € C}. Thus, given s € [0,2], we must find two elements
z,y € C, satistfying x + y = s.

(a) Show that there exists z1,y; € Cy, for which 21 4+ y; = s. Show in general
that, for arbitrary n € N, we can always find z,,, y,, € C,, for which z,, +y,, = s.

Solution.
Consider an arbitrary s € [0, 2].

Consider the straight-line z + y = s. Let us represent the regions [0,1/3] x
[0,1/3],10,1/3] x [1/3,2/3], [2/3,1] x [0,1/3] and [2/3,1] x [2/3, 1] graphically.
Forall s € [0, 2], the straight-line x4y = s will pass through atleast one of these
four squares.

[ 2 1 1
Ifs € |0, g}, then we can pick z; € {0, g} and y; € [0, g}
(2 4

2 1
Ifse _g,g},thenwe can pick z; € [g,l} and y; € [O,g]

4 2 2
Ifse 5,2},thenwe can pick z; € [g,l} and y; € [g,l]

A

<—

\ 4
Thus, there exists z1,y; € C7 such that z; +y; = s.

For n = 2, each square is further subdivided into 4 square regions.

In general, for n = k, there are 4" squares. By symmetry, the line = + y = s is

bound to pass through atleast one of the 4* squares. Thus, there exists ., y,, €
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C,, such that z,, +y,, = sforall k € N.

(b) Keeping in mind that the sequences (x,,) and (y,) do not necessarily con-
verge, show how they can nevertheless be used to produce the desired = and y
in C satisfying v + y = s.

Since (z,,) C [0, 1], it is a bounded sequence. By the Bolzanno Weierstrass The-
orem, the sequence (z,) has atleast one convergent subsequence (z,,). Let
limz,, ==

Since

Yn, = (9377,;C + ynk) — T,

we have that:

Hm(yn,, ) = im(zn, + Yn,) —lima,, =s—z =y

Thus, (y», ) is a convergent sequence.

Since (z,,) € Cp and (y,,) C C, for all n > ny, it follows that these subse-
oo oo
quences lie in the infinite intersection ﬂ C,, and thus in ﬂ C,,. Since, this is

n=ni n=1

a closed and bounded set, their limit points x,y € ﬂ c,=C.

n=1

[Abbott 3.3.8] Let K and L be non-empty compact sets, and define

d=inf{lz —y|:z € K,y e L}

This turns out to be a reasonable definition for the distance between K and L.

(a) If K and L are disjoint show that d > 0 and that d = |z — yo| for some z¢
in K and gy € L.

Proof.

Let

A={lz—y|l:z e K,y e L}
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Since |z — y| > 0, A is bounded below. Thus, inf A exists. We are interested to
prove that A is compact and therefore d = inf A exists and further belongs to A.

Let a be an arbitrary limit point of A. Thus, there exists a sequence (a,) =
|zn, — yn| € A, such that (a,,) = |z, — yn| — a. Since K is bounded, by the
Bolzanno Weierstrass theorem, there exists a convergent sequence (z,, ) C K,
whose limit point also belongs to K.

We now define the sequence y,,, such that |z, —yn, | = an, . Since, y,,, satisfies
this equation, it must be a subsequence of (y,,). Since both (a,, ) and (z,, ) are
convergent, (y,, ) is convergent. Since, limz,, € K and limy,, € L, we must
have that a € A. Consequently, inf A € A.

So, there exists xg € K and yo € L such that d = |z¢ — yo|-

(b) Show that it’s possible to have d = 0 if we assume only that the disjoint sets
K and L are closed.

[Abbott 3.4.1] If P is a perfect set and K is compact, is the intersection P N K
always compact? Always perfect?

Proof.

Since P is closed and K is closed and bounded, and the intersection of closed
setsis closed, PN K is closed. Further PNK C K, soitis bounded and therefore
always compact.

This is false. Consider P = [0,1] and K = {1}. PN K = {1} which is not a
perfect set.

[Abbott 3.4.2] Does there exist a perfect set consisting of only rational numbers?

No, the rational numbers Q or any subset of it is not perfect. Q is not closed
and hence it is not perfect.

[Abbott 3.4.3] Review the portion of the proof given in example 3.4.2. and
follow these steps to complete the argument.

(a) Because z € (', argue that there exists an x; € CNC, withx; # x satisfying
|z —21] <1/3.

Solution.

Let 2 € C be arbitrary. Since C' = ﬂ C,, reC,foralln € N.

n=1

We have established that x € C;. Suppose that = € [a1,b1] C Cy. We choose
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R L ifx < (a1 +01)/2
e by otherwise

That is, we let z; to be the left-hand enpoint of the closed interval, if z is smaller
than than the mid-point, otherwise we let 2; be the right-hand endpoint. Since

1 1
the length of the interval I(I;) = 3 we have that |z — 21| < 3

Since, endpoints of intervals are never excluded in the construction of the Can-
tor set, x;1 € C N (4.

(b) Finish the proof

Similarly, we know that z € Cs. Suppose that x € [ag,b2] C C2. Then, we
choose

- ay ifz < (ag +b2)/2
> by otherwise

In general, if = € [ay,, b,] C C,,, then we choose

ap, ifzx < (a,+b,)/2
Ty =
' b, otherwise

1 1
Since {(I,) = —, |z, — x| < —. Pick an arbitrary € > 0. Pick N, such that
37l 3”
1
37]\7 <€
or
log(1/e)
N >
log 3

Then, foralln > N,

Ty — x| <€

Consequently, (z,,) — .

Thus, all points in the Cantor Set C' are limit points.
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[Abbott 3.4.4] Repeat the Cantor construction from section 3.1 starting with
the interval [0,1]. This time, however, remove the open middle fourth from
each component.

(a) Is the resulting set compact? Perfect?

Proof.
We have:
cl = {O,g] U [2,1]
O =10.5) Vet 61 U [61 1) v 63 1]
Since m C/, is closed and bounded, it is a compact set.
n=1

oo

Let z € C' be an arbitrary point. Since = € ﬂ C),z € C] foralln € N. Again,
n=1

we can construct a sequence (z,,) C C’ such that (z,,) — .

Pick an arbitrary € > 0.

We can choose N such that

Then, foralln > N, |z, — 2| < e.

Thus, every point is a limit point of C". Consequently, C” is closed and has no
isolated points. Therefore, C’ is perfect.

(b) Using the algorithms from section 3.1, compute the length and dimension
of this Cantor-like set.

Proof.

The length of the middle 1/4th Cantor set is given as follows:

L(CUM) =1- (2211 g (%)nil)
=1- %Z%O:l (%)7171

- 4 1-32

=0
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If we magnify the Cantor set C*/%) by a factor of 8/3, this results in [0,8/3].
Removing the open middle 1/4th results in two intervals [0, 1] and [5/3,8/3]
which is where we started in the original construction, except that we now stand
to produce an additional copy of C"/%) in the interval [5/3,8/3]. Magnifying
the Cantor set C'/4) by a factor of 8/3 yields two copies of the original set.

Thus,
(8/3)" =2
Or,
_ log(8/3)
~ log2

[Abbott 3.4.5] Let A and B be non-empty subsets of R. Show that if there exists
disjoint open sets U and V with A C U and B C V, then A and B are separated.

Solution.
We are given that U and V' are disjoint open sets. We proceed by conradiction.
Let a be an arbitrary limit point of A. Assume thata € B.

Since, B C V, a is an interior point of V. Consequently, there exists ¢; > 0,
such that V, (a) = (a — €9, a + €y) C V. Since U and V are disjoint open sets,
Ve, (@) N A = 0 and therefore (V,,(a) — {a}) N A = 0.

But, a is the limit point of a. For all € > 0, it follows that (Vi (a) — {a}) N A # 0.
This is a contradiction. Hence, our initial assumption is false. a ¢ B.

Since a was arbitrary, this holds true for all limit points of A. So, cl(A) N B = 0.
We can similarly argue that A N cl(B) = 0.

Therefore, A and B are separated.
[Abbott 3.4.6] Prove theorem 3.4.6.

Theorem 3.4.6. A set £ C R is connected, if and only if, for all nonempty
disjoint sets A and B satisfying £ = A U B, there always exists a convergent
sequence (z,) — = with (x,) contained in one of A or B, and x an element of
the other.

Proof.

—direction.
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We are given that E is connected. We proceed by contradiction.

Assume that there exist non-empty disjoint sets A, B satistying £ = AU B,
such that for all convergent sequences (x,,) — z, both ((z,) C A) A (xz € B) and
((zn) € B) A (x € A) are false.

Let a be a limit point of A. Then, 3(a,,) C A, such that (a,,) — a. From above,
it follows that a ¢ B. Since, a is a limit point of A, we have: a € cl(A),a ¢ B.
Since @ was arbitrary, we must have: cl(A) N B = ().

We can similarly argue that A N cl(B) = 0.

Since E is connected, by definition, for all non-empty disjoint pairs of sets C, D
satisfying £ = C'U D, atleast one of c/(C') N D or C' N cl(D) is non-empty.

This is a contradiction. Hence, our initial assumption is false.

<= direction.

We are given that, for all non-empty disjoint pairs A, B satisfying £ = AU B,
there always exists a convergent sequence (x,) — «, such that atleast one of the
following holds

(@) ((x2) C A) A (2 € B)

(i) ((zn) € B) A (z € A)

It follows, that atleast one of the following holds:

(i) there exists a limit point a of A4, such thata € B. Since, a € cl(A), cl(A)NB #
0

(ii) there exists a limit point b of B, such that b € A. Since b € cl(B), ANcl(B) #
0

Thus, by definition £ is connected.

[Abbott 4.2.1] (a) Supply details for how corollary 4.2.4 part (ii) follows from
the Sequential criterion for functional limits in theorem 4.2.3 and the Algebraic
Limit Theorem for sequences proved in chapter 2.

Proof.

We are interested to prove that, given lim f(z) = L and lim g(z) = M,
Tr—cC Tr—c

lim{f(z)+g(z)] =L+ M

r—c

Let (x,,) be an arbitrary sequence, satisfying x,, # ¢, with (z,,) — c.
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By the sequential criterion for functional limits, it follows that lim f(z,) = L
and lim g(z,,) = M.

Therefore,

lm(f(xn) + g(xn)] =lm f(z,) +limg(z,) {Algebraiclimit theorem for sequences}
— L+ M

Since, (x,,) was arbitrary, this is true for all sequences (z,,) C A, with z,, # ¢
and (z,) — c

Thus, by the Sequential Criterion for functional limits,

lim [f(2) + g(a)] = L + M

Tr—c

(b) Now, write another proof of corollary 4.2.4 part (ii) directly from the defi-
nition 4.2.1 without using the sequential criterion in theorem 4.2.3.

Proof.

We are given that lim f(x) = L and lim g(x) = M. Since:

r—c T—C

Pick an arbitrary € > 0.
There exists §; > 0, such that for all z € (¢—0d1,¢c+3d1), we have |f(z) — L| < €/2.
There exists d; > 0, such that forall € (¢c—d2, c+02), wehave |g(x)— M| < €/2.

Pick § = min{dy, d>}. Then, for all x € (¢ — 6, ¢ + §), we have:

[f(@) +g(a) = (L+M)| =|f(x) — L+ g(z) - M|
< |f(x) - |+Ig( ) — M|
<gtg=c¢

Consequently, 1131 f(z)+g(x) =L+ M.

(c) Repeat (a) and (b) for corollary 4.2.4 part (iii).
Proof.

(i) We are given that lim f(z) = L and lim g(z) = M.
Tr—cC Tr—cC

Let (z,,) be an arbitrary sequence, satisfying x,, # ¢, such that (z,,) — c.
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By the Sequential criterion for Functional Limits, lim f(z,) — Landlim g(z,) —
M.

We have:

lim f(xy,) - g(z,) =lm f(x,)-limg(z,) {Algebraic limittheorem for sequences}
=L-M

Since (z,,) was an arbitrary sequence, this is true for all sequences (z,) — ¢,
with z,, # c. By the sequential criterion for functional limits, lim f(z)g(z) =
r—c

LM.

(ii) We are interested to make the distance |f(z)g(xz) — LM| as small as we
please. Pick an arbitrary e > 0.

Let us explore the expression | f(z)g(x) — LM|. We have:

|f(z)g(z) — LM]| }f(l‘)g(w) — Lg(x) + Lg(z) — LM|
g

(@)[|f(z) = L[ + [Ll|g(z) — M|

IA

If we replace |g(x)| by its upper bound, we will strengthen the condition the we
wish to prove.

Pick € = 1. There exists §; > 0, such that for all |z — ¢| < §;, we have :

lg(z) — M| <1

or

lg(x)] < |M]+1

There exists 02 > 0, such that for all |z — ¢| < d2, we have:

|f(17)*L|<W

There exists 3 > 0 such that for all |z — ¢| < J3, we have:
.

2|L]|
Let § = min{dy, d2,03}. Then, for all |z — ¢| < ¢, it follows that:

l9(z) = M| <
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|f(x)g(z) — LM| < |g(z)||f(x) — L[ + |L||g(z) — M|
< (M| + D 5gamer + 1 Ll5E

=€

Consequently, hin f@)g(xz) = LM.

[Abbott 4.2.2] For each stated limit, find the largest possible §-neighbourhood
that is a proper response to the given e-challenge.

(a) ling(Sx —6) =9 wheree = 1.

T—r

Proof.
We are interested to make the distance |(5z — 6) — 9] < 1. We have:
|5z —6)—9] <1
[5x —15] <1
lz—3] <1
Thus, the largest j—neighbourhood that is a proper response to the given e-
1 1
hall i (3—7,3 7>.
challenge is 5 + 5

(b) lim /2 = 2, where ¢ = 1.
z—4

Proof.

We are interested to make the distance |\/z — 2| < e. We have:

[V —2| <e
T+2
|(VE—2)| x S <e
z—4
\/5+2‘ <€

Since € = 1, we would like to have, |z — 4| < |/z + 2|.

If we replace |\/z + 2| by its lower bound, we can strengthen the condition we
wish to prove.

If e = 1, there exists § > 0, such that for all [z — 4| < §, we have 1 < /z < 3.
Consequently, 3 < v/z + 2 < 5. Thus, 3 is a lower bound for \/z + 2.

Therefore, let x be such that |z — 4| < 3. Then, x € (1, 7).
(c) lim[[z]] = 3, where e = 1.

T—T
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Proof.
We are interested to make the distance |[[z]] — 3| < 1.

We have:

If we pick § = 7—3, thenforall z € V;(n), it follows that [[z]] = 3 or |[[z]]—3| < 1.

(d) lim [[z]] = 3, where € = 0.01.

T—T

We are interested to make the distance |[[z]] — 3| < 0.01.

We have:

—0.01 < [[z]] — 3 < 0.01
— 299 < [[z]] < 3.01
= [l=] =3

Again if we pick 6 = m — 3, then for all # € V;(m), it follows that [[z] = 3 or
[[z]] — 3] < 0.01.

[Abbott 4.2.3] Review the definition of Thomae’s function ¢(z) from section 4.1.

(a) Construct three different sequences (z,,), (y») and (z,,), each of which con-
verges to 1 without using the number 1 as a term in the sequence.

Proof.

The Thomae’s function is given by:

1 ifr=0
t(x)=<1/n ifz=m/neQ\{0}
0 ifrx ¢ Q

V2

Letz, =1——,y, =1— —, n > 2, and z, be the sequence defined as:
n n

1—% ifn=2m, meN
1—-¥= ifn=2m+1meNm>1

n

(b) Now, compute lim ¢(zy,), lim ¢(y,,) and lim ¢(zy,).
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Proof.

n—1
n

1
Since x,, = Jt(xn) = o Thus, t(z,) — 0.

Since y,, is irrational, t(y,) = 0. Thus, t(y,,) is the constant zero sequence and
approaches 0.

Since t(z,) is the shuffle sequence consisting of the terms of t(z,,) and t(y,)
juxtaposed next to each other, ¢(z,) — 0.

¢) Make an educated conjecture for the limit lim ¢(z) and use the definition
) 1
z—
4.2.1B to verify the claim.

Our claim is that lim1 t(z) = 0.
r—

We proceed by contradiction. Assume that there exists ¢y > 0 for all § > 0 such
that for atleast some = € (1 — 6,1+ ¢) different from 1, we have |t(z)| > €.

1
By the Archimedean property, there exists N € N, such that ~ < ¢o

) 1 . 1 1 .
Consider § = N There exists = € (1 ~ 3N 1+ ﬁ) different from 1 such
that t(x) ¢ (—eo, €0)-

Such an = must necessarily have a denominator greater than 2/N. But then,
1
t(x) € <O, —
() 5N
initial assumption is false.

> and so, t(x) € (—e€p,€p). This is a contradiction. Hence, our

[Abbott 4.2.4] Consider the reasonable but erroneous claim that:

lim 1/[[z]] = 1/10

z—10

Solution.

(a) Find the largest ¢ that represents a proper response to the challenge of € =
1/2.

Proof.
Suppose that:

[=]] 10

<
2

1 1 ‘ 1
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Then,

i1 1 1.1
10 2 [l]] S 10 2

2 1 3
ERCRE
. 2 1 5 2
Consider 5 < Tl If [[z]] < 0, then —3> ([z]]- If [[=]] > O, then 5 < ([]]-

Consider ﬁ < g If [[z]] < 0, then [[z]] < g If [[z]] > 0, then [[z]] >

Wl ot

Consequently, it follows that [[z]] < —g or [[z]] > g

Therefore, v < —2orx > 2. Thatisz — 10 < —12o0rz — 10 > —8.

Thus, if |z — 10| < 8, the inequality is satisfied. Hence, 6., 2 = 8 is the largest
0 response to the given e-challenge.

(b) Find the largest ¢ that represents a proper response to € = 1/50.

Suppose that:
11111
10 50 [[z]] ~ 10 ' 50
Thus,
2_ 1 _3
25 " [[z]] 25
So, [[z]] > 0. Thus,
0< [l < 3
and
lal) > 2



Consequently,
1<z <13

and

z>7

For both these conditions to be true simultaneously, we must have:

T<r<l13

or

-3<zr-10<3
Thus, the inequality is satisfied for all = such that:

|z — 10| < 3

So, the largest J.—; /50 response to the given e-challenge is 3.

(c) Find the largest e-challenge for which there is no suitable ¢ response possi-
ble.

Proof.

1
I think this i = —.
think this is ¢ 90

[Abott 4.2.5.] Use definition 4.2.1 to supply a proper proof for the following
limit statements.

(a) algl_}rr12(3x +4) = 10.
Proof.
We are interested to make the distance |(3z + 4) — 10| as small as we please.
Pick an arbitrary € > 0. Let’s explore the inequality:
|3z +4) —10] <e

|3z — 6] <e
lv —2] <3

If we choose § = é’ then |z—2| < § implies that |(3z+4)—10| < e. Consequently,
lim (32 + 4) = 10.
z—
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(b) lim z° = 0.
z—0
We are interested to make the distance |2%| as small as we please.
Pick an arbitrary € > 0. Let’s explore the inequality:
|23| < e
s—e<ad<e

So—Ve<aw < e
lz| < /e

Pick § = €!/2. Then, |z| < § implies that 23| < e.
Since € was arbitrary, this is true for all ¢ > 0. Consequently, lin%) ¥ =0.
T—
. 2 . _

(c) lim (z*+x—1) =5.
We are interested to make the distance | (a:2 + x — 1) — 5] as small as we please.
Pick an arbitrary € > 0. Let’s explore the inequality:

|(#?+2—1)—5] <e

|22 + 2 —6] <e
|22 +3x — 22— 6] <e

lz(x+3) —2(x +3)] <e
(. —2)(z+3)] <e

Assume that § < 1. Then |z — 2| < § implies that 2 € (1,3). Consequently,
4 < x4+ 3 < 6. So, |r+ 3| < 6. If in the above inequality, we replace |z + 3| by
its upper bound, we are strengthening the condition we wish to prove.

So, we would like to therefore prove:

€
— 2l < =
o2 < &
If we choose § = min{1, ¢/6}, then |z—2| < § implies that | (z* + z — 1) 5| < e.
. 2 . _
Consequently, lim (z*+z—1)=6.

(d) lim 1/z = 1/3.

x

We are interested to make the distance as small as we please.

Pick an arbitrary € > 0. Let’s explore the inequality
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s3] <e

<€

o=

lz—

3|z

=

8 1 17 1
Assume that § < —. Then - < z < 3 So, |z| > 3 If we replace |z| by it’s

lower bound in the above inequality, we strengthen the condition, we wish to
prove. Thus, our claim is:

|z — 3] <e
. |8 . 11
If we choose § = min {g, e}, then |z — 3| < § implies |— — 3‘ < e
x
. ) . .11
Since € was arbitrary, this holds true for all ¢ > 0. Consequently, hn% s
r—

[Abbott 4.2.6] Decide if the following claims are true or false and give short
justifications for each conclusion.

(a) If a particular ¢ has been constructed as a suitable response to a particular
e-challenge, then any small positive § will also suffice.

Proof.
This proposition is true.

Suppose a particular J-neighbourhood has been constructed in response to a
particular e-challenge. Then, forall z € (¢—d, c+6), wehave f(x) € (L—e, L+e).

If0 < £ < 6, then Ve (c) C Vs(c). Consequently, forall z € (c—&, c+§), it follows
that f(z) € (L —¢,L +¢).

(b) If ligl f(z) = L and a happens to be in the domain of f, then L = f(a).

This proposition is false.

Consider f(z) defined piecewise as:

f(:z:){x ifx >0

1 ifz=0
lim f(z) = liﬂ%(x) = 0. But, f(0) = 1.

z—0

(¢) lim f(z) = L, then lim 3(f () — 22 = 3(L — 2)°.

r—a

This proposition is true.
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lim, 4 3[f(z) — 2] =3 limy,[f(z) — 2] - lim, o [f(x) — 2] {Algebraic Limit theorem
for functional limits}
=3-(L—-2)-(L—-2)
=3(L—2)?

(d) li_r>n f(z) =0, then liin f(x)g(z) = 0 for any function g (with domain equal
to the domain of f)

This proposition is false.
Let f(z) = x — a be a function defined for all R — {a}. Then, 1i_r>n f(z) =0. And

let g(z) = i, x # a. We have:

lim f(z) - g(z) = lim(z — a) - =lim(1)=1

T—a r—a (3;‘ — a,) Tz—a

[Abbott 4.2.7] Let g : A — R and assume that f is a bounded function on A in
the sense that there exists M > 0 satisfying |f(x)| < M for all x € A. Show that
if lim g(z) = 0, then lim g(x) f(z) = 0 as well.

Tr—cC Tr—cC

Proof.
We are interested to make the distance |g(x) f(x)| as small as we please.
Pick an arbitrary € > 0.

There exists § > 0, such that for all x € (¢ — ¢, ¢ + 9), it follows that:

€

9@l < -

Since, f(x) is bounded, there exists M > 0, for all x € A, such that

[f(z)] <M

Consequently, for all z € (¢ — 6, ¢ + §), we have:

lg(z) f ()] = lg(@)[|f(z)] < ﬁ M =e

Thus, lim g(x) f(z) = 0.

Tr—cC

[Abbott 4.2.8] Compute each limit or state that it does not exist. Use the tools
developed in this section to justify each conclusion.
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This limit does not exist.
1

Consider the sequence (x,,) defined by z,, = 2+ —. Now, lim z,, = 2. We have:
n

lim f(:cn) = limn_>oo W

= lim {since z,, > 2}

(zn72)
=lim1
=1

1
Consider the sequence (y,,) defined by y,, = 2 — — Now, lim y,, = 2. We have:

lyn—2|

= lim _(ffj"_;) {since y,, < 2}
= lim(-1)
=-1
Therefore, there exists two sequences (z,,) and (y,) such that limz,, = limy,,
-2
but lim f(x,) # lim f(y,). Consequently, ilﬁmQ Z — 2|) does not exist.
|z — 2|
b
®) tim 59
Proof.
Our claimis lim f(z) = —1.

z—T/4
We are interested to make the distance | f(z) — (—1)| as small as we please.
Pick an arbitrary € > 0.

Let’s explore the inequality:

In other words:

u2+(xm’
(z—2)
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1 7 1 3
Assume that § < T Then, |z — 1l <1 implies that z € (5, 2). Consequently,

z < 2and so |z — 2| = —(x — 2). Thus, we have:

@22)'«, (x £2)

Since € > 0, this is vacuously true.

1
Thus, a6 < 1 is a suitable response to any given e-challenge.

Therefore, lim |z — 2| =

—1.
z—T/4 (I — 2)

(c) lim (—1)l/=1,

x—0

Proof.

This limit does not exist.

1
Let (z,,) be a sequence defined by z,, = 5 n € N. We have, (z,,) — 0. Now,
n

1
— =2nand
Ty

Fln) = (<D= = (c1n =1
So, lim f(x,) = 1.

Let (y,,) be a sequence defined by y,, = ﬁ7 n € N. We have, (y,,) — 0. And

Flgn) = (<D = (1205 = (1)
So, lim f(y,) = —1.
Thus, 3(z,), (y,) such that lim z,, = limy,, = 0, but lim f(z,,) # lim f(y,)-

(d) lim ¢/az(—1)0/=],

x—0

Our claim is lim V(1) =,
z—

Since, |(—1)I1/7l] < 1, given an arbitrary ¢ > 0, we can pick § = ¢>. Then, for
all |z| < 0§, it follows that | #/z||(—1)[/*]| < ¥/e* . 1 = ¢, since h(t) = Vtisa
monotonically increasing function.

[Abbott4.2.9] (Infinite Limits.) The statement lin% 1/x? = oo certainly makes
T—r

intuitive sense. To construct a rigorous definition in the challenge response style
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of the definition 4.2.1., for an infinite limit statement of this form, we replace the
arbitrarily small € > 0 challenge with an (arbitrarily large) M > 0 challenge:

Definition: lim f(x) = co means that for all M > 0 we can find a 6 > 0 such that
r—cC
whenever 0 < |z — ¢| < 4, it follows that f(z) > M.

(a) Show that lirrb 1/2? = oo in the sense described in the previous definition.
r—

Proof.

1
Pick an arbitrary M > 0. We are interested to make — > M. Let’s explore this
X

inequality.
L >M
? < ﬁ
1
el < 7&
1

1
Pick 6 = Wivd then |z| < ¢ implies that 2> M. Since M > 0 was arbitrary,

this is true for all M > 0. Consequently,

lim — = o0
z—0 12

(b) Now construct a definition for the statement wlgrolo f(z) = L. Show that
zll}n;o 1/z =0.

Proof.

Definition. Tlgrolo f(z) = L means that for all € > 0, there exists M > 0, such that
for all |z| > M, it follows that | f(z) — L| < e.

1
We are interested to make the distance ‘ < €. Assume that M > 1, then
x

|z| > M implies that |z| > 1. Therefore,

1
|z > -
€

1 1
If we pick M > max {1, f}, then |z| > M implies that ‘
€ x

< €. Consequently,

lim — =0.
T—00 I

(c) What would a rigorous definition for lim f(z) = oo look like? Give an
Tr—r00

example of such a limit.
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Solution.

Definition. For all M > 0, there exists N > 0, such that for all z > N, it follows
that f(z) > M.

[Abbott 4.2.10] Right and left limits. Introductory calculus courses typically
refer to the right-hand limit of a function as the limit obtained by letting x ap-
proach a from the right-hand side

(a) Give a proper definition in the style of the definition 4.2.1 for the right-hand
and left-hand limit statements:

Jm J@ =L ad i f@)=M

Proof.

hm+ f(z) = L means that for all ¢ > 0, there exists § > 0, such that for all
T—ra
x € (a,a + 9), it follows that f(z) € (L — €, L +¢).

lim f(z) = M means that for all ¢ > 0, there exists § > 0, such that for all

T—a—

x € (a — 0,a), it follows that f(z) € (L — €, L +¢).

(b) Prove that li_r)n f(z) = L if and only if both the right and the left-handside

limits equal L.

= direction.

We are given }1_1}}1 f(z)=L.

Pick an arbitrary € > 0.

There exists § > 0, such that forall x € (a — d,a + 0), f(x) € (L —¢,L +¢€).
Let t be an arbitrary point in (a — §, a). Since |t — a| < 9, f(t) € (L — €, L +¢).

As t is arbitrary, this is true for all ¢ € (ad, a). Since € was arbitrary, this is true
for all e > 0.

Consequently, 1_i>m_ f(z) = L.
Let s be an arbitrary point (a,a + ¢). Since |s —a| < ¢, f(s) € (L —¢,L +¢).

As s is arbitrary, this is true for all s € (a,a + ¢). Since e was arbitrary, this is
true for all e > 0.

Consequently, zlil}llJr flx)=1L
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<—djirection.

We are given that lim f(z) = lim f(z)= L.
r—a—

r—ra+

Pick an arbitrary € > 0.

There exists ; > 0, such that forall x € (a — 61, a), f(z) € (L —¢€, L +¢).
There exists d; > 0, such that for all x € (a,a + d2), f(z) € (L — €, L +¢).
Pick § = min{dy,d2}. Then, forall x € (a — d,a + 6), f(z) € (L — e, L +¢).
Since € was arbitrary, this is true for all € > 0.

Consequently, lim f(z) = L.
T—a

[Abbott 4.2.11] (Squeeze Theorem.) Let f, g and h satisfy f(z) < g(z) < h(z)
for all z in some common domain A. If lim f(z) = L and lim h(z) = L at some
T—cC r—cC

point c of A, show that lim g(z) = L as well.
Tr—cC

Proof.

Pick an arbitrary € > 0.

There exists §; > 0, such that forallx € (¢ — d1,¢+ 1), f(z) € (L —¢, L +¢).
There exists d; > 0, such that for all x € (¢ — d2,¢+ d2), h(z) € (L — €, L +¢).
Let 6 = min{dy,d2}.

But since f(z) < g(z) < h(z), forall z € (¢ — d,¢ + J), we have that L — ¢ <
fx) <g(x) <h(z) < L+e

Since € was arbitrary, this holds true for all € > 0. Consequently, ;1_>n£ g(z) = L.
[Abbott 4.3.1] Let g(z) = /.

(a) Prove that g is continuous at ¢ = 0.

Proof.

We are interested to make the distance |g(x) — ¢(0)| as small as we please.
Pick an arbitrary € > 0.

Let’s explore the inequality |g(z)| < e.
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lg(z)] <e

| x| <e
lz| <€

Pick § = €*. Then, for all |z| < §, it follows that |g(z)| < e. Since ¢ was arbitrary,
this is true for all e > 0. Consequently, g(z) is continuous at ¢ = 0.

(b) Prove that g is continuous at a point ¢ # 0. (The identity a® — b* = (a —
b) (a® + ab + b*) will be helpful).

Proof.
We are interested to make the distance |g(x) — g(c)| as small as we please.

Consider the inequality |g(z) — g(c)| < e.

l9(z) —g(c)] <e

Vo =Yl <e
Vo o x
|/ — el x \§2/3+21/321‘/3+;/3| <€
r—c

[22/3 1 21/3c1/3 4 c2/3] <e

Now, if we complete the square in the denominator, we have:

/3 ,2/3 2/3 /8 ? 1/3 2
x2/3+x1/3cl/3+02/3 _ $2/3+2,x1/3.%+%+3c4/ = <x1/3 + 02/> +<\/§; / >

Since the sum of squares is always positive, we can write:

jo—c]

(/o 22) 4 (555

<e€
. 2
Moreover, since (CEl/ 34 /3 / 2) > 0, we can prove the stronger condition:

|z —¢|
W<Ea {c# 0}

Pick 6 = 262/36. Then, |z — ¢| < ¢ implies that |g(z) — g(c)| < e.

Consequently, g(z) is continuous at ¢ # 0.

[Abbott 4.3.2.] To gain a deeper understanding of the relationship between ¢
and ¢ in the definition of continuity, let’s explore some modest variations of
Definition 4.3.1. In all of these, let f be a function defined on all of R.
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(a) Let’s say that f is onetinuous at c if for all ¢ > 0 we can choose § = 1 and
it follows that | f(z) — f(c)| < € whenever |z — ¢| < 0. Find an example of a
function that is onetinuous on all of R. Find an example of a function that is
onetinuous on all of R.

Proof.
Consider the constant function f(x) = k.

Pick an arbitrary € > 0. Consider |f(z) — f(c)| < e. We have:

|k — k| <e

But, this is vacuously true, irrespective of the e-challenge. Hence, we can pick
0 = 1 response.

Consequently, f(z) = k is onetinuous.

(b)Let’s say that f is equaltinuous at ¢, if for all ¢ > 0 we can choose § = ¢
and it follows that | f(z) — f(c)| < e whenever |x — ¢| < §. Find an example of
a function that is equaltinuous on R, that is no where onetinuous, or explain
why there is no such function.

Proof.

Consider the linear function f(z) = x. Let ¢ be an arbitrary point.
Claim. f(z) is equaltinuous.

Pick an arbitrary ¢ > 0. Consider |f(z) — f(c)| < e. We have:

[f(z) — fle)] <e

|z —c| <e

Pick § = e. Then for all |z — ¢| < §, it follows that | f(x) — f(c)| < e.

Claim. f

—~

x) is nowhere ontinuous.

Let ¢g = —. Let’s explore the inequality |f(z) — f(c)| > ;. We have:

N | =

r—d > 5
2
Since Q is dense in R, we can pick « € Q satisfying:

1 1
c—1<x§c—§ or c—|—§§x<c+1
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Thus, |x — ¢| < 1.

So, there exists V., (f(¢)) for V1 (c), such that for atleast some z € V7 (c), it follows

that f(z) ¢ Ve, (f(c))-
There exists an e-challenge for which a é-response with § = 1 is not suitable.
Since ¢ was arbitrary, f is nowhere onetinuous.

(c) Let’s say f is lesstinuous at c if for all ¢ > 0, we can choose 0 < § < € and
it follows that | f(z) — f(¢)| < € whenever |z — ¢| < J. Find an example of
a function that is lesstinuous on R, that is no where equaltinuous, or explain
why there is no such function.

Proof.

Consider f(z) = 2z.

Claim. f(x) is lesstinuous.

Let’s explore the inequality f(z) = 2z. We have:
[f(x) = fle)] <e

22 —2¢| <€
|t —c| <35

If we pick 6 = €/2, then for all x satisfying |z — c| < ¢, it follows that |f(z) —
flo)] <e

Claim. f

—~

x) is nowhere equaltinuous.

. Now, § = €.

DN | =

Let €y =

We can pick z belonging to the set:

(c—d,c—e€y/2)U(c+eg/2,c+0)

Clearly, |f(z) — f(c)] > eo. So, there exists ¢ for § = ¢, such that there for
atleast some x € Vj(c), it follows that | f(x) — f(c)| > €.

There exists an e-challenge for which a é-response with § = ¢ is not suitable.

(d) Is every lesstinuous function continuous? Is every continuous function
lesstinuous? Explain.

Proof.
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Every lesstinuous function is function, this follows from the definition of lesstin-
uous functions.

All continuous functions are not lesstinuous.
Consider f(z) = /2. Pick an arbitrary ¢ > 0. Let’s explore the inequality
|f(x) = fle)| <e

[f(z) = f(e)] <e
/2 —c/2| <e
v — ¢ <2

If we choose 6 = 2¢, then for all x € (¢ — §, ¢ + J), it follows that f(x) € (f(c) —
€, f(C) + 6)‘

Consequently, f is continuous but not lesstinuous.

[Abbott 4.3.3.] (a) Supply a proof for the theorem 4.3.9. using the ¢ — ¢ char-
acterization of continuity.

Proof.

We are given that f is continuous at ¢ € A and g is continuous at f(c) € B.

We are interested to make the distance |g(f(x)) —g(f(c))| as small as we please.
Pick an arbitrary e > 0. Let’s explore the inequality |g(f(z)) — g(f(c))| < e.

Since g is continuous at f(c) € f(A), there exists £ > 0, such that for all f(z) €
f(A) satisfying | f(z) — f(c)] < &, it follows that |g(f(z) — g(f(c))] < e.

Since f is continuous at ¢, there exists 6 > 0, such that for all € A, satisfying
|z — ¢| < 4, it follows that | f(z) — f(c)] < &.

Since € was arbitrary, this is true for all € > 0.

Consequently, for all ¢ > 0, there exists 6 > 0, such that for all x € V;(c), it
follows that g(f(z)) € Ve(g(f(c)). Consequently, g(f(x)) is continuous at c.

(b) Give another proof of this theorem usng the sequential characterization of
continuity.

Let (z,,) be an arbitrary sequence, with (z,,) C A, such that (z,) — ¢
Since f is continuous at ¢, it follows that the image sequence f(z,,) — f(c).

Now, f(z,) C f(A). Since, g is continuous at f(c), the image sequence under g

of f(24), g(f(2x)) approaches g(f(c)).
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Since (x,,) was an arbitrary sequence in A, this must be true for all sequences
(zn,) C A, with (z,) — c.

Consequently, g(f(x)) is continuous at c.

[Abbott 4.3.4] Assume f and g are defined on all of R and that lim f(z) = ¢

T—p
and lim g(z) =r.
r—q

(a) Give an example to show that it may not be true that

lim g(f(2)) = r

T—p
Proof.
Define:
flz) =0
and
(2) = x ifz#0

g = 1 ifxz=0
We have }12% f(z) = 0 and ili%g(x) = 0. But, 711£%g(f(:c)) = 31?1_%57(0) =
lim (1) = 1.
T—

(b) Show that the results in (a) does follow if we assume that f and g are con-
tinuous.

Proof.

For all sequences (t,,), such that (¢,,) — p, since f is continuous at p, the image
sequence f(t,) = f(p). Consequently, ¢ = f(p).

For all sequences (y,,), such that (y,) — ¢, since g is continuous at g, g(y,) —
9(g). Consequently, r = g(q).

Let (x,) be an arbitrary sequence such that (z,) — p.
Since f is continuous at p, the image sequence f(z,,) — f(p).

Since g is continuous at f(p), the image sequence g(f(z,)) = g(f(p)) = g(q) =
T
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As (z,,) is arbitrary, this is true for all sequences (z,) — p.

Consequently, ;13; g(f(z)) =r.

(c) Does the result in (a) hold if we only assume f is continuous? How about
if we only assume that g is continuous?

Proof.
No, the result in (a) does not hold if we only assume f is continuous.

[Abbott4.3.5] Show using Definition 4.3.1 thatis cis an isolated pointof A C R,
then f: A — R, then f : A — R is continuous at c.

Proof.
Since c is an isolated point, there exists dp > 0, such that Vj,(c) N A = {c}.

Pick an arbitrary ¢ > 0. For any given e-challenge, we always choose the above
do as the response.

For all z € V5, (c) (and x € A), we must necessarily have z = ¢. Consequently,

the distance |f(z) — f(c)| = |f(c) — f(c)| =0 < e.
By definition 4.3.1, f is continuous at c.

[Abbott 4.3.6] Provide an example of each or explain why the request is impos-
sible.

(a) Two functions f and g, neither of which is continuous at 0 but such that
f(z)g(x) and f(x) + g(x) are continuous at 0.

Consider
x ifzx#0
fle) = {1 ifz=0
and
(z) = % ifzx #0
g |1 ifz=0
We have:
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Both f(x) and g(z) are not continuous at z = 0. But the product f(z)g(z) is the
constant function that maps all x — 1. So, f(z)g(z) is continuous at z = 0.

Further, consider

_ % ifx #0
fuﬂ_{o if 2 =0

(2) f% ifx #0
xTr) =
g 0 ifz=0

Again both f(z) and g(x) are not continuous at = 0. But, the sum f(z) + g(x)
is the constant function that maps all z — 0. So, f(z) + g(z) is continuous at
x=0.

(b) A function f(z) continuous at 0 and g(z) not continuous at 0 such that f(z)+
g(z) is continuous at 0.

Proof.
This request is impossible.

Since g(x) = [f(z)+g(z)]— f(z), and f(z)+g(z) as well as f(z) are continuous,
by the Algebraic continuity theorem, g(x) must be continuous at 0.

(c) A function f(x) continuous at 0 and g(z) not continous at 0 such that f(x)g(z)
is continuous at 0.

Proof.

1
Consider f(z) = z and g(z) = e f(z) is continuous at ¢ = 0, whilst g(z) is not
continuous at ¢ = 0. The product f(z)g(x) = 1 is continuous at ¢ = 0.

1
(d) A function f(x) not continuous at 0 such that f(z) + —— is continuous at

f(z)
0.

Proof.
(e) A function f(x) not continuous at 0 such that [f(x)]? is continuous at 0.
This request is impossible.

Let g(x) = ¥/z. [f(x)]® is continuous at z = 0. g(x) is continuous everywhere

and therefore, it is continuous at [f(0)]?.

The theorem 4.3.9 says that if f is continuous at ¢ € A and ¢ is continuous at
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f(c) € f(A), then g(f(x)) is continuous at c.

So, g(f(x)) = fﬂf(x)}g = f(z) must be continuous at 0.

[Abbott 4.3.7] (a) Referring to the proper theorems, give a formal argument
that Dirichlet’s function from section 4.1 is nowhere-continuous on R.

Proof.

The Dirichlet’s function is defined as:

1 ifreqQ
f(x)_{o ifr ¢ Q

Let c € Q be an arbitrary rational point.

1
Define (x,,) = ¢+ —. We have, (z,,) C Q, with (z,,) = ¢. The image sequence
f(zy) is the constant sequence (1, 1,...). Thus, f(z,) — 1.

/3

2
Define (y,,) = ¢+ —. We have (y,,) C I, with (y,) — ¢. The image sequence
n
f(yn) is the constant sequence (0, 0,0, ... ). Thus, f(y,) — 0.

Consequently, lim f(z,) # lim f(y,). So, f is not continuous at any rational
point.

Let d € I be an arbitrary irrational point.
Since Q is dense in R :

We can pick a rational number z, satisfying d — 1 < 1 < d + 1. We can pick

1 1
the rational number x5 satisfying d — 3 <zy < d+ 3 In general, let z,, € Q,

1 1
be such that,d — — <z, <d+ —.
n n

Pick an arbitrary € > 0. If we pick N > 1, thenforalln > N, z, € (d—e¢,d+¢).
€

Thus, (z,) C Q with (z,,) — d.

The image sequence f(z,) is the constant sequence (1,1,1,...). So, f(z,) — 1.

Define y,, = d + o Since the irrationals are closed under addition, (y,) C I

and (y,) — d. The image sequence f(y,) = (0,0,0,0,...). Thus, f(y,) — 0.

Consequently, lim f(x,) # lim f(y,). So, f is not continuous at any irrational
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point.

(b) Review the definition of Thomae’s function in section 4.1 and demonstrate
that it fails to be continuous at every rational point.

Proof.

The Thomae’s function t(x) is defined as:

1 ifz=0
tz) =< L ifz="2¢€ Q- {0} is in the lowest terms with n > 0
0 ifxé¢dQ

Let ¢ € Q be an arbitrary rational point. Consider the sequence z,, = ¢ +

2
i. The image sequence t(z,,) is the constant zero sequence (0,0,0,...). So,
n

t(z) — 0. But, t(c) # 0.

(c) Use the characterization of continuity in Theorem 4.3.2 (iii) to show that
Thomae’s function is continuous at every irrational point in R.

Proof.

Since the Thomae’s function ¢(x) is periodic with a frequency 1, and repeats
itself between any two integers, it suffices to show that it is continuous at an
irrational pointc, c ¢ Q,0 < ¢ < 1.

We proceed by contradiction.
Assume that t(z) is discontinous at c¢. Now, ¢(c) = 0.
Carefully negating the definition of the continuity of a function, we find that,

there existsan ¢y > 0, forall § > 0, such that for atleast some z satisying |z —c| <
4, it follows that ¢(x) > €.

1
By the Archimedean property, there exists N € N, such that N < co

1

Since t(x) is a rational number of the form —, n € N, ¢(x) must belong to the
n

set of finite numbers:

1 1

t()e{ 11}
VEAWNZT N2 Y

Thus, x must belong to the finite set .S:
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S:{?:k,leN,lglgN—l,kd}

But, we assumed that, for all § > 0, there exists « satisfying |z — ¢| < J, such

1
that ¢(x) > €. If we choose d,, = —, we can construct a sequence (z,,) — c.
n

However, x belongs to the finite set 5. A sequence whose terms are the elements
of a finite set is either divergent or converges to an element from the set. Therein,
lies our contradiction.

[Abbott 4.3.8] Decide if the following claims are true or false, providing either
a short proof or counterexample to justify each conclusion. Assume throughout
that g is defined and continuous on all of R.

(a) If g(x) > O forall z < 1, then g(1) > 0 as well.
Proof.

Since g is continuous, by the sequential characterization of continuity, for all
sequences (z,) — 1, g(z,) — g(1).

Consider the sequence (a,,) defined by:

1
ap=1——
n
Since a,, < 1, g(a,) > 0.

We know that, g(a,) — ¢(1). By the order limit theorem, lim g(a,) > 0, so
g(1) > 0.

(b) If g(r) =0 forall r € Q, then g(z) =0 forall z € R.
Proof.

Let ¢ be any arbitrary rational point. For all sequences (z,,) — ¢, g(z,,) — g(c).

1
Define a,, = ¢ + —. Since g(a,,) is the constant zero sequence, g(a,,) — 0. Thus,
g9(c) =0.
Let d be an arbitrary irrational point. Since Q is dense in R, we can construct a
rational sequence (b,,) — d. Since g(by,) is the constant zero sequence, g(b,) —
0. Thus, g(d) = 0.
So, g(z) =0forall z € R.

(c) If g(zo) > O for a single point zyp € R, then g(z) is in fact strictly positive for
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uncountably many points.

Since g(x) is continuous at z, for all € > 0, there exists § > 0, such that for all =
satisfying|x — xo| < ¢, it follows that |g(z) — g(z0)| < e.

Pick e = @ > 0. Then, there exists d., such that for all z satisfying |z — z¢| <

o, it follows that 9(22130) <g(z) < 39(25”0)

. Thus, g(z) is strictly positive.

Since, the interval (xo—J., xo+J.) consists of uncountably many points, and g(z)
is defined and everywhere continuous, g(z) is strictly positive for uncountably
many points.

[Abbott 4.3.9] Assume that » : R — R is continuous on R and let K = {z :
h(x) = 0}. Show that K is a closed set.

Proof.

Let a be a limit point of K. We are interested to prove that a € K. By definition,
there exists (a,,) C K, such that a,, # a, with (a,,) — a.

Since h is a continuous function, h(a,) — h(a). But, h(a,) = 0 forall n € N.
Consequently, h(a,) — 0. Thus, h(a) = 0. Consequently, a € K.

Since a was arbitrary, this is true of all the limit points of K.
So, K is closed.
[Abbott 4.3.10] Observe that if a and b are real numbers, then

max{a, b} = %[(a +b)+]a—10l

(a) Show that if f1, fa,. .., f, are continuous functions, then

g(x) = max{fi(z), f2(2), ..., fu(x)}

is a continuous function.
Proof.

We proceed by mathematical induction. Firstlet’s prove that g2 (x) = max{ fi1(z), f2(z)}
is continuous for the case n = 2. We have:

92(2) = 5171@) + fo(a) +|a(a) — )]

118



By the Algebraic continuity theorem, if f1(z) and f2(z) are continuous func-
tions, f1(z) + f2(z) is also continuous.

Let’s prove that h(z) = | f1(x)— f2(x)] is also continuous. [ use a direct argument
to prove this. However, notice that h(z) = I(fi1(x) — f2(z)) where I(z) = |z|,
and since |z| is continuous, and the composition of continuous functions is con-
tinuous, it follows that | fi(x) — f2(x)]| is continuous.

Nevertheless, suppose we are interested to make the distance || f1(z) — fo(z)| —
|f1(c) — f2(c)| as small as we please.

Let’s explore the inequality:
1f1(2) = fao(@)| = |fi(c) = fale)] <€

Replacing || f1(x) — fa(z)| — | f1(c) — f2(c)| by its upper bound will strengthen
the condition we wish to prove.

Note that:
llal = b]] < |a — bl
Short proof.
lal =la b+
< |a — b + o]
lal = [b] < la—0]
And
o] =|b—a+al
< Ja— 8] + a]
bl = la] < la— bl
Consequently,

—la =] <laf - [b] < [a —b]

Thus, the distance ||a| — |b]| < |a — b].
Consequently,

1f1(2) = fa(2)| = |file) = falc)l < |fi(z) = fa(2) = (fi(c) = fa(0)]
= |f1(x) = fi(e) = (fa(z) = fa(c))]|
< [fi(@) = file)] + | fa(x) = fale)]



Thus, our claim is :

|fi(@) = fi(e)] + | fo(z) — falc)| <€
There exists §; > 0, such that for all = satisfying |z — ¢| < 03, it follows that
|fi(z) — fi(e)| < e/2.

There exists d2 > 0, such that for all = satisfying |z — ¢| < do, it follows that

|fa(x) — fa(c)| < €/2.

Pick 6 = min{dq,d2}. Then, for all z satisfying |z — ¢| < ¢, it follows that:

1f1(2) = f2(2)] = |fi(e) = o)l < |fi(@) = file)] + | fa(2) = fa(c)|

€ €
<§+§—6

So, |fi(x) — f2(z)| is continuous at ¢. Since ¢ was arbitrary, | f1(z) — fo(x)| is
continuous on R.

Thus, g2(x) is continuous.
Assume that g,,—1(z) = max{fi(x),..., fn_1(x)} is continuous.

We are interested to prove that g, (z) is continuous. Because,

gn(x) = max{gnfl(x)v fn(x)}

and both g,,—; and f,, are continuous, we can argue as above that, g,, is contin-
uous. By the principle of mathematical induction, this is true for all n € N.

(b) Let’s explore whether the result in (a) extends to the infinite case. For each
n € N, define f,, on R by:

fole) = {1 if |z| > 1/n

nlz| if |z] <1/n

Now explicitly compute h(x) = sup{ fi(z), fo(x), fs(z),... }.
Proof.
Note that, all f,,(z) are continuous on R.

We are only interested in the behavior of these functions and h(zx) in [—1,1],
since fy,(z) = 1 for all || > 1.

Let (x,,) C (0,1] be an arbitrary sequence such that (z,) — 0.
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Since 0 < z, < 1, by the Archimedean property, for all n € N, there exists
1
M € N, such that i < . By definition, fas41(z,) = landinfact, f,,(z,) =1

for all m > M. So, h(z,) = 1. Consequently, h(z,) is the constant sequence
(1,1,1,...). Thus, h(z,) — 1.

Since (z,,) was arbitrary, this is true for all sequences (z,) — 0. Thus, the func-
tional limit limo h(z) = 1. But, h(0) = 0. Therefore, h has a jump discontinuity
T—r

atc=0.
Hence, the result in (a) does not extend to the infinite case.

[Abbott 4.3.11] (Contraction Mapping Theorem.) Let f be a function defined
on all of R, and assume that there is a constant ¢ such that 0 < ¢ < 1 and

|f(z) = f(y)] < clz -y

forall z,y € R.
(a) Show that: f is continuous on R.
Proof.

Let 29 be an arbitrary but fixed point. Our claim is that f is continuous at xg.
We would like to make the distance | f(x) — f(x¢)| as small as we please.

Pick an arbitrary € > 0.

We would like to prove that:

[f(x) = fzo)| <€

But, |f(z) — f(zo)| < c|x — zo|. Replacing |f(x) — f(xo)| by its upper bound
strengthens the inequality we wish to prove.

Our claim therefore is:

|ac—9c0|<f, {0<e<1}
c

Pick § = . Then for all satisfying |z — z¢| < d, it follows that
c

|f(x) = f(zo)| < clz —xo| <c-(e/c) =€

Since ¢ was arbitrary, this must be true of all z € R.. So, f is continuous on R.
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(b) Pick some point y; € R and construct the sequence

(1, f(yr), fF(f(y1)s---)

In general, if y,+1 = f(yn), show that the resulting sequence (y,,) is a Cauchy
sequence. Hence, we may let y = lim y,,.

Proof.

Consider the distance |y, — ., |. We are interested to make this distance as small
as possible.

Let’s explore the expresson |y, — Y| We have:

|yn_ym| |yn_yn71+yn71_yn72+~~+ym+1_ym|

< Yn = Yn-1l F [Un-1 = Yn—2 + ... + [Yms1 — Um|

=f(Yn-1) = Fyn-2)| +1fWUn-2) = FYn-3)| + -+ fWm) = f(Ym-1)]

< clyn—1 = Yn—2| + clyn—2 = Yn—3| + ... + c|ym — Ym-1l

<Py =yl +H Py — o+ e —

=™ Uy — | (T4 e+ + .. 4 cmmiD)

< %wz - vl since {|c| < 1}

Pick an arbitrary € > 0. We are interested to prove that |y,, — | < €. Replacing
|y — Ym| by its upper bound strengthens the condition we wish to prove.

Hence our claim is:

Cm—l
1ic'|y2—y1\ <€
or
m—1 6(1 — C)
ly2 — v
Taking log on both sides:
1—
(m—1)logc < l=c)
ly2 — 1
that is,
e(l—c¢)
m—1)> ———— {since logc <0
( ) s —nloge { ge <0}
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e(l—c¢)

[y2 — ya|loge
|y — ym| < €. Consequently, (y,) is a Cauchy sequence.

If we pick M > 1+ , then for all n > m > M, it follows that

(c) Prove that y is a fixed point of f (thatis f(y) = y) and that it is unique in
this regard.

Proof.

We have: y = limy,. Since f is a continuous function, f(y,) — f(y). But,
f(yn) = Yn+1. So, f(yn) — y. Consequently, f(y) = y.

(d) Finally, prove thatif x is any arbitrary pointin R, then the sequence (z, f(x), f(f(x)),...)
converges to y defined in (b).

Proof.

Let  be an arbitrary point in R. Let (x,,) be the sequence given by:

Consider the distance |z,, — y|. We would like to make this distance as small as
we please. We have:

[f(@n-1) = f(¥)]

B
3

|
=

< clzn-1 -yl

= c|f(zn-2) — f(v)]
S C2|xn72 - y|
<z -yl

Given any arbitrary e-challenge, we can pick N such that,

ANz —yl <e
: N—-1 €
that is, c < =
or N -1

€
~ To—ylloge

It follows that |x,, — y| < e. Consequently, lim z,, = y.

[Abbott4.3.12] Let F' C R be a nonempty closed set and define g(x) = inf{|z —
al : a € F}. Show that g is continuous on all of R and g(z) # 0 for all z ¢ F.

Proof.
[Abbott 4.4.1] (a) Show that f(x) = z* is continuous on all of R.

Proof.
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Let ¢ be an arbitrary point in R. We are interested to make the distance | f(z) —
f(c)| as small as we please.

Pick an arbitrary € > 0.

Casel.c=0.

Since f(c) = 0, if we pick § = {/e, then for all |z| < §, we have | f(z)| < e.
CaselIl. ¢ # 0.

We have:

[f(@) = fle)] =2 =]

=|z—c|]z? +cx+ec
—fo—dl| o+ 5)° + (4)

2
=lo—cl [(z+4)"+ (%) ]

If we assume that § < 1, thenz € (¢ — 1,¢+ 1). So, x < ¢+ 1. Therefore,
2 2 2
c\2 V3e (38 + 2> V3e
— g < g
(”+2)+<2>— 2 +<2
Hence, we try to prove the stronger condition:
2 2
<3c+2> Jr<\/§c> ] <e
2 2

2
Since ¢ # 0, the expression {(3c+2)/2)* + (\@c/ 2) } is strictly positive. Hence,
we can pick

?|

|z — ¢

5min{1, - 26 . 2}
(27 + ()

Then, for all z satisfying |z — ¢| < 4, it follows that | f(z) — f(c)| < e.
Since ¢ was arbitrary, f is continuous on all of R.

(b) Argue, using theorem 4.4.5, that f is not uniformly continuous on R.
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Proof.

1 1
Consider the sequence z,, = n+ — and y,, = n. Leteg = 1. Then, (z, —y,) = —
n

n
and (z,, — y,) = 0. But,

@) =l =|(04+3)" =’

= |n3 + 3n? %+3n~%+%—n3
= 3n+n+%|

—3n+3+ﬁ

> 3n

> €

Consequently, by the sequential criterion for the absence of uniform continuity,
f is not uniformly continuous.

(c) Show that f is uniformly continuous on any bounded subset of R.
Proof.

Let S C R be any bounded subset of R. Since .S is bounded, there exists M > 0
for all z € S, such that |z| < M.

We are interested to make the distance |f(z) — f(y)| as small as we please. Pick
an arbitrary € > 0.

|fx) = fy)l =]z =4
<z —ylla® + zy + |
<z —yl|lz*| + |z|ly| + |v°]
<z —y| (M?+ M?+ M?)
= |z —y|-3M?

Pick 6 = 3 ]\642. Then, for all z,y € S satistying |z — y| < 9, it follows that

[f(x) = fly)l <e
[Abbott 4.4.2] (a) Is f(z) = 1/ uniformly continuous on (0, 1)?

Proof.

1
Letz, = — and y, = ———, withn > 2. Both (zn,) and (y,) are contained in
n

nZ+n
(0,1). Let g = 1. Then (z, — y,) — 0. Let’s explore the expression |f(z,) —

[f(zn) = fyn)] =n?+n—n?

IVl

1160

125



Consequently, by the sequential criterion for the absence of uniform continuity,
[ is not uniformly continuous on (0, 1).

(b) Is g(z) = V22 + 1 uniformly continuous on (0, 1)?

We are interested to make the distance |g(z) — g(y)| as small as we please. Pick
an arbitrary e > 0.

l9(z) —g(y)] = Va2 +1-/y? +1]
=‘\/x2+1—\/y2+1‘ X |

[(2241)—(y+1)|
vx2|+1+\/|y2+1

;c2—y2
VaZ+T4+4/y2+1
_ __lz—yllz+yl

Va2 +T+4/y2+1

lz—y|-2 {O <x < 1}
1+1 {0<y<1}

= |z —y|

Va2+144/y2+1
VEZET+y/y2+1

<

Therefore, we can try to prove the stronger condition |z — y| < €. Pick § = e.
Then, for all z,y € (0, 1) satisfying |z — y| < ¢, it follows that | f(x) — f(y)| <e.

(c) Is h(x) = xsin(1/x) uniformly continuous on (0, 1)?
Proof.

f(z) = zis continuous on (0, 1). We can show that g(x) = sin(1/x) is continuous
on (0,1).

Claim. sin z is continuous on (0, 1]

We can write:

sinx —sine| <2 Cos("+c)sin(””_c)‘
<2 sin(m C) since |cosz| <1

|
=2|(259) - & (w;c)SJré (%)57) {expansion}

1 1
Pick § < 3 Then |z — ¢| < 3 implies that
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z—c\* r—c
(%) <(57)
(x—c)s - (x—c)ﬁ
2 2
Thus, the term inside the curly brackets is strictly non-negative and has a lower
bound 0. Also Therefore, we can try to prove the stronger condition

2

|sinz —sinc| <2[%5¢|
= |z~

1
Pick § = min {5, e}. Then, for all z satisfying |« — ¢| < §, it follows that | sinz —
sin ¢| < e. Consequently, sin z is continuous on (0, 1].
1
Since — is continuous on (0, 1] and the composition of continuous functions is
X
continuous, provided they are well-defined, sin(1/x) is continuous on (0, 1].
By Algebraic continuity theorem, x sin(1/z) is continuous on (0, 1].
We define a new function:
h(z) = xsin < %fx # 0
0 ifx=0
Claim. h(x) is continuous on [0, 1].
We already know that h(z) is continuous on (0, 1]. Since, |zsin(1/z)| < |z|, if
we choose § = ¢, for all |z| < 4, it follows that |h(z)| < e. Consequently, h(x) is
continuous at 0.
So, h(z) is continuous on [0, 1].

By the theorem 4.4.7, a function that is continuous on a compact set K is uni-
formly continuous on K. Consequently, & is uniformly continuous on [0, 1].
Thus, h is uniformly continuous on (0, 1).

[Abbott 4.4.3] Show that f(z) = 1/x? is uniformly continuous on the set 1, o)
but not on the set (0, 1].

Proof.
We are interested to make the distance | f(x) — f(y)| as small as we please.

We have:
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[f(x) = f(y)

8, 8-

|2~
I22
_ lz—yllz+y|
- $22

le=y|  |z+y|

= e —yl (£ +3)
Sle—yl(s+1) {zy=1}

1
y?
|

Let € > 0 be arbitrary. If we pick § = %’ then for all z,y € [1,00) satisfying
|z —y| < 4, it follows that

If(fﬂ)*f(y)|§2lw*y|<2é:e

Consequently, f is uniformly continuous on [1, c0).

1
Moreover, let z,, = — and y, = . Then, (z,) and (y,,) are contained in
n n

n? 4
(0,1] Let ¢g = 1. Then, (z,, — y,) — 0, but

[f @) = flya)l = (4 n)" —nt
=nt 423 +n?—nt
=2n% +n?
> €

Consequently, f is not uniformly continuous on (0, 1].

[Abbott 4.4.4] Decide whether each of the following statements is true or false,
justifying each conclusion.

(a) If f is continuous on [a,b] with f(z) > Oforalla < « < b, then 1/f is
bounded on [a, b] (meaning 1/f has bounded range).

Since K = [a, b] is a compact set, by the extreme value theorem, there exists
Zo,T1 € [a,b] such that f(z) < f(x) < f(x1) for all z € [a,b]. Further, since
f(zo) and f(z1) belong to f([a,b]), we must have f(z¢) # 0 and f(z1) # 0.
Consequently, it follows that:

11 _ 1
f(xa) = f(z) = flo)

forall z € [a,b].

Thus, 1/ f is bounded.
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(b) If £ is uniformly continuous on a bounded set A, then f(A) is bounded.
Proof.
We are given that f is uniformly continuous on a bounded set A.

We proceed by contradiction. Assume that f(A) is unbounded. So, for all M €
N, there exists f(z) € f(A), such that |f(z)| > N. Pick N = 1,2,3,.... Then,
there exists N € N such that (f(x,)) — co.

Since (z,,) C A and A is bounded, by the Bolzanno Weierstrass Theorem, there
exists a convergent subsequence (z,,) C (x,). Letlimz,, = z. Since, f is
uniformly continuous on 4, it implies that f is continuous on A. Therefore, for
all sequences (a,,) — a contained in 4, f(a,) — f(a).

Thus, f(xy,, ) — f(z). Pick € = 1. Then, there exists K > 0, such
Alternative proof.

Consider the function h(x) defined on the closure of A, cl(A) as :

i r—a i
(2) = lim,_,,f(z) whereif ais a limit point of A
| fa) ifzeA

We would like prove that (i) h is well-defined on cl(A) (ii) h is continuous on
cl(A).
Claim. h is well-defined on any limit point of A.

Let a be an arbitrary limit point of A. Let (x,) be any arbitrary sequence that
converges to a. (We know that there is atleast one such sequence.)

Pick an arbitrary € > 0.

Since f is uniformly continuous on A, there exists d(¢) > 0, such that for all
z,y € Asatisfying |z — y| < ¢, it follows that | f(z) — f(y)| < e.

Since (x,,) is a Cauchy sequence, there exists N € N, such that for all n > m >
N, it follows that |z,, — x,,,| < 6.

Consequently, for all n > m > N, it follows | f(z,) — f(zm)| < e

Since e is arbitrary, this is true for all e > 0. Consequently, (f(z,)) is a Cauchy
sequence and therefore it is convergent. Thus, lim f(z,,) exists.

Since (z,) was arbitrary, this must be true of all sequences (z,) — a. So,

lim f(z) exists.
T—a
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Hence, h is well-defined at all limit points.
Claim. h is continuous on cl(A).

Let ¢ be an arbitrary limit point of A. We proceed by contradiction. Assume
that h is not continuous at c¢. Then, there exists a sequence (z,) C cl(A) such
that (z,,) — cbut lim h(z,) # h(c).

If (x,,) C A, then since h is continuous on A, h(x,) — h(c) and we have the
desired contradiction.

(c) If fis defined on R and f(K) is compact whenever K is compact, then f is
continuous on R.

Proof.

This proposition is false. Consider the function f defined as:

3/2 if0<z<1/3
flx)=<0 if1/3<x<2/3o0rz¢[0,1]
3/2(x—2/3) if2/3<a<1

Since f is continuous on [0, 1/3] and [1/3, 2/3] we know that f ([0, 1/3] and f[2/3, 1])
is compact. The same logic applies if you take any compact subset of the union
of these sets. Moreover, f maps (1/3,2/3) to 0. Thus, whenever K is compact
f(K) is compact, but f is not continuous.

[Abbott 4.4.5] Assume that g is defined on an open interval (a,c) and it is
known to be uniformly continuous on (a, b] and [b, ¢) where a < b < c. Prove
that g is uniformly continuous on (a, c).

Direct Proof.
Pick an arbitrary € > 0.

1. There exists 61 (¢)

> 0, such that for all z,y € (a, b] satisfying |z — y| < 01, it
follows that |g(z) — g(y)|

< €/2.

2. There exists d2(€) > 0, such that for all ,y € (a, b] satisfying |z — y| < o, it
follows that |g(z) — g(y)| < €/2.

Letd = min{él, 52}
Let z,y € (a, c) be any two arbitrary points satisfying |z — y| < .

If z,y € (a,b], then (1) applies and we are done.
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If z,y € [b, c), then (2) applies and we are done.

If x € (a,b] and y € [b, ¢), then |z — y| < ¢ implies that:
a)|lr—9bl<d

b) [b—yl <4

Consequently, it follows that |g(z) — ¢g(b)| < €/2 and |g(b) — ¢g(y)| < €/2. Now,

Since x, y were arbitrary points in (a, c), satisfying |« — y| < 6, this is true for all
of such points.

Consequently, g is uniformly continuous on (a, c).
Alternative Proof.

We extend g(x) to the points © = a and = = ¢. Define the function:

limgqg(z) ifz=a
h(z) = < g(x) ifz € (a,c)
lim,,.g(z) ifz=c

Let’s prove that h is well-defined and continuous on |[a, c].
Let (x,) be an arbitrary sequence in (a, ¢) approaching a.
Pick an arbitrary € > 0.

Since ¢ is uniformly continuous on (a, ¢), there exists d(¢), such that forall z, y €
(a, c) satisfying |x — y| < ¢, it follows that |g(z) — g(y)| < e.

Since () is Cauchy, there exists N € N, such that for all n > m > N, we have

[T — x| < &

Consequently, for all n > m > N, the terms of the image sequence (g(x,,))
satisfy:

|g(xn) - g(xm)| <e€
Thus, (g(x,)) is Cauchy and therefore lim g(z,,) exists.
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Since, (z,,) was an arbitrary sequence, this must be true of all sequences (z,,) —
a. So, lim g(x) exists.
r—a

Next, we prove that h is continuous at a.

Let’s proceed by contradiction. Assume that i is not continuous at a. Then,
there exists a sequence (z,,) C dom(h) such that (z,) — a, but h(z,) does not
converge to h(a).

1. If (z,,) is the constant sequence (a,a,a,...), then h(x,) — h(a). Thisis a
contradiction.

2. If (x,,) has an infinite number of terms equal to ¢, then (z,,) would not con-
verge to a. So, such a possibility is ruled out.

3. The only other possibility is that (i) (z,) C (a,c) or (ii) («,) has a subse-
quence (z,,) — a contained in (a, c).

But, by construction h(a) = ligl g(z). For all sequences (a,,) C (a, c¢) such that
(an) = a, h(ay) = g(ay) approaches h(a).

Thus, h(x,) — h(a) (for both cases 3(i) and 3(ii)). This is a contradiction.
Hence, our initial assumption is false. h is continuous at a.
We can similarly argue that & is well-defined and continuous at c.

Thus, h is continuous on the compact set [a, c]. So, h is uniformly continuous
on [a, c]. Consequently, g is uniformly continuous on (a, ¢).

[Abbott 4.4.6] Give an example of each of the following, or state that such a
request is impossible. For any that are impossible, supply a short explanation
for why this is the case.

(a) A comtinuous function f : (0,1) — R and a Cauchy sequence (z,,) such
that f(z,) is not a Cauchy sequence.

Proof.

Consider the function f defined as:

0 ifx =0
J@) = {l/x if € (0, 1]
1
Consider the sequence z, = — withn > 2. (z,) C (0,1). (x,) — 0so (x,)

is a Cauchy sequence, but f(x,) = n, so f(x,) is unbounded and therefore not
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Cauchy.

(b) A uniformly continuous function f : (0,1) — R and a Cauchy sequence
(z5,) such that f(z,) is not a Cauchy sequence.

Proof.

This request is impossible.

Assume that f is uniformly continuous on (0, 1).
Pick an arbitrary € > 0.

Since f is uniformly continuous over (0, 1), there exists d(¢) > 0, such that for
all z,y € (0,1) satisfying |z — y| < ¢, it follows that | f(z) — f(y)| < e.

Let (z,,) be an arbitrary Cauchy sequence in (0, 1). Since (z,,) is Cauchy, there
exists n > m > N, such that |z,, — z,,| < 4.

Thus, for all n > m > N, it follows that | f(z,) — f(2m)]| < e.
Consequently, f(z,) is Cauchy.

(c) A continuous function f : [0,00) — R and a Cauchy sequence (z,,) such
that f(z,,) is not a Cauchy sequence.

This request is impossible.

Let (z,,) be any arbitrary Cauchy sequence in [0, 00). Let @ = lim z,,. Since, f is
continuous on [0, 00), f(z,) — f(a). Consequently, f(z,,) is Cauchy.

[Abbott 4.4.7] Prove that f(z) = /z is uniformly continuous on [0, 00).
Proof.

The function f(z) = /z is continuous on [0, 1]. A continuous function on a
compact set K is uniformly continuous. So, f is uniformly continuous on [0, 1].

Also, the function /z is Lipschitz on [1, 00), since, for all x # y € [1, 00):

’f(w) fy)‘

*\erf
<3

Since Lipschitz continuity implies uniform continuity, f is uniformly continu-
ous on [1, c0).

By the previous exercise, f is uniformly continuous on the whole half-line from
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0.

[Abbott 4.4.8] Give an example of each of the following, or provide a short
argument for why the request is impossible.

(a) A continuous function defined on [0, 1] with the range (0, 1).
Proof.
This request is impossible.

By the property on the preservation of compact sets, if f is continuous function
on a compact set K, then f(K) is compact. So, f([0, 1]) must be compact.

(b) A continuous function defined on (0, 1) with range [0, 1].
Proof.

Define

0 if0<z<l/4
fle)=q2z if1/4<x<3/4
0 if3/4<z<1
(c) A continuous function defined on (0, 1] with range (0, 1).
Proof.

This request is impossible. Consider ¢ > 0. The image of

[Abbott 4.4.9] (Lipschitz Functions) A function f : A — R is called Lipschitz
if there exists a bound M > 0 such that:

‘f(x)—f(y) <
xr—y -

for all x # y € A. Geometrically speaking, a function f is Lipschitz if there is a
uniform bound on the magnitude of the slopes of lines drawn through any two
points on the graph of f.

(a) Show thatif f : A — R is Lipschitz, then it is uniformly continuous on A.
Proof.

Pick an arbitrary € > 0.
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[f(z) = fly)] < Mlz—y|

Pick § = ﬁ Then, for all z # y € A satisfying |z — y| < 4, it follows that

[f(z) = f(y)l <e

Consequently, f is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions nec-
essarily Lipschitz?

Proof.

The converse statement is false.

Counterexample.

Consider f(z) = v/z. f is uniformly continuous on [0, 1].

We are interested to make the slope of the secant lines as large as we please. Let
M > 0 be an arbitrary large number.

If we picky =0and z <

(M +1)2
‘f(z)—f(y)‘ _ ‘ 1 ’
-y VT+/y
>M+1

Consequently, VM > 0, there exists = # y € A, such that
L)1)
r—y
Hence, f is not Lipschitz on [0, 1].

[Abbott 4.4.10] Assume that f and g are uniformly continuous functions de-
fined on a common domain A. Which of the following combinations are uni-
formly continuous on A:

f(il?)—i—g(.’l?), f(x)g(m), N f(g(x))

(Assume that the quotient and the composition are properly defined and atleast
continuous)

Proof.
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(1) We are interested to make the distance | f(z) + g(z) — (f(y) + ¢(v))| as small
as we please.

Pick an arbitrary € > 0.

There exists d1(¢) > 0, such that for all z, y € A satisfying |z —y| < 41, it follows
that | £(z) — f(y)] < ¢/2.

There exists d2(¢) > 0, such that for all z, y € A satisfying |z —y| < 2, it follows
that [g(z) — g(y)| < €/2.

Let 6 = min{d1, d2}. Then, for all z,y € A satisfying |x — y| < ¢, it follows that:

|f(@) +g(@) = (f(y) +9)| <I|f(x) = fW)|+|g(z) — g(y)]
<

f+5=c
Consequently, f + g is uniformly continuous.

(2) Consider f(z) = z and g(z) = x and let A = [0,00). Both f and g are
uniformly continuous on [0, c0).

Let ¢ > 0 be arbitrary. Pick 6 = €. Then, for all =, y € A satisfying |x — y| < J, it

follows that | f(z) — f(y)]| < e.

fg(z) = f(z)g(x) = 2* is not uniformly continuous on [0,00). Let ¢g = 1.
1

Consider the two sequences z,, = nand y, = n + - |€n — yn| — 0 but

|f(zn) = f(yn)| = €o.

(3) Consider the constant function f(z) = 1 and g(z) = z. Both f(z) and g(x)
f(x)

1
are uniformly continuous on (0, 1). But, —— = — is not uniformly continuous
x

9(x)
on (0, 1).

(4) We are interested to make the distance |f(g(x)) — f(g(y))| as small as we
please.

Pick an arbitrary € > 0.

There exists £(¢), such that for all s,t € g(A), satisfying |s — | < &, it follows
that |f(s) — f(t)] <e.

There exists §(£), such that for all z,y € A, satisfying |z — y| < §, it follows that
lg(z) — g(y)| <&

Hence, for all z,y € A, |x — y| < ¢ implies that |g(x) — g(y)| < £ which in turn
implies that [f(g(z)) — f(9(y))| <e.
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Consequently, f(g(x)) is uniformly continuous on A.

[Abbott 4.4.11] (Topological characterization of continuity). Let g be defined
on all of R. If B is a subset of R, define the set g~!(B) by:

971 (B) ={z €R:g(z) € B}

Show that g is continuous if and only if g~*(O) is open whenever O C R is an
open set.

Proof.
= direction.

Assume that g is continuous. Let O be an arbitrary open set. We are interested
to prove that g~ (O) is open.

Let c be an arbitrary point in g~ *(0). Thus, g(¢) € O. Since O is an open set,
Jde > 0, such that V,(g(c)) C O.

Since g is well-defined on R and continuous at ¢, 3V;(c), such that for all = €
Vs(c), it follows that g(x) € V. (g(c)) € O.

But, we know that for all g(x) € O, x € g~*(O). Therefore, Vs(c) C g *(O).

So, there exists a d-neighbourhood around the point ¢, such that Vs(c) C g~ *(O).
Since, ¢ was arbitrary point, this must be true of all points in the set. Thus,
g~ *(0) is open.

<+ direction.

We are given that, for all open sets O C R, the pre-image gt (O) is open. We
are interested to prove that g is continuous.

Let ¢ be an arbitrary point in dom(g). g(c) is the image of c under g.

Pick an arbitrary ¢ > 0 and consider the e—neighbourhood around g(c):

Ve(g(c)) = (g(c) — €, g(c) +€)

Since V. (g(c)) is an open interval, it is an open set. Let’s refer to this set as O.
We know, that if O C R is open, then gt (0) is open. Hence,

971(0) = {z : g(2) € Ve(g(c))}
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is open.

Now, ¢ € g~ 1(0), since g(c) € V.(g(c)). Thus, there exists d(e, c), such that
Vs(c) € g7H(0).

Hence, we have found that there exists Vj( .)(c) such that for all z € Vj(c),
g(x) € Ve(g(c)). Since € was arbitrary, this is true for all € > 0. Consequently, ¢
is continuous at ¢ € R.

Since ¢ was an arbitrary point, g is continuous on R.

[Abbott 4.4.12] Review exercise 4.4.11, and then determine which of the fol-
lowing statements is true about a continuous function defined on R:

(a) f~'(B) is finite whenever B is finite.
Proof.

This is false. Consider the constant function f(z) = 1. Let B = {1}. f~!(B) =
R.

(b) f~'(K) is compact whenever K is compact.
Proof.
This is false.

Consider f(z) = 1. Then, K = {1} which is compact, but f~'(K) = R is
unbounded and therefore not compact.

(c) f~%(A) is bounded whenever A is bounded.

This is false.

(d) f~'(F) is closed whenever F is closed.

This is true.

Let 2 be arbitrary limit point of £~ (F). There exists a sequence (z,,) C f~(F),
such that lim z,, = z. By construction, it follows that f(x,,) € F. As f is contin-

uous at z, lim f(z,,) = f(x). Since F is closed, f(x) € F. Thus, z € f~*(F).

Since = was abitrary, this must be true for all limit points of f~!(F). Thus,
f~H(F) is closed.

[Abbott 4.4.13] (Continuous Extension Theorem.)

(a) Show that a uniformly continuous function preserves Cauchy sequences;
that is, if f : A — R is uniformly continuous and (z,) C A is a Cauchy se-
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quence, then show f(z,,) is a Cauchy sequence.
Proof.
Pick an arbitrary € > 0.

There exists 0 > 0, such that for all z,y € A satisfying |z —y| < J, it follows that
[f(x) = fly)l <e

Let (z,,) be an arbitrary Cauchy sequence. Then, there exists N(¢), such that
for alln > m > N, it follows that |z,, — z,,| < 6. But, this implies that | f(z,,) —
f(zm)| < efor alln > m > N. Consequently, (f(x,)) is a Cauchy sequence.

(b) Let g be a continuous function on the open interval (a,b). Prove that g is
uniformly continous on (a, b) if and only if it is possible to define values g(a)
and g(b) at the endpoints s that the extended function g is continuous on [a, b].
(In the forward direction, first produce candidates for g(a) and g(b) and then
show the extended g is continuous.)

Proof.

We define :

lim,qg(z) ifz=a
h(z) = < g(x) ifx € (a,b)
lim, pg(x) ifx=5b

as the extended version of g.
Pick an arbitrary € > 0.

Since g is uniformly continuous on (a, b), there exists d(¢) > 0, such that for all
z,y € (a,b) satisfying |z — y| < 4, it follows that |g(z) — g(y)| < e.

a is a limit point of (a, b). Consider any arbitrary sequence (a,) C (a,b), such
that (a,,) — a. Since (a,) is a Cauchy sequence, there exists N(4) € N, such
that for all n > m > N, we have |z,, — z,,| < ¢.

But, this implies that, for alln > m > N, the distance |g(x,,) — g(zm)| < €. Since
(arn) was an arbitrary sequence approaching a, this must be true of all sequences
approaching a. Thus, lim g(z) exists.

T—ra

Claim. The extended version of g is continuous.
We proceed by contradiction.

Assume that g is not continuous. Then, there exists a sequence (a,,) C dom(g)
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such that, (a,) — a, butlim g(a,) # g(a).

Ifa, = aforanyn > N, N € N, it follows that the tail of the image sequence
(g9(ay)) is the constant sequence (g(a)) which approaches g(a). This is a contra-
diction.

If (ay,) consists of an infinite number of terms different from a, then there exists a
subseqeuence (an, ) C (an), witha,, € (a,b), thatis a,, # asuchthatlima,, =
a.

Pick an arbitrary e > 0. There exists 6(¢) > 0, such that for all z,y € (a,b)
satisfying |z — y| < 9, it follows that |g(z) — g(y)| < e.

Since lim a,, = a, there exists K € N, such that for all n;, > K, |a,, —a| < 4.
But, this implies that for all n, > K, |g(an,) — g(a)| <.

Since € was arbitrary, this must be true for all ¢ > 0. Consequently, lim g(a,, ) =
g(a). This is again a contradiction.

Hence, our initial assumption is false. g is continuous on [a, b]. Since, g is contin-
uous on a compact set [a, b], g is uniformly continuous on [a, b]. Consequently,
¢ is uniformly continuous on (a, b).

[Abbott 4.5.1] Show how the Intemediate Value Theorem follows as a corollary
to Theorem 4.5.2.

Proof.

Let f : [a,b] — R be a continuous function. Define E = (a, b). Since, E is a con-
nected set and f is continuous, by the preservation of connected sets property,
f(E) is connected. Thus, for all L satisfying f(a) < L < f(B), L € f(E). But,
this implies that there exists ¢ € E = (a, b) such that f(c) = L.

[Abbott 4.5.2] Provide an example of each of the following, or explain why the
request is impossible.

(a) A continuous function defined on an open interval with the range equal to
the closed interval.

Proof.

Let f : (0,1) — R with range [0, 1] be the continuous function defined as:

0 0<z<1/4
fx)=L2x—1/4) 1/4<2<3/4
1 3/4<z<1
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(b) A continuous function defined on a closed interval with range equal to an
open interval.

Proof.

This request is impossible. Let f : [a,b] — R be a continuous function. Since
[a, b] is closed and bounded, it is compact. Since f is continuous on f, by the
property on the preservation of compact sets, the range f([a,b]) is compact -
hence it is closed and bounded.

Moreover, since f is continuous on [a, b], by the property on the preservation of
connected sets, f([a,b]) is connected and it is therefore an interval in R. Con-
sequently, f([a,b]) is a closed interval.

(c) A continuous function defined on an open interval with range equal to an
unbounded closed set different from R.

Proof.

Consider f : (0,1) — R defined as :

-

The range of f is the unbounded closed set [2,

N g |~
— N

<z
<z

o= O
3 A A

). f is continuous on (0, 1).
(d) A continuous function defined on all of R with range equal to Q.

Let f be continuous on all of R. Then, by the theorem on the preservation of
connected sets, since R is connected, f(R) must be connected.

But, Q is not a connected set. For example, consider A = (—oo7 \@) N Q and
B = (\/5, oo) NQ. Then, AUB = Q. And the cl(A) will have all its limit points

lesser than or equal to v/2. Thus, cI(A) N B = () and AN cl(B) = ). Hence Q is
disconnected.

Consequently, f cannot be continuous.

[Abbott 4.5.3] A function f is increasing on A if f(z) < f(y) forallz < y
in A. Show that if f is increasing on [a, b] and satisfies the intermediate value
property (definition 4.5.3), then f is continuous on [a, b].

Proof.

Let ¢ be an arbitrary point in [a, b]. We are interested to prove that f is continu-
ous at c.
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Let (z,,) be any arbitrary sequence approaching c.

[Abbott 4.5.5] (a) Finish the proof of the Intermediate Value Theorem using
the Axiom of Completeness started previously.

Intermediate Value Theorem. Let f be a continuous function on a closed and
bounded interval [a,b]. f : [a,b] — R. If L is a real number satisfying f(a) <
L < f(b), then there exists ¢ € (a,b), such that f(c) = L.

Proof.

To simplify matters, we first considered the special case satisfying f(a) < 0 <
f(b) and show that f(c) = 0 for some ¢ € (a, b).

We let

K =A{z €a,b]: f(z) <0}

Since K is bounded by [a, b], by the Axiom of completeness, it has a supremum.
Letc=sup K.

By the trichotomy property of the reals, exactly one of the following holds:
1) f(e) <0

2) f(e) >0

3) fle) =0

(i) Assume that f(c) < 0. Then, by construction ¢ € K.

But, ¢ = sup K. So, it is an upper bound for K. Thus, f(c) > 0. This is a
contradiction. Hence our assumption is false.

(ii) Assume that f(c) > 0. Then, by construction ¢ € [a,b] — K. Since the
complementation of a closed set is open, [a,b] — K is an open set. So, there
exists Ve (c) such that Vg (c) C [a,b] — K©.

Forallc — ¢ < x < ¢, wehave z ¢ K. But, ¢ = sup K. So, there exists zg € K,
such that c — £ < z¢ < c. This is a contradiction. Hence our assumption is false.

Thus, we are left with f(c) = 0.

(b) Finish the proof of the Intermediate Value Theorem using the Nested Inter-
val Property started previously.

Proof.
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By the Nested Interval Property, there exists « € ﬂ I,,. Clearly, x € [a, b].

n=1

Moreover, lima, = limb, = z. Since f is continuous at z, f(a,) — f(x).
Clearly, f(a,) < 0by construction, and thus by the order limit theorem f(z) <
0. Also, f(b,) > 0 by construction, and thus by the order limit theorem, f(z) >
0. Since, both of these are simultaneously true, it must be the case that f(z) = 0.

Also, z cannot be any of the end-points, for otherwise f(a) = 0 or f(b) = 0.
This contradicts the fact that f(a) < 0 < f(b).

So, there exists x € (a,b) such that f(z) = 0.

[Abbott 5.2.1] Supply proofs for parts (i) and (ii) of theorem 5.2.4.
Proof.

(i) We are interested to prove that (f + g)'(c) = f'(c) + ¢'(c).

By definition,

(4 97(e) — tim T2 H9) = () +0(0)

Tz—cC xTr—c

We can write the difference quotient as :

f(@) +9() = (fle) +9(c) _ f(@) = fle) | g(x) —g(c)

r—c r—c r—c
Now, by the algebraic limit theorem for functional limits,
9(z) —g(c)

— lim M+lim =2 = f'(c)+4'(c)

T—c €T —cC T—C xr—cC

LGET CIVEETTG)

T—cC Tr—cC r—cC
Consequently,

(f+9)(c) = f'(e) + g'(c)

(ii) We are interested to prove that (kf(c)) = kf'(c).

By definition,
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(kf(Q)) = tim @ RO _ oy J@ = 1)

T—cC r — C Tr—cC Tr — C

=kf'(c)

[Abbott 5.2.2] Exactly one of the following requests is impossible. Decide which
it is, and provide examples for the other three. In each case, let’s assume the
functions are defined on all of R.

(a) Functions f and g not differentiable at zero but where fg is differentiable at
zero.

Proof.
Consider f(z) = |z| and

_ faxsin(l/z) ifz#0
g(x)_{o ifz =0

Both f and g are not differentiable at zero. Now consider:

(fg)'(0) = lim,_, L29@)=F©)9(®)

= lim,_,o |z|-2 sin(zlv/z)

— limg 0 || - sin(1/2)

Both the left hand and the right hand limits exists and are equal. Hence, the
above limit exists and fg is differentiable at x = 0.

(b) A function f not differentiable at zero and a function g differentiable at zero
where fg is differentiable at zero.

Proof.

Consider f(z) = sin(1/xz) and g(z) = 2?. f(x)g(z) = x*sin(1/z) is differen-
tiable at ¢ = 0, since

() (0) = tim 23D =0 o ym o

x—0 €T x—0

(c) A function f not differentiable at zero and a function g differentiable at zero
where f + g is differentiable at zero.

Proof.

This request is impossible.
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fie) =((f+9)—9)(c)
=(f+9)(c)—4g'(c) {Algebraic Differentiability theorem}

Thus, if f + g is differentiable at zero and g is differentiable at zero, f must be
differentiable at zero.

(d) A function f differentiable at zero but not differentiable at any other point.
Proof.

Consider the function:

B 2?2 ifreQ
f(x)_{o ifr ¢ Q

We have:

£(0) i £@ =10

x—0 1’70

We are interested to show that this functional limit exists. Our claim is that

£(0) = 0.

Pick an arbitrary € > 0. Let’s explore the expression:

_ =)

1= 10 | | £ 1O

8

Since f(z) > 0 for all € R, we have | f(z)| = f(z) < 2* = |2?|. Consequently,

lz] < e

Pick 6 = €. For all |z| < §, it follows that |z| < e. Consequently, f/(0) = 0.

Let’s prove that f(x) is not continuous for ¢ # 0.
2

1 1
Let c € Q. Consider the sequences z,, = ¢+ — and y,, = ¢+ Tan with eg = %
n n

|€n — yn| — 0. But,

1 1 2 1 2
|f(zn)7f(yn)|:02+2'C'*+72*0:C2+£+f> =
n o n n

Thus, f is not continuous at any rational point c.
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Moreover, lett € Ibe any irrational point. By the density of rationals in R, there
exists a rational sequence (z,,) € Q, such that z,, # ¢ with (z,,) — ¢. Also, let

(yn) = t+ — be an irrational sequence converging to t. Again, we can similarly,
n
prove that f is not continuous at an irrational point.

Since, continuity is necessary condition for differentiability, f is not differen-
tiable at ¢ # 0.

[Abbott 5.2.3] (a) Use definition 5.2.1 to produce the proper formula for the
derivative of h(z) = 1/x.

Proof.
Let ¢ be an arbitrary point, with ¢ # 0. We are interested to find 1/(c).

By definition 5.2.1.,

h'(c) =limg . === = limg . =,
= lim, .~ - L
=— 1imzﬁcg- é {z # ¢}
= —limg,_,, é = —c% {for functionallimits}

(b) Combine the result in part (a) with the Chain rule (theorem 5.2.5) to supply
a proof for part (iv) of theorem 5.2.4.

Proof.

Letw(t) = % Then, w(v(z)) = ﬁ By the Chain Rule:

[w(e(e)) = [(1)} = w/(0(0) - v'(c) = —- 2D

By the product rule:

1 ' _ 1 1 '
[u(e) - 585 —“igc)) g )*([)?mc)'] +ufe)
=0 T we?
_ v(c)u'(c)—v'(c)u(c)

v(c)?

(c) Supply a direct proof of the theorem 5.2.4 (iv) by algebraically manipulating
the difference quotient for (f/g) in a style similar to the proof of theorem 5.2.4

(iii).
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Proof.

By definition:
’ ( ) )

[29] = lim,, 2= é’ .
— lim,_,, {@8@—f(g(x)
= hmm—ﬂ‘ g(x)g(c)(z—c)
i @O H©gle) (o)~ f(g(x)

I 9@

= lim,_,, — (@)= f(c)g(C) +[f<z>g<c) feg(e)] | __1

o@D (o) Ferte |
g(c) {hmgcﬁC fle) =402 + limase g(c) - ?} limg e oy
By the Algebraic continuity theorem, if g is continuous at ¢ and g(c) # 0, then

1. ,
—— is continuous at ¢. Thus,

g()

—f(e)g'(c) + 9() f(0)} - 55

kel
g(c g(c
— 9@ f ()= Ff(e)g'(c)
(g(c))?

[Abbott 5.2.4] Follow these steps to provide a slightly modified proof of the
Chain Rule.
(a) Show that a function i : A — R is differentiable at a € A if and only if there

exists a function [ : A — R which is continuous at a and satisfies:

h(z) — h(a) =l(z)(x —a) forallz € A
Proof.
=>direction.
We are given that h is differentiable at a € A. By definition,

B (a) = lim

rT—a (x - a)

Since, = # a, we can define a new function /(z) to be the difference quotient:

T—

K (a) ifr=a
Since h(z) is defined for all « € A, I(z) is defined for all A.

@) =hla) ity e A,z £ a
l(x) { a ) b
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Since lim I(z) = lim M

= h/(a) = l(a), | is continuous at a.
r—a T—a T —a

Hence, there exists a function [ : A — R which is continuous and satisfies:

h(z) — h(a) =l(z)(z —a), Vz€a

<+ direction.

We are given that the function /(z) satisfies:

h(z) — h(a) =l(z)(x —a), Ve A

where h is a function from A into R.
We are interested to prove that & is differentiable at a.

Since, [ is continuous at a, lim I(z) = I(a).

If x # a:
() = h(x; : Z(a)
Consequently,
h(z) — h(a)

lim I(x) = l(a) = lim

z—a z—a T —a

Therefore, the limit on the right hand side of the above expression exists and
h'(a) = l(a). Consequently, A is differentiable at a € A.

(b) Use this criterion for differentiability (in both directions) to prove theorem
5.2.5.

Proof.
We are interested to prove that [g(f(c))]' = ¢'(f(c)) - f'(c).

Since f is differentiable at ¢ € A, there exists a function [(x) for all z € A, such
that:

Notice that, if z # ¢,
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The differentiability of f at c =>the continuity of [ at c. So, passing to the limits,
we have:

lim [(x) = I(¢) = lim f) = flo) f'(c)

T—cC T—c €T —cC

Since g is differentiable at f(c) € f(A) C B, there exists a function m(y) for all
y € f(A), such that:

9(y) — g(f(c)) = m(y)(y — f(c))

Ity # f(c),

The differentiability of g at f(c) implies the continuity of m at f(c). So, passing
to the limits, we have:

Jm m(y) =m(f(e) = lim T y—flo

Since, y € f(A), y must be the image of = under f.

By Theorem 4.3.9, if f is continuous at ¢ and m is continuous at f(c), then
m(f(-)) is continuous at c¢. The composition of continuous functions is con-
tinuous.

Consider the product of the functions:

m(f(z)) - f(z)

By the Algebraic Continuity theorem, if m(f(-)) is continuous at c and ! is con-
tinuous at ¢, then the product m(f(x)) - {(x) is also continuous at c.

By the definition of continuity:
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lim, e m(f(2) - 1(@) = m(f(c))-U(c)

On the other hand, we can write:

limg e m(f(x)) - I(z) = lim,_,, LLEN=0U) @i:i’f(ﬁc)) Tim, - LEO=1E
— lim, ,, 96 E)=0(f ()
= [g(f ()

This completes the proof.
[Abbott 5.2.5] Let

z® ifx>0
falz) = {0 if 2 <0

(a) For which values of g, is f continuous at zero?
Proof.
Case I. Let a be any real number, where a > 0.
We are interested to make the distance | f,(x)| as small as we please. We have:
|z <e
= |z|* <e
= |z| <o

Pick § = €'/, Then, for all |z — 0| < 4, it follows that | f,(z) — f.(0)] < €.
So, f is continuous for all a > 0.
Let’s prove that f is not continuous for a < 0.
Case II. Let a = 0. Then,

1 ifz>0
folw) = {0 if 2 <0

fo has a jump discontinuity at x = 0.

Case III. Consider f_,(z) where a > 0.
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L ifz>0
foale) = {0 ifz <0

Pick ¢g = 1. Let 6 > 0 be arbitrary.

1
By the Archimedean property, there exists N € N, such that 5 < d.

1
Pick an arbitrary x € (O, ﬁ)' Thus, |z| < 4.

Now,

1 1
->N= —>N* {N2>1}
T ¢

Therefore, there exists atleast some x satisfying |z| < J, such that

|f-a(®) = f-a(0)] > €0

Since § was arbitrary, it follows that: there exists ¢y > 0, for all § > 0, such that
for atleast some x satisfying |z| < §, we have |f_,(z) — f_4(0)| > 0.

Thus, f_,(x) is discontinuous at z = 0.

(b) For which values of a is f differentiable at zero? In this case, is the derivative
function continuous?

Using the definition of the derivative, we have:

f/(O) — lim fa(x) — fa(o)

a x—0 1’70

The right hand limit in the above case is:

_ a
lim 7]0@(36) fa(0) — lim & = lim 2%
z—0+ xz—0 z—0t+ T z—0+

1

The left hand limit in the above case is:

lim M — lim 9 =0
z—0— x—0 z—0— T

Asseen earlier, if x > 0, then lir% 2! = 0ifand only if a—1 > 0. Consequently,
T—r
fa() is differentiable for all values of a > 1.
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(¢) For which values of a is f twice differentiable?

We know that,

a—1
fo\_ Jaz ifz >0
f“(x)_{o if 2 <0

Using the definition of the derivative, we have:

f”(l‘) — lim f(;(’r) — (lz(o)

a x—0 170

The right-hand limit in the above case is:

a—1
. ax -0 . _
lim ——— = lim az® 2
z—0t x z—0t

The left-hand limit in the above case is:

If 2 > 0, then lim az®~? = 0 if and only if a — 2 > 0. Consequently, f,(z) is

5
twice differentiable for all values of a > 2.
[Abbott 5.2.6] Let g be defined on an interval A, and let ¢ € A.

(a) Explain why ¢'(c) in the definition 5.2.1 could have been given by:

() = lim gle+ h}z —9(c)

Proof.

We know that g is a function of x. Let x be a function f of the single-variable h.

x=f(h)=c+h

Then, we can write g as:
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When z = ¢, h = 0. By the chain rule:

g9'(c) = [g(f(0)) = g'(£(0))- f; §?2)) o .
_ hmﬁh%(:(h{)(f)?}(g)) ' hmh%ﬁ(h)—}}?&
= limo S50 —fy i g
{since limh = lim(c¢ + h) — lim ¢}
9(f (W) —9(F(0))

= limp, 0 >
g(ct+h)—g(c)
A

= limy 0

(b) Assume that A is open. If g is differentiable at ¢ € A, show that :

iy gle+h)—glc—h)
g'(e) = lim 2h

Proof.
We introduce two intermediate variablest = ¢(h) = ¢+ hand u = u(h) = c¢—h.

We may write:

and

Whent = ¢, h = 0. Also, when © = ¢, we have h = 0. Thus,

g'(c) +¢'(¢)]
{(()}’+{g( 0)}]
g'(#(0)) - #(0) + ¢'(u(0

3 [lime(n) o0 2 t(h) (0

g'(c) z%
?[

+ limy(h)—u(0) ) O u(0
t t
— L limy, o 2alO)
(u(m) —g(u(0);
- c—h)—c

— 1 [timp o ZEERO) iy, o= =g(o

Lo HEERZIE) iy, al=glemh)]

[Abbott 5.2.7] Let
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galz) = {g sinllfe) e 7
Find a particular (potentially non-integer) value for a so that:
(a) gq is differentiable on R, but such that g/, is unbounded on [0, 1].
Proof.
Consider a = 3/2. We have:

At points different from zero, we can use the familiar rules of differentiation to
find:

/ . 1
dha() = (3/2)e"/2sin(1 /) = cos(1 /)

Let’s investigate if g5/, is differentiable at zero. By definition:

23/2sin(1/z)

— 0
95/2(0) — lim 93/2(1’) 93/2( ) — lim

—0 x—0 z—0

= lim Vzsin(l/z)

Let’s find out the above functional limit. We are interested to make the distance
|v/zsin(1/x)| as small as we please. Our claim is that:

|[Vzsin(1/z)| < e

If we replace |sin(1/z)| by its upper-bound, we strengthen the condition we
wish to prove. Since |sin(1/z)| < 1, we shall try to prove that:

Vz| < e

Squaring on both sides:

Wzl =| (Va)?| = 2| < &

Pick § = €. Then, for all z € [0, 00) satisfying |z — 0| < 6, it follows that

[V -sin(l/z)] <e-1=¢
Consequently, lim Vz -sin(1/x) = 0. Thus:
T—
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(3/2)x'/?sin(1/z) — % cos(1/x) ifz#0

Do) =
93/ 2(7) {O ifz=0
Moreover, g ,(2) is bounded on [0, 1] because of the factor 1/v/z.

(b) g, is differentiable on R with ¢/, continuous but not differentiable at zero.

Consider a = 5/2. At points different from zero, we can use the familiar rules
of differentiation to find:

9’5/2(3”) = (5/2)553/2 sin(1/x) — /2 cos(1l/x) - <_$>

= (5/2)2* % sin(1/x) — vz cos(1/x)
Consider the point ¢ = 0. By definition:

i 5/2(2)—95/2(0
gé/2(0) = lim,_,q %

= lim,_,o M = lim, 0 2%/? sin(1/x)

Let’s find out the above functional limit.

We are interested to make the distance |23/

Let’s explore the condition:

sin(1/x)| as small as we please.

3/2

|z*/sin(1/x)] < e

If we replace the the quantity |sin1/xz| by its upper bound, we strengthen the
condition we wish to prove.

3/2

|z2/%| < e

That is:

2| < €¥/3
Pick § = ¢*/3. Then, for all = € [0, o) satisfying || < 4, it follows that:

3/2

|[x°/%sin(1/x)] < €
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Consequently, lin% 2%/%sin(1/x) = 0.
T—r

Thus, g5 /2 (x) is differentiable on R. Moreover:

, _ [(5/2)2%/%sin(1/z) — xcos(l/z) ifx #0
95/2($)— 0 ifzr =0

Let’s prove that g ,(2) is continuous at zero.

We know that, both (5/2)2%/2 sin(1/x) and v/z cos(1/x) are continuous at zero.
By the Algebraic continuity theorem, their algebraic difference is also continu-
ous at zero.

We are interested to prove that g5, (=) is not differentiable at zero. By definition,
we have:

. g5 5 (x) =g ;5 (0
9'5//2 (0) = lim,_o ']/217_3/2()

0 (5/2)z%/? sin(1/z)—z'/? cos(1/x)

= lim,_, =
= lim,_,(5/2)z"/?sin(1/z) — ﬁ -cos(1/x)

1 1
NOW, let (ITL) == % and (yn) = m

limz, = limy, = 0, but lim f(z,) # lim f(y,). Consequently, the functional

be two sequences in [0, 1]. Clearly,

limit lim — cos(1/x) does not exist. g, /2(2) is not differentiable at zero.

1
x—0 ﬁ

(¢) ga is differentiable on R and g, is differentiable on R, but such that g/ is not
continuous at zero.

Consider a = 7/2. At points different from zero, we can apply the familiar rules
of differentiation to find:

gr0(T) = %% sin(1/z) — z3/% cos(1/x)

Let’s find if g7/5(x) is differentiable at zero. We have:

- 0
g1 (0) = lim 2120~ 9712(0)

= i 3/2 g o 1/2
250 z—0 lim 2*/%sin(1/z) — /= cos(1/z)

We have:
—2¥/? < 232 sin(1/z) < z3/?
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for all z € R. By the Squeeze theorem, since lim (—x?’/ 2) = lim 2%/% = 0, it
z—0 z—0

follows that lir% 2*/?sin(1/z) = 0. Similarly, 1ir% x/2 cos(1/z) = 0.
T T—

Thus, by the Algebraic Limit theorem,

/ — T 3/2 o Vi 12 _
97/2(0) ilg}) x>/ “sin(1/x) il_)HlOl‘ cos(l/x) =0
Consequently, g7/5(x) is differentiable on R.

We have:

$ (@) 2%/2sin(1/x) — 232 cos(1/x) ifax #0
xTr) =
9112 0 ifx=0

From the earlier discussion in part (b), g7 »(2) is differentiable on R, but g7 , (v)
is not continuous at zero.

[Abbott 5.2.8] Review the definition of uniform continuity (Definition 4.4.4).
Given a differentiable function f : A — R, let’s say that f is uniformly differ-
entiable on 4, if, given € > 0, there exists a § > 0 such that:

_fl(y) <€ whenever(0 < |z —y|<d

f(x) = fy)
T —y
(a) Is f(z) = x? uniformly differentiable on R? How about g(z) = 2°?

Proof.

Let’s explore the expression ’f(z)f(y) —f (y)‘ We have:

r—=y
f@) ) _|2?=¢?
'Tyy—f/(y)‘ ll ey —29‘
= [z —yl

Pick § = e. Then, for all z,y € A satisfying |z — y| < J, it follows
z) —
110
r—=y
Consequently, f(z) = x? is uniformly differentiable on R.

(b) Show that if a function is uniformly differentiable on an interval A, then the
derivative must be continuous on A.

Proof.
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Since the function f is uniformly differentiable on A, for all € > 0, there exists
0 > 0, such that for all z,y € A, satisfying |z — y| < J, it follows that

’f(:z;)c_;(y) —f’(y)‘ e

Let ¢ be an arbitrary fixed point in the interval A. Therefore, for all € > 0, there
exists > 0, such that for all z satisfying |y — ¢| < ¢, we must have:

'W —f’(y)‘ <e

By definition, it means that:

i (1) - 10=1) g
1) = ()

Since f'(¢) = lim

, the limit lim f’(y) exists and further:
y—c y—c y—c

lim f'(y) = f'(c)

Yy—c

Consequently, f'(y) is continuous at y = c.

(c) Is there a theorem analogous to theorem 4.4.7 for differentiation? Are func-
tions that are differentiable on a closed interval [a, b] necessarily uniformly dif-
ferentiable?

The contrapositive of part (b) is : if the derivative function f'(x) is not continu-
ous on 4, it is not uniformly differentiable. Thus, f(z) = xsin(1/x) is differen-
tiable on [0, 1] but it is not uniformly differentiable, since f'(x) is not continuous
at 0.

[Abbott 5.2.9] Decide whether each conjecture is true or false. Provide an ar-
gument for those that are true and a counterexample for each one that is false.

(a) If ' exists on an interval and is not constant, then f’ must take on some
irrational values.

Proof.

Suppose f : [a,b] — R and f’ is not constant. Then, f’(a) # f'(b). There exists
an irrational number o € I between any two reals. So, there exists a € I, such
that f'(a) < a < f'(b) or f'(a) > a > f'(b).
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Since f is differentiable on [a, b], there exists ¢ € (a,b), such that f'(c) = «a.
Thus, f must take on some irrational value.

(b) If f" exists on an open interval and there is some point ¢ where f’(c) > 0,
then there exists a d-neighbourhood V;(c) in which f/(z) > 0 for all z € Vj(c).

Proof.
This proposition is false.

Consider the function:

B £+$2Sin(%) ifz#0
f(a:)—{é ifz=0

The graph of f(x) is:

The derivative of this function is:
1 .1 1\
s42xsin(=) —cos(=) ifx#0

5 lf x=0

The graph of the derivative function f'(z) is:

Consider z,, = <l,i 1 i,> f! <¥> = —1/2whilst f (L) —
™ ( 2nm
3

5
Thus, if we take any arbitrary d-neighbourhood of the point zero, V;5(0), we will
find both positive and negative values of f’(z).

(c) If f is differentiable on an interval containing zero and if lirr%) f'(z) =L,
T—
then it must be that L = f/(0).

[Abbott 5.2.10] Recall that a function f : (a.b) — R is increasing on (a, b) if
f(z) < f(y) whenever © < y in (a,b). A familiar mantra from Calculus is
that a differentiable function is increasing if its derivative is positive, but this
statement requires some sharpeneing in order to be completely accurate.

Show that the function:
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_Jx/2+2%sin(1/z) ifz#£0
9@ =1, ifz =0

is differentiable on R and satisfies ¢'(0) > 0. Now prove that g is not increasing
over any open interval containing 0.

Proof.

For all other points different from zero, we can differentiate g(z) using the fa-
miliar rules of differentiation to find:

g'(z) = % + 22 sin <%> — cos <%> , {z#0}

By definition,

4/(0) = Tim (x/2) + x?sin(1/x)

1 . (1> 1
= lim — + xsin = -
z—0 x z—0 2 x

x) 2
Consider the sequence

1 1 1 1
3m/27 b /2’ T /2 9 /27

We find that the image sequence has the following order relation:

1 () <9 (5e) 9 (52) <9 () -

Since the above seqeuence approaches zero, any open interval containing zero
must contain the tail of this sequence. Hence, g is not increasing on any interval
containing 0.

[Abbott 5.2.11] Assume that g is differentiable on [a, b] and satisfies ¢’ (a) < 0 <
!
g' ().

(a) Show that there exists a point z € (a,b) where g(a) > g(x), and a point
y € (a,b) where g(y) < g(b).

Proof.

By definition:
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J/(a) = Tim 9(x) —g(a)

T—a Tr—a

/
prk - 110

| —a| < 6, we have:

. Then, there exists § > 0, such that for all z € (a, b) satisfying

@l o) =ate) _ o)
Since ¢'(a) < 0, |¢'(a)| = —¢'(a), so we have:
S0 90 o)y 9@

Thus,

T—a 2
Since z — a > 0, 3z € [a, b] such that

g9(x) —g(a) <0

or

g(a) > g()

In a similar fashion, we can prove that there exists y € (a,b) such that

g(y) < g(b)

(b) Now, complete the proof of Darboux’s theorem started earlier.
Proof.

We perform the following construction:
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Using (a) there exists x1 € (a,b) such thatg(a) > g(z1). There exists y; € (z1,b)
such that g(y1) < g(b). Define I = [z1, y1].

Again using (a), there exists x2 € (21,y1) such that g(z2) > g(z1). There exists
y2 € (z2,y1) such that g(y2) < g(y1). Define Iy = [x2, ya].

oo
By the Nested Interval Property, there exists an element ¢ € ﬂ I,, such that
n=1

(zn) — cand (y,) — c. Since g is continuous, g(x,,) — g(c) and g(y,) — g(c).

[Abbott 5.3.1] Recall from the exercise 4.4.9 that a function f : A — R is Lips-
chitz on A if there exists an M > 0 such that:

<M

‘f(x)—f(y)’
T—y
for all z # y in A.

(a) Show that if f is differentiable on a closed interval [a, b] and if f’ is contin-
uous on [a, b] then f is Lipschitz on [a, b].

Proof.

Let 2 # y be any two arbitrary points in [a, b]. Since f is differentiable on [z, y]
(or [y, z] if y < z), by the Mean Value Theorem, there exists ¢ € (z,y) such that:

flz) = fy)
r—y
Since f is continuous on a closed interval [a, b], by the extreme value theorem,

[ attains a maxima and a minima on [a, b], that is, there exists z¢, z; such that
f(x0) < f(z) < f(x1) forall z € [a,b]. Let M = f(z1). Thus, f'(c) < M.

| — /()

Since x,y were arbitrary points, this must be true for all z,y € [a,b]. Conse-
quently, f is Lipschitz continuous on [a, b].

(b) Review the definition of a contractive function in the exercise 4.3.11. If we
add the assumption that |f'(z)| < 1 on [a, b], does it follow that f is contractive
on this set?

Proof.

We have: |f(z) — f(y)| < M|z — y|. Since f'(z) < 1 on [a,b], it follows that
|f(z) — f(y)|] < |z —yl|. Thus, f is contractive on [a, b].

[Abbott 5.3.2] Let f be differentiable on an interval A. If f'(x) # 0 on A, show
that f is one-to-one on A. Provide an example to show that the converse state-
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ment need not be true.
Proof.

Let « # y be any two arbitrary points contained in A. Since f is differentiable
on (z,y), there exists a point z < ¢ < y or x > ¢ > y such that :

flx) = fy)

T = o)

Thus,

Since f'(c) # 0 and (z — y) # 0, it follows that f(x) # f(y). Thus, © # y =
f(z) # f(y) forall z, y € A. Consequently, f is one-to-one on A.

Consider f(z) = x°. f is one-to-one on any interval of the real-line, but f’(x) =
32? is zero at the point z = 0.

[Abbott 5.3.3] Let h be a differentiable function defined on the inteval [0, 3],
and assume that 2(0) = 1, h(1) = 2 and h(3) = 2.

(a) Argue that there exists a point d € [0, 3], where h(d) = d.
Proof.

Consider g(x) = h(z) — z. By the Algebraic differentiability theorem, g is also
differentiable on [a, b].

We have:

g(0) = h(0) =0 =1
g1)=h(1)-1=1
9(3) = h(3) =3 = ~1

Since h is continuous on [1, 3], by the Intermediate Value Theorem, there exists
¢ € (1,3) such that g(c) = 0. Consequently, there exists ¢ € (1, 3), such that
h(c) = c.

(b) Argue that at some point ¢, we have h'(c) = 1/3.
Proof.

Since h is differentiable on (1, 3), there exists ¢ € (0, 3) such that
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A3 —h(0) _2-1_1_,
350 ~ 3 —3 MO

(c) Argue that h/(z) = 1/4 at some point in the domain.

Proof.

Since h is continuous on [0, 1] and differentiable on the interval (0,1), by the
Mean Value Theorem, there exists ¢ € (0, 1) such that

Since h is continuous on [1, 3] and differentiable on the interval (1, 3), by the
Mean Value Theorem, there exists ¢ € (1, 3) such that

Since h is differentiable on [c, t] by the Darboux’s theorem, the derivative func-

1
tion satisfies the intermediate value property. If /'(t) < 1< h'(c), then there
1

exists = € (¢, t) such that 1/(z) = T

[Abbott 5.3.4] Let f be differentiable on an interval A containing zero, and
assume (z,,) is a sequence in A with (z,,) — 0 and z,, # 0.

(a) If f(z,) = 0forall n € N, show that f(0) = 0 and f/(0) = 0.
Proof.

Since f is differentiable at zero, f is also continuous at zero. Consequently,
lin%) f(z) = f(0). Thus, for all sequences (z,,) — 0, with z,, # 0, it follows that
T—r

f(zs) — f(0). But, f(z,,) is the constant sequence (0, 0,0, ...). Thus, f(0) = 0.

By definition:

£(0) 1 F@ = F0)

x—0 tL'fo

Since f is differentiable at zero, for all sequences (¢,) — 0 with ¢, # 0, the
sequence of difference quotients



approaches f(0). So, it must hold for the sequence (z,,) C A as well. We have:

So, d(zy,,) is the constant sequence (0,0,0,...) which approaches 0. But, we
know that d(z,,) — f'(0). Consequently, f'(0) = 0.

(b) Add the assumption that f is twice-differentiable at zero and show that
f7(0) = 0 as well.

Proof.
By definition:

f-//(o) = lim f/(‘T) — fl<0)

x—0 1‘70

Since f’ is differentiable at zero, it follows that for all sequences (z,,) — 0, with
xn, # 0, the sequence of the difference quotients:

f'(@n) — 1'(0)

y(rn) = z, —0

approaches f”(0). But, f'(z,,) = 0 for all n € N since f(z,,) = 0. Consequently,
y(z,,) is the constant zero sequence and thus f”(0) = 0.

[Abbott 5.3.5] (a) Supply the details for the proof of Cauchy’s Generalized
Mean Value Theorem (Theorem 5.3.5).

Proof.

Let f and g be continuous on the closed interval [a, b] and differentiable on the
open interval (a, b). Define

We have:

h(a) = f(b)g(a) = f(a)g(a) = g(b)f(a) + f(a)g(a) = f(b)g(a) — g(b) f(a)
h(b) = f(b)g(b) — f(a)g(b) — g(b)f(b) + g(a)f(b) = g(a)f(b) — f(a)g(b)

By the Algebraic differntiability theorem, h is differentiable on the open interval
(a,b). Applying the Mean Value Theorem, there exists ¢ € (a,b), such that:
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Differentiating h(x) using the familiar rules of differentiation, we get:

=0

Thus,

(b) Give a graphical interpretation of the Generalized Mean Value Theorem
analogous to the one given for the Mean Value Theorem at the beginning of
section 5.3 (Consider f and g as parametric equations for a curve).

Proof.

Let F : R — R? be any curve in whose parameteric equation is given by
(z(t),y(t)). Suppose that a particle in motion in the 2D-plane according to this
parametric curve. Then, z'(c) is the 2-component of the velocity at time ¢ = ¢
and y'(c) is the y-component of the velocity at time ¢ = ¢. The velocity vector at
time t = cis v(c) = (2/(c), y'(c)), the magnitude of the velocity (speed) is given

by |v(c)| = \/ (@'(c))? + (¥'(c))?, whilst the direction of velocity vector is given
by:

y'(c)
a'(c)
Thus, the graphical interepretation of the Generalized Mean Value theorem,
implies, that there exists an instant ¢ € (a,b) during which the direction of
motion of the particle is parallel to the displacment vector between the points

(z(a),y(a)) and (2(b), y(b)).

[Abbott 5.3.6] (a) Let g : [0, a] — R be differentiable, g(0) = 0 and |¢'(x)| < M
for all z € [0, a]. Show that |g(x)| < Mz for all z € [0, a.

tanfd =

Proof.
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Let = be an arbitrary point in (0, a]. Since ¢ differentiable on the open interval
(0, z), we can apply the mean value theorem. Thus, there exists ¢ € (0, z), such
that:

Since x > 0, we can write:

lg(x)] < M=

Since x was an arbitrary point in (0, a], this must be true for all x € (0, a]. Since,
g(0) =0, it is also true for z = 0.

(b) Let h : [0,a] — R be twice differentiable, ' (0) = h(0) = 0 and |h" (z)| < M
for all z € [0, a]. Show that |h(z)| < Mz?/2 for all x € [0, a).

Proof.
Using part (a), we have that |h'(z)] < Mz forall z € [0, a].

Again as before, let x be an arbitrary point in (0, a]. Since h(z) and g(z) = x*/2
are differentiable on (0, z) by the Generalized Mean Value Theorem, there exists
¢ € (0, z) such that:

¢ 22/2-0

Thus,

h(zx) [W'(c)] = Me

= < E—— A

(:c2/2)‘ < M, {.c>0}

Therefore,
Ma?
[h(z)] <

Since, x was an arbitrary point in (0, a], this must be true for all x € (0, a]. This
is also true for « = 0.

(c) Conjecture and prove and analogous result for a function that is differen-
tiable three times on [0, a].

Proof.
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Let h : [0,a] — R be a function that is differentiable three times on [0, a] and
assume that 2" (0) = h'(0) = h(0) = 0 and |h"'(z)| < M for all x € [0, a]. Our
claim is that |h(x)| < Mx®/6 for all z € [0, al.

Using (b), we know that |1/(z)| < Mx?/2 for all z € [0, a].

As before, if x is an arbitrary point in (0, a], applying generalized MVT to (0, x),
there exists a point ¢ € (0, z) such that:

h(z) — h(0) _ H(c)

3/3-0 2
Therefore,
h(x) < Mc?)2 M
w3/3] 7 2 2
Consequently,
Maz?
()| < o

Since x was an arbitrary point in (0, a], this is true for all z € (0, a].

[Abbott 5.4.1] Define

hz) = |z|

on the interval [—1, 1] and extend the definition of A to all of R by requiring that
h(x + 2) = h(z). This results in a periodic sawtooth function.

Sketch a graph of (1/2)h(2z) on [—2,3]. Give a qualitative description of the
functions:

as n gets larger.

Now define:

o) = D" hae) = 32 5oh (272)
n=0 n=0

The claim is that g(z) is continuous on all of R, but fails to be differentiable at
any point.
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Proof.

The graph of h;(z) can be deduced by computing it’s values at a few points:

x h(2x) (1/2)h(22)
2 (-4 =0 0
~3/2 | h(=3) =1 1/2
“1 | n(=2)=0 0
—-1/2 | h(-1) =1 1/2
0 | n0)=0 0
1/2 | h(1)=1 1/2
1 | n2) =0 0
3/2 | h(3)=1 1/2
2 | h4)=0 0

Thus, hi(z) has height (1/2) and a period L = 1. It has a corner at all points of

1
the form « = g, where ¢ € Z. hz(x) has height (1/4) and a period L = 3 It
has a corner at all points of the form z = 512, where a € Z.

[Abbott 5.4.2] Fix z € R. Argue that the series

oo

1
n=0
converges and thus g(z) is properly defined.
Proof.
— 1
Let (s,,) be the sequence of partial sums of the infinite series Z 2—”h (2"x).
n=0

1
Since 2—nh (2"z) > 0, the sequence of partial sums is monotonically increasing.

Moreover,

s = ZZ:O >h(2"z)
<k ok {since h (2"z) < 1}
< Zn:() % = ﬁ
=2
Consequently, the sequence (s,,) is bounded. By the Monotone Convergence
Theorem, (s,) is a convergent sequence. Thus, g(x) is properly defined.

[Abbott 5.4.3] Taking the continuity of h(x) as given, reference the proper the-
orems from chapter 4 that imply that the finite sum:
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is continuous on R.
Proof.
Let ¢ be an arbitrary point in R. Let n € N be arbitrary.

We know that 2"z is continuous ¢ and h(-) is continuous at ¢. Since, the com-
position of continuous functions is continuous, it follows that » (2"x) is contin-
uous at c.

By the Algebraic Continuity Theorem, the finite sum:

gnl) = 3 5h(2'0)

n=0

is also continuous at c. Since, ¢ was arbitrary, this must be true for all points
z € R.

[Abbott 5.4.4] As the graph in figure 5.7 suggests, the structure of g(z) is quite
intricate. Answer the following questions, assuming that g(«) is indeed contin-
uous.

(a) How do we know that g attains a maximum value M on [0, 2]? What is this
value?

Proof.

The function g(z) repeats itself with period L = 2. Moreover, since g is contin-
uous on the closed and bounded interval [0, 2], by the extreme value theorem,
there exists in and X4, in [0, 2], such that:

g(xmin) < g(-T) < g(xmux)

for all z € [0, 2]. Thus, the above points are global extrema.

(b) Let D be the set of points in [0, 2] where g attains its maximum. That is :

D={z€l0,2]:g(zx)=M}.

Find one point in D.

[Abbott 6.2.1] Let
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_onx
T 14+ na?

fn(2)

(a) Find the pointwise limit of (f,,) for all z € (0, 00).
Proof.

For a fixed z € R, we have:

. BT nw
limy, o0 fr(z) = limp, oo Trna?
— | x
= iMoo T
x _ 1

2 Tz

(b) Is the convergence uniform on (0, c0)?
Proof.

The definition of uniform convergence is :

(Ve > 0)(IN e N)(Va € A)(Vn > N)(|fu(z) — f(2)] <€)

Carefully negating the definition of uniform convergence:

(Jeo > 0)(VN € N)(Fz,, € A)(In > N)(|fulz) — f(x)] > €)

Note. The point x € A where the distance |f,,(z) — f(z)| exceeds ¢y can be
different for each N.

Let’s explore the distance | f,,(z) — f(z)|. We have:

[fu(@) = f@)] = | — 3

nx? —(l—i—nxz)

T a(lna?)
. _ 1
- z(1+nz?) | = |z(1+nz?)
- m
Leteg = 1. Let us choose 0 < x < 1.
1 1

x (1 + nxz?) - x(1+n)
Let’s explore the inequality:

1
_ >
z(14n) =<0
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We are interested to make

1
w21
= z(l+n) <1
— <
1

Consequently, we can choose z,, < ——.

(fn) does not converge uniformly to f on (0, c0).

(c) Is the convergence uniform on (0, 1)?

Proof.

No, the convergence is not uniform on (0, 1) as reasoned above.
(d) Is the convergence uniform on (1, c0)?

Let us explore the expression | f,,(x) — f(x)]:

We can choose N > 1 Then, |fn(z) — f(z)] < eforalln > N and for all
€
z € (1, 00).

[Abbott 6.2.2] (a) Define a sequence of functions on R by:

: 11 1
1 1f.’1’}:1,§7§7...7g
0

fn(x) = {

and let f be the pointwise limit of the function f,,. Is each f,, continuous at
zero? Does f,, — f uniformly on R? Is f continuous at zero?
Proof.

Point-wise convergence:

The definition of pointwise convergence is:

(Ve > 0)(Vz € A)EN € N)(¥n > N)(|fa(z) — f(z)] <€)
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Define

1 ifz=+VneN
flz) = "
0 otherwise

Let S be the set of rational numbers of the form:

S:{i:mEN}
m

We are interested to prove that f,, — f pointwise. Forz > loraz <Oorz ¢ S,
fn(z) = 0for all n € N. Thus, what is of interest to us, is the set S.

1
Assume that x € S and let z = i be fixed, where M is some natural number.

Pick an arbitrary e > 0. We have: f(z) = 1. We are interested to make the
distance |f, () — f(z)| as small as we please. If we choose n > M, it follows

that% < % and f,,(z) = 1. Thus, |f,(2) — f(z)| =0 <.

Consequently, the suitable response to the given e-challenge is to pick N > M.
Continuity of f, at zero.

Pick an arbitrary e > 0. Pick an arbitrary fixed fy(x). We are interested to prove
that fy(z) is continuous at zero.

1
N+1’
for all z € V5(0), it follows that | fx (z) — fn(0)| = 0 < e. Consequently, fn(z)
is continuous at ¢ = 0. Since, NV was arbitrary to begin with, this must be true
forall N € N.

1
By definition, fy(z) = 1forz = 1, 3N Thus, if we choose § =

Uniform convergence on R.

1
Let ¢g = We pick z,, > nrl Clearly, fn(z,) = 0and f(z,) = 1, so

| frn(zpn) — f(xn)] > €. Hence, f, is not uniformly convergent on R.

DN | =

Is f continuous at zero?

The uniform convergence of the sequence of functions (f,,) is a necessary con-
dition for the limit function f to be continuous. The absence of uniform conver-
gence implies that f is not continuous at zero.

(b) Repeat this exercise using the sequence of functions
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: 11 1
g(g_’;)f X lfx:1,§,§7...,ﬁ
n - .
0 otherwise
Point-wise convergence:

Define

x ifx= %, neN
g(z) = ;
0 otherwise

Let S be the set of rational numbers of the form:

S:{i:meN}
m

gn converges pointwise to g for all = ¢ S. Hence, let’s investigate what happens

if x is an arbitrary fixed element of S. Let z = U

Again as before, if we pick n > M +1, then g, () = z and g(z) = z, s0 |g,(z) —
glz)|=0<e

Hence, the suitable response to the given e-challenge is N > M + 1.
Continuity of g,, at zero.

Pick an arbitrary € > 0. Pick an arbitrary fixed gy (x). We are interested to prove
that g (z) is continuous at zero. By definition:

o111 1
gN(w): X lf.ﬂ—l,i,g,...,N
0 otherwise

1
If we choose § < —, then for all z € R satisfying |z| < d, we have |gn(z) —

gn(0)] = 0 < e. Consequently, gn(x) is continuous at zero. Since, N was
abitrary, this must be true for all » € N.

Uniform convergence on R.

Pick an arbitrary ¢ > 0. By the Archimedean property there exists a natural

1
number K € N, such that — < e. Consider what happens when we sample

K
1 1
t th intse = —, ——,....
va fK+1a € pomts x K’K—Fl,
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gk (%) = % gK(%H)ZO gK(ﬁ)ZO
grn (%) =% 9K+ (ﬁ) = ®r 9K+ (K+2) =0
=% 9(&n)=%n 9(zn

Then, for all € R, for k > K, it follows that |g;(z) — g(z)

I
I
X
+
]

Is g continuous at zero?

The sequence functions (g,,) are continuous at zero and (g,) converges uni-
formly to g. By the Continuous Limit Theorem, g is continuous at zero.

(c) Repeat the exercise once more with the sequence

1 ifx:%

ho(z) =X =z ifle,%,...,ﬁ

0 otherwise

Proof.
Point-wise convergence:

Define

h(z) = T ifa:z%.:nEN
0 otherwise

Pick an arbitrary € > 0. Let € R be a fixed arbitrary real number of the form
1 1

o where m € N. Let N € N be such that N > m. Then, h,(z) =z = - for
alln > N. Consequently, |h,(z) — h(z)| =0 < eforalln > N.

Thus, the sequence of functions (k,,) converge pointwise to h.

Continuity of hy, at zero.

1
Let € > 0 be arbitrary. Pick 6 < e Then, for all z € V5(0), we have |h,(x) —

hy,(0)] = 0 < e. Consequently, h,, is continuous at zero.

Uniform convergence on R.

1
Let €y = 5

N =
vV
o)
=)

1
CaseI. N = 1. There exists x; = Y such that |hq(z1) — h(z1)| =
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1
CaseIl. N > 2. Pick z,, = N We have |hy(x,) — h(z,)| =1 — > — = ¢.

NN

1
N

Consequently,

(Jeo > 0)(VN € N)(Fz,, € A)(In > N)(Jhn(2n) — h(xn)| > €0)

Hence, (h,,) does not converge uniformly to h.

[Kaczor&Nowak 3.1.1] Prove that a sequence of functions {f,,} defined on A
is uniformly convergent on B C A to f : B — R if and only if the sequence of
numbers {d, }, where:

dp =sup{|fn — f(z)|:x € B}, neN

converges to zero.
Proof.
=—direction.

Pick an arbitrary € > 0. (f,,) converges to f uniformly, so there exists N,, such
that for all z € B, |f.(x) — f(z)| < e for all n > N.. Thus, the set

Dy, ={lfn. — f(z)| : = € B}

has lower bound 0 and upper bound e. This applies toall the sets Dx_+1,Dn.+2,Dn.+3,----

This can also be seen if we graph f, and f. f,, is always within an e-band of f.
So, the distance between f,, and f is bounded.

By the least upper bound property, the supremum of D,, exists for all n > N..
Let d,, = sup D,,.

Since d,, is a limit point of the set D,,, by the order limit theorem, 0 < d,, < e.
Again, this holds for all n > N..

Consequently, it follows that (d,,) — 0.
<= direction.
Pick an arbitrary € > 0.

Since (d,,) — 0, there exists N € N such that
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—e<0<d, <e

Since d,, is an upper bound for the set D,;:

—€ <0< [fu(2) = f(2)| <sup {[fu(z) — f(z)] 12 € B} <e
Ve € B,Vn > N.

Thus, (f,,) converges uniformly to f.

[Abbott 6.2.3] For each n € N and = € [0, c0), let:

x 1 x>+
9n(2) 1+an (@) {naj ifo<z< 2
Answer the following questions for the sequences (g,,) and (h,,):

(a) Find the pointwise limit on [0, co).
Proof.
The pointwise limit of g, (x) is given by:

Casel.O< z < 1.

We have:
— limy o0 @
T limp oo 1+Hlimy o0 2™
=15 U (@"—=0if0<z<1}
=z
Casell.z = 1.
We have:
. . 1 1
A gn(@) = lim =m0 =5

CaselIll. z > 1.

We have:
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. T T

hmn%oo gn(m) - hmn%oo W
T pontl
= hlonn—mo Tl

=1 =
Thus, the sequence of functions (g,) converges pointwise to g defined by:

z ifo<z<l1
glx)y =43 ifz=1
0 ifz>1

The pointwise limit of h,,(z) is given by:
Casel. Ifz > 0.

Pick an arbitrary € > 0. By the Archimedean property, there exists V € N, such
1
that N < z. Forall n > N, the distance |h,,(z) — h(z)| =0 < e.

Casell. If z = 0.
The sequence (h,,(0)) = (0,0,0,0,0,...) converges to 0.

Thus, the sequence of functions (h,,) converges pointwise to i defined by:

1 ifz>0
h =
=) {0 if 2 =0

(b) Explain how we know that the convergence cannot be uniform on [0, o).
The sequence of functions (g,,):

Let z € (0,1). Let’s explore the expression |g,(z) — g(x)|. We have:

92(2) — 9(@)] =% — 2]
z—gzg—z"t!
Tiger
l_n+1

14+xm
n+1
In+1 1271

e

1
Leteg = T Our claim is:
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1
. %
Z'n >§
1\2n
zn > (3)

Thus,

(3o > 0)(VN € N)(Jzy, € [0,00))(Fn = N)(|gn(wn) — g(za)| = €0)

So, (g») does not converge uniformly to g.
The sequence of functions (h,,):

This is actually evident from the graph of h(z). If we draw an ¢ band around h,
for each N € N, there exists points z,, € (0,1), such that |h,(z,) — h(zy)| > €.

1 1
Let¢g = T Forall N € N, pick zn € (O’ﬁ)' Then, |hy(zy) — h(zy)| >

1 1
I=5=3=%
Again,

(3eo > 0)(YN € N)(3ay, € [0,00))3n > N)(|hn(zn) — hizn)] > €o)

(c) Choose a smaller set over which the convergence is uniform and supply an
argument to show that this is indeed the case.

Proof.

Using a computer algebra system to plot (g, ), I think that (g,,) should converge

1
uniformly g(z) = z in the interval {0, 5}

Mathematically,
gn(@) — g(@)] = |rr — 2
e — g e 20 and 1 s 0)
1/2 n+1
SHI [ 0<z<1/2)

=)™

Pick an arbitray € > 0. Our claim is that:

ot <€
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Thus:

2n+1 S -

which implies that

(n+1)> %log(l/e)

Thus,

(Ve > 0)(3N € N)(Vz € [0,1/2])(Vn > N)(|gn () — g(z)] <€)

Consequently, (g,,) converges uniformly to g on [0,1/2]. Actually, it converges
uniformly to g on any closed interval [0, a] where a < 1, as well as any interval
of the form [a, 00) where a > 1.

Similarly, (h,) converges uniformly to h on [%7 1]. Let ¢ > 0 be arbitrary. Pick

N > 2. Then, for all x € E, 1} and for alln > N, |h,(x) — h(z)] =0 < e.

[Kaczor&Nowak 3.1.2] Assume that (f,,) converges uniformly to f on A and
(gn) converges uniformly to g on A. Show that ( f,, + g, ) converge uniformly to
(f + g) on A. Is it true that (f,, - g,,) converge uniformly (f.g)?

Proof.

Pick an arbitrary € > 0.

There exists N7 € N for all z € A, such thatforalln > N, |f,(z) — f(z)| <

[N e}

There exists Ny € N for all € A, such that for all n > Ny, |g,(z) — g(2)] < %

We can write:

[(Fn(@) + gn(2)) = (f(2) + ()| = [fn(z) = f(2) + gn(z) — g(2)|

= | (z
< |faulz) = f@)] + |gn(z) — g(2)]
Let N = max{Ny, No}. Then for all n > N, it follows that:

[(fn(@) + gn(2)) = (f(2) + 9(2)| < |fa(z) = f(@)] + |gn(x) — 9(z)]



Counterexample.

[Abbott 6.2.4] Review exercise 5.2.8 which includes the definition for a uni-
formly differentiable function. Use the results discussed in the section 6.2 to
show that if f is uniformly differentiable, then f’ is continuous.

Proof.

Define the sequence of functions

and let

We can show that (g,,) converges uniformly on A to g.

Pick an arbitrary € > 0. By definition of uniform differentiability, there exists
0 > 0 (where ¢ is only a function of €), such that for all z,y € A, satisfying
|z —y| < 4, it follows that:

f(y)ff(x) —f/(Jf) <€
y—
By the Archimedean property, there exists NV € N, such that % < ¢. But, this

1
means, that for all n > N, the point y = = + — satisfies |y — x| < 4.
n

Thus, there exists N € N, such that for all x € A and n > N, it follows that:

flz+1/n) — f(x)
1/n
Note that IV is a function of §, which in turn depends only on e. Hence, the
sequence of functions (g,,) converge uniformly on A to g.

—fl(@)| <e

Now,

Uniform differentiability of f = Differentiability of f = Continuity of f

1
For a fixed n, since = + — is continuous and f is continuous, f(z + 1/n) is also

n
continuous. By algebraic continuity theorem,
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is continous.
Let ¢ € A be an arbitrary fixed point.

Each of the g,, are continuous at ¢ € A and (g,,) converges uniformly to g on A.
By the continuous limit theorem, g is continuous at ¢ € A. Since ¢ was arbitrary
to begin with, ¢ is continuous on the whole of A.

[Abbott 6.2.5] Using the Cauchy Criterion for convergent sequences of real
numbers, supply a proof for Theorem 6.2.5. (First define a candidate for f(x)
and then argue that (f,,) — f uniformly).

Proof.
—direction.

We are given that a sequence of functions ( f,,) defined on the set A C R con-
verges uniformly on A to f.

Pick an arbitrary € > 0. There exists N € N for all z € A, such that for all
k> N:

[fe(z) — f(z)] <€/2
Let n,m > N be arbitrary. We have:

[fn(2) = fm(2)|

Since n,m > N were arbitrary to begin with, this must be true Vn,m > N.
<+ direction.

We are given that, for all ¢ > 0, 3N € N, such that for all z € A and for all
n,m > N, we have:

|fn(x) - fm(x” <€

Fix t € A. Then it follows that, (f,(t)) is a Cauchy sequence. By the Cauchy
criterion for convergence of real numbers, (f,(t)) is a convergent sequence and
lim f,(t) exists.

n— oo
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Since t was arbitrary, this must be true for all t € A. Consequently, we define:

f@) = lim_fa()

Now, fixn > N and x € A be arbitrary. Consider the sequence:

‘fn(x) - fN(x)‘v ‘fn(x) - fN+1(x)‘7""|fn(x) - fm(x)‘>

Pick an arbitrary € > 0.

By the uniform Cauchy condition, 3N (¢) € N, such that for all m > N, a,, =
| fn(x) — fm(x)] < e Thus, lim a,, exists.
m—00

Since each of the terms a,,, is strictly smaller than ¢, by the Order Limit theorem,
lima,, <e.

We have:
lima, =lm, o |fn(x)— fm(z)]
= |limy—o0 fr(2) — limyy oo fr(x)|  {Since lim|b,| = |lim b, |}
= [fn(2) = f(2)|

Consequently, |f,(xz) — f(z)| < e. Sincen > N and = € A were arbitrary to
begin with, this must be true for allz € Aand n > N.

By definition, (f,,) converges uniformly on A to f.

[Abbott 6.2.6] Assume that f,, — f on the set A. Theorem 6.2.6 is an exam-
ple of a typical question which asks whether a trait possessed by each f,, is
inherited by the limit function. Provide an example to show that all of the fol-
lowing propositions are false if the convergence is only assumed to pointwise
on A. Then, go back and decide which are true under the stronger hypothesis
of uniform convergence.

(a) If each f,, is uniformly continuous, then f is uniformly continous.
Proof.

Let f,,(x) = 2" for z € [0,1]. Since f,(x) is continuous on a compact set [0, 1],
it is uniformly continuous on [0, 1].

Define

0 if0<z<l1
f(x)_{1 ifr =1
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Pick z € [0,1). We know that, if |z| < 1, then (z") — 0. If z = 1, then (2") is the
constant sequence (1,1, 1,...) and converges to 1. Consequently, f,, converges
pointwise to f.

Since f is not continuous at ¢ = 1, f is not uniformly continuous on [0, 1].

Claim. If f, LN f and if each f,, is uniformly continuous, f is uniformly con-
tinuous.

By definition of uniform continuity:

(Ve > 0)(3d(c) > 0)(Va,y € A)(Y|z —y| <) (|fn(2) = fuly)l <€)

By definition of uniform convergence:

(Ve > 0)(3N(c) € N)(Var € A)(vn > N)(|ful2) - f(@)] <€)

Pick an arbitrary € > 0.
There exists N(¢/3) such that for all z € A, | fv(z) — f(z)| < €¢/3.

There exists d(¢/3) such that for all z,y € A, satisfying |z — y| < 6, |fn(z) —
In(y)l <e/3.

We can write for all z,y € A satisfying |z — y| < ¢:

[f(@) = FW)l = [f(2) = In(@) + fn(z) = ny) + n(y) = Fy)]
<|f(x) = fn(@)| + [ (2) = In (@)l + v (y) = F(y)]
<€/3+¢€/3+¢€/3=¢

Consequently, f is uniformly continuous on A.
(b) If each f,, is bounded, then f is bounded.
Proof.

Claim. If f,, 4 f and each f,, is bounded, f is bouned.

By the definition of uniform convergence:

(Ve > 0)(3N(e) e N)(Vz € A)(Vn > N)(|fn(z) — f(z)] <€)

Pick € = 1. Then, there exists N € N such that forall z € A,
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[f(@)] < [fn(z)[+1

Since fn (z)isbounded, 3M > 0,Vz € A, suchthat|fy(z)| < M. Consequently,
forallz € A,

Ifz)| < M+1
Thus, f(x) is bounded.

[Abbott 6.2.7] Let f be uniformly continuous on all of R and define a sequence
1
of functions by f,(z) = f (m + E) Show that f,, — f uniformly. Give an

example to show that this proposition fails if f is only assumed to be continuous
and not uniformly continuous on R.

Proof.
Pick an arbitrary € > 0.

Since f is uniformly continuous on R, 3dg(¢) > 0, such that for all |x — y| < 6,

[f(z) = f(y)l <e

Let y be any arbitrary point defined by the following linear function:

1
y=a+-
n

where n € N. Now, we can choose y to be arbitrarily close to z. Pick N >

(%. Then, for alln > N, |z — y| < §. But, this implies, that for all n > N,
0

[f(@+1/n) = f(2)| <€l
Consequently,
(Ve > 0)3EN(e) € N)(n = N)(|fu(2) = f(2)] <€)

Thus, f,, converges uniformly on R to f.

Carefully negating the definition of uniform convergence, we have:

(3e0 > 0)(YN € N)(En = N)(3z, € A)(|fulan) — f()] = o)

Let f(z) = x*. We know that f is continuous on R, but it is not uniformly
continuous (the derivative is not bounded).
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f (:v+ %) — f(x)|. We have:

1
Fix ¢ = 3 Let’s explore the expression:

f @t d) —f@)] = (@+p) ~a?
N
—m 1
>%&

Let’s explore the inequality:

N
Pick zn > T Then,

1 L2y 1 2N/4) 1 11
)ﬂﬂ_N+W_ZV+W RE

Thus, f,(z) does not converge uniformly to f(z).

[Abbott 6.2.8] Let g,, be a sequence of continuous functions that converges uni-

1
formly to g on a compact set K. If g(x) # 0 on K, show that — converges

gn

1
uniformly on K to —.
g

Proof.
. . 1
Consider the expression | —— — ——|. We have:
gn(z)  9()
11| (@)@
gn(z)  g(z) lgn (@)]1g()]

Now, (g,) EiN g. Since, each g,, is continuous on K, by the continuous limit the-
orem, g is continuous on K. By the extreme value theorem, g attains a minima
m and maxima M on K, such that:

m<g(x) <M

for all z € K. Since g(z) # 0 for all z € K, either g is strictly positive or g is
strictly negative, and it does not intersect the z-axis.

Let L = min(|m|, |M|). We have, L > 0 and |g(z)| > L.
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L
Pick e = 7 As (gn) £, g, there exists N;(L/2) such that for all 2 € K and for

all n > Ny, we have:

lon(@)| = lo(@)] < lgn(z) — g(@)] < 5

So, forall z € K and n > Ny,

llgn ()| = lg@)|| < %
-5 <gal@)| - lg@)| < %
= [g(2)] = % <|gn(z)| < lg(x)] +%

This implies, (Vx € K)(Vn > Ny):

lgn(@)] > lg(2)| - §
>L-L£=1%L

Finally, since (g,,) X, g, there exists Ny (¢€) such that, for all z € K and Vn > Nj:

2

gu(a) — gl@)] < e o

Choose N = max{Nj, No}. Then, forall x € K and n > N,

o) _ €(E2/2)
@M@ < ([2/3)

1 1
Thus, <—) x 2
n g

[Abbott 6.2.10] This exercise and the next explore partial converses of the Con-
tinuous Limit Theorem. Assume that f,, — f pointwise on [a, b] and the limit
function f is continuous on [a,b]. If each f, is increasing (but not necessarily
continuous), show that f,, — f uniformly.

Proof.

Define the sequence of functions

gn(r) = folz) — f(2)
Fix z € [a, b].

We have:
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lim gn(x) = nh—>ngo fn(x) — lim f(l') =0

n—oo n—oo

Thus, ¢, (x) converges pointwise to the constant zero function g(x) = 0 on [a, b].
Moreover, eachg,, (z) is increasing.

Pick an arbitrary € > 0.

Since g,(a) — 0, there exists Ni(¢,a) € N, such that for all n > Ny, g,(a) €

(—¢,€).

Since g,(b) — 0, there exists Ny(¢,b) € N, such that for all n > N,g,(b) €

(—6, 6)'
Let N = max{Ny, N2}. Let x € [a, b] be an arbitrary point.

Sincea <z < b, gn(a) < gn(z) < gn(b). Thus, for all n > N, g,(x) € (—¢,¢€).
Since z was arbitrary, this is true for all z € [a, b].

Consequently,

(Ve > 0)(3IN(¢,a,b) € N)(Vn > N)(Vx € [a,b])(|fn(z) — f(z)] <€)

Thus, f,, converges uniformly to f on [a, b].

[Abbott 6.2.11] (Dini’s Theorem). Assume that f,, — f pointwise on a com-
pact set K and assume that for each x € K the sequence f,,(z) is increasing.
Follow these steps to show that if f,, and f are continuous on K, then the con-
vergence is uniform.

(a) Set g, = f — fn and translate the preceding hypotheses into statements
about the sequence (gy,).

Proof.

We have: g, — g pointwise, where g(x) = 0 the constantly zero function on a
compact set K, and for each x € K, the sequence (g, (x)) is decreasing.

Since both f,, and f are continuous on K, g, is continuous on K.

(b) Let € > 0 and define K,, = {x € K : g,(z) > ¢}. Argue that K1 D Ky D
K3 D ... and use this observation to finish the argument.

[Abbott 6.3.1] Consider the sequence of functions defined by:



(a) Show that (g,,) converges uniformly on [0, 1] and find g = lim g,,. Show that
g is differentiable and compute ¢'(x) for all z € [0, 1].

Proof.

Define g as the constantly zero function:

g(x) =0

Our claim is that g,, converges uniformly on [0, 1] to g. Our claim is that:

gn(2) —9(@)| <e

L <e€

We can strengthen the condition we wish to prove by replacing the LHS by its

T 1
upper bound. Since — < —, we are interested to prove:
n - n

1
— <€
n

1 1
Choose N > pt Then, for alln > N, o <e Consequently, (Vz € [0,1])(Vn >
N)(lgn(z) — g(x)] < €). Thus, g,, converges uniformly on [0, 1] to g.

The constantly zero function g is differentiable for all z € [0,1] and ¢'(z) = 0
forall z € [0, 1].

(b) Now show that (g;,) converges on [0, 1]. Is the convergence uniform? Set
h = lim g, and compare h and ¢'. Are they the same?

Proof.

We have:

Define h as:
0 ifo< 1
M) =17 o
1 ifz=1
, . . . . . 1
g,, converges pointwise to h. The convergence is not uniform. Pick ¢y = 5 Let

1
Ty € b, 1) . We are interested to make :

xnfl Z

N
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If we replace the LHS by its lower bound, we can strengthen the condition we
wish to prove. Since 2" > 2", our claim is:

So, we choose:

Hence,

(3co > 0)(YN € N)(3z, € [0,1])(Fn > N)(|gh (@) — h(wa)| > o)

Consequently, g/, converges NOT uniformly on [0, 1] to h.
h and ¢’ are not the same.

[Abbott 6.3.2] Consider the sequence of functions :

hn(x) =1/ 22 —I—%

(a) Compute the pointwise limit of (h,,) and then prove that the convergence
is uniform on R.

Proof.

Fix z € R. We know that, if lim a,, = @, then lim \/a,, = \/lim a,, = v/a. Thus:

limy, oo hn(7) = lim, oo /22 + 1

1](1/2)

= [limn_>OO 22 + lim,, o =
=\ :L'Q

= ||

Consider the expression:
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{isnon — negative}

< {-2*>0}

1
Pick an arbitrary € > 0. Since — — 0, and convergent sequences are Cauchy,
n

there exists N (e) > 0, such that for alln > m > N,
1 1
vnooom

Consequently, by Cauchy criterion for uniform convergence of a sequence of
functions, (h,,) converges uniformly on R to h.

(b) Note that each h,, is differentiable. Show that g(z) = lim i, () exists for all
x and explain how we can be certain that the convergence is not uniform on any
neighbourhood of zero.

Proof.

By Chain rule of differentiation, we have:

() = ——
2 + %
Moreover,
limh, (z) = lim < —
n—oo  [r2 4 1 |1'|

Ifz > 0,limh), (z) = 1. If x < 0, then lim h,(z) = —1. Define:

1 ifz >0
W (z) =
(z) {—1 ifz <0

h'(z) is not defined at z = 0.

We are given that the sequence of functions (h,,) that converge pointwise to h
and are differentiable on any neighbourhood of zero.
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By the Differentiable Limit Theorem, if (h/,) converges uniformly on any neigh-
bourhood of zero to g, then g = h’.

By the contrapositive of the Differentiable Limit Theorem, since /' is not de-
fined at z = 0, so /' is not differentiable on any neighbourhood containing 0,
so it implies (h],) does NOT converge uniformly to h on any neighbourhood
containing zero.

[Abbott 6.3.3] Consider the sequence of functions

x
) = T

(a) Find the points on R where each f,(x) attains its maximum and minimum
value. Use this to prove that (f,,) converges uniformly on R. What is the limit
function?

Proof.
We have: ( )
14+nz”)(1)—(x)(2nz)
fule) = Lm0l
_ (1+nx2—2nx2)
G
T (1+nzx2)?

fr () attains a maxima/minima at the points :

1 1
Ty = —%7961 = ﬁ
We have:
fuao) = —5 = hlen) = 3=

The limit function f:

Firstly, fix = 0. Then, (f,(z)) is the constant zero sequence (0,0,0,0,...)
which converges to 0.

Next, assume that x # 0. We have:
lim fr(z) =limy o 17520

=0
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Consequently, the limit function f is the constantly zero function f(x) = 0.
Uniform convergence to f:
Pick an arbitrary € > 0.

We have:

@) = F@)] = |2

Pick N > 41—2 Then, for all n > N and for all x € R, |fn(x) — f(z)| < e
€

Consequently, ( f,,) converges uniformly on R to f.

(b) Let f = lim f,,. Compute f; (z) and find all the values of x for which f'(z) =
lim f/ (z).

Proof.
We have:
1 —na?
f’l/’L(x) = 2
(14 na?)
Fix = # 0. Then,
lim, 00 f1(z) =1lim nﬁm%
Az
= lim, 00 2t pi
(7 +a2)
=0

If z =0, then f] () = 1,s0 lim f)(x)=1.
n—oo

Also, since the limit function f is the constant zero function f(x) = 0, its deriva-
tive f'(z) = 0.

Thus, f'(z) = lim f,, (x) for all values of = except z = 0.

[Abbott 6.3.4] Let
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Show that h, — 0 uniformly on R but that the sequence of derivatives (h,,)
diverges for every = € R.

Proof.

Since | sinnz| < 1, we have:

If we pick N > %, then for all n > N and for all x € R, we have:
€

|hn(z) — 0] < e

Thus, (hy,) converges uniformly on R to the constantly zero function h(x) = 0.

By the familiar rules of differentiation,

h!.(x) = /ncosnx
Now, A'(z) = 0.

If x = 0, clearly v/n is a divergent sequence. If z is a multiple of 7/2, then the
subsequence of even terms (hj, hy, ... ) is divergent, so the sequence is diver-

gent.

Fix z € R, such that z # 0 and z is not a multiple of 7/2. Consequently, sin x #
0.

We can show that cos nx is not a convergent sequence.

We proceed by contradiction. Let u, = cosnz. Then, u,42 = cos(n+ 2)z.
Assume that (uy,) is a convergent sequence. Then, lim(u,, — u,42) = 0. We
have:

(Up, — Upg2) = cosnx — cos(n + 2)x
=2sin(n+ 1)z -sinz

Since lim(uy, — un12) = 0, this implies that limsin(n 4 1)x approaches zero
{since sinxz # 0}, which implies that limsinnz = 0. But, with the addition
formula for since, we have:

sin(n + 1)z = sinnx cosx + cos nz sinx
limsin(n + 1)z = lim(sinnx cos x) + lim(cos nx sin x)
= lim cos nz
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So, both lim nz = 0 and lim cos nz = 0. But, we know that:

sin® nz + cos?nz = 1

Passing to limits on both sides, we have a contradiction. Hence, out initial as-
sumption is false. u,, = cos nx is not a convergent sequence.

[Abbott 6.3.5] Let

nx + z?
2n
and set g(x) = lim g, (z). Show that g is differentiable in two ways:

gn(x) =

(a) Compute g(z) by algebraically taking the limit as n — oo and then find
/
g'(x)-

Proof.

Fix z € R. We have:

. : 2
limy, o0 9n (I’) = limy, o0 (nw;;lm )

= lim, 0 (a:+ﬂ;2/n)

2
limy oo z+Hlimy 00 -
lim,, o0 2

8

Thus, the limit function g(z) = % The derivative of the limit function is:

(b) Compute g,,(z) for each n € N for each n € N and show that the sequence
of derivatives (g;,) converges uniformly on every interval [—M, M]|. Use the
theorem 6.3.3 to conclude that ¢’(x) = lim g, (z).

Proof.

Fix n € N. By the familiar rules of differentiation:

1 1 T

!
—_ 2 —_ .
9n(2) 2n (n 7) 2 2n

We are interested to prove that g, (z) converges uniformly on any bounded in-

terval [—M, M] to the constant function h(z) = 5
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Pick an arbitrary ¢ > 0. We are interested to make the distance |g,,(z) — h(z)]|
smaller than e.

We have: )
|gn (z) — h(2)]

M‘&

|

SIS

<

N

M
If we pick N > 5 thenforalln > N, and forallz € [-M, M], |g,,(z)—g'(z)| <
€
€.
Consequently, the sequence of the derivatives (g;,) converges uniformly on [— M, M|

to the constant function h(z) = lim g/, (x) = 3

We find that the sequence of functions (g,,) converge pointwise on the closed
interval [—-M, M| to g and are differentiable. Since (g;,) converges uniformly on
[— M, M] to h, by the Differentiable Limit Theorem, it follows that lim g, = h =
g on [—M, M].

(c) Repeat parts (a) and (b) for the sequence f,(z) = (nz® + 1) /(2n + ).
Proof.
Pointwise convergence of f,:

Fix z € R. We have:

litmy o fr(2) = limy o0 B2
(w2+1/n)
(2+x/n)

z_

2

1,2

L =—.
et f(z) = =
Uniform convergence of f;, on any bounded interval [—M, M]:

Our claim is that the sequence of derivatives ( f,,) converges uniformly on [— M, M]
tog(z) = x.

By the familiar rules of differentiation:

/ _ d [nz?41
fule) =& 55
(2n+z)(2nm)—(nz2+1)(1)
(2n+wz)?
_ n12+4n2x71
- (2n+x)?

We have:
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’ _ n12+4n271
(‘T) -T = (2n+x)2
n12+4n2x—1—1(4n2+4nx+12)

(2n+x)?
_ n;c2+4n2w—1—4n2w—4nw2—w
- (2n+x)?
— _z’+3nz’+1
- (2n+z)?

— X

3

Pick an arbitrary € > 0.

We have:

_|2® + 3na® + 1]

ale) ] = g

Since x € [— M, M], we have:
(2n + )% > (2n — M)?

and
|28 4+ 3na?® + 1| < |28 + |3na?| + 1 < M3 4 3nM? + 1
. 1 .
Pick N1 > max {W’ M} Then, for all n > Ny, since

n>M = nM?*> M = 3nM? > M> {M c (0,00)}

Also,
nM? > 1

Thus,

\J:B + 3nz? + 11 < M3 +3nM? +1 < 3nM? + 3nM? + nM? = TnM?
Since, M > 0, 2n > 2n — M. Consequently:

1 1
@n)? = (20— M)?

, |23 4+ 3n2? + 1| _ TmaM?  TM?
() — x| = < =
(2n + x)? 4n? 4n

2

Pick Ny > M

. Then, for all n > Ny, the |f) (z) — z| < e.
€
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Thus, a suitable response to the given e-challenge is N = max{N, Na2}.

[Abbott 6.3.6] Provide an example or explain why the request is impossible.
Let’s take the domain of the functions to be all of R.

(a) A sequence ( f,,) of nowhere differentiable functions with f,, — f uniformly
and f everywhere differentiable.

Proof.
Consider the sequence of functions (¢,,) defined by:

B % ifrx ¢ Q

t,(x) is nowhere continuous and hence nowhere differentiable. However, (t,,)
converges uniformly on R to the constantly zero function ¢(z) = 0, which is
differentiable.

(b) A sequence (f,) of differentiable functions such that (f},) converges uni-
formly but the original sequence ( f,,) does not converge for any = € R.

Proof.

(c) A sequence (f,) of differentiable functions such that both (f,) and (f},)
converge uniformly but f = lim f;, is not differentiable at some point.

Proof.

This proposition is false. The sequence of functions ( f,,) converges pointwise to
f and are differentiable. Moreover,the sequence of the derivative functions (f;,)
converges uniformly on R. By the Differentiable Limit Theorem, lim f;, = f for
allz € R.

[Abbott 6.3.7] Use the Mean Value Theorem to supply a proof for the Theorem
6.3.2. To get started, observe that the triangle inequality implies that, for any
x € [a,b] and m,n € N,

(@) = [ (@) < [(fal2) = fin(2)) = (fa(z0) = frm(@0)| + [fn(20) = fm(20)]
Proof.
Pick an arbitrary € > 0.

Fix z € [a, b] and consider the closed interval [z, zo] ([zo, z] if o < ).
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Since f,, — fi, is continuous on [z, ] and differentiable on (¢, ), by the Mean
Value Theorem(MVT), there exists a € (z, ), such that:

[(fn(@) = fm(@)) = (fal@0) = fin(@0))| = | () = frn ()] - |2 — 2ol
< |fu(@) = fr(@)] - b - al

Since (f],) converges uniformly on [a, b], there exists V; € N such that for all
n > m > Np and for all z € [a, b],

€

|fr(x) = fin(2)] < 2 —al

Since (fy(z0)) is convergent, by the Cauchy criterion for sequences of real num-
bers, there exists Na(xg, €), such that for all n > m > N,

[Fal0) = fmnlo)| < 5

If we pick N = max{Ny, Na}, then for alln > m > N and for all = € [a, ],

|fn(m) - fm($)| <e€

Note that, neither N; nor Ny are functions of z, so our choice of N works re-
gardless of what x is. This closes the proof.

[Abbott 6.4.1] Supply the details for the proof of the Weierstrass M-Test (Corol-
lary 6.4.5).

Proof.

Pick an arbitrary € > 0.

o0
We are given, that the infinite series Z M,, converges. By the Cauchy Criterion
n=1
for the convergence of an infinite series of real numbers, it follows that, there
exists N(¢), such that for all n > m > N, we have:

M1+ Mo+ ...+ M| <e
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Pick an arbitrary « € A. For alln > m > N, we have:

|fm+1(x) + fm+2(x) +.oo+ fn(x)| < |fm+1(x)| + |fm+2(x)| +.ot |fn(x)|
SMm+1+Mm+2+~H+Mn
= |Myps1 + Mypio + ... + M,| {M, > 0Vn e N}
<€

Since x was arbitrary, this is true for all z € A.

Thus:

(Ve > 0)(3N(e) e N)(Vz € A)(Vn>m > N)(|fmt1(x) + ...+ fu(z)| <€)

o0
By the Cauchy criterion for the uniform convergence of infinite series, Z fn

n=1
converges.

[Abbott 6.4.2] Decide whether each proposition is true or false, providing a
short justification or counterexample as appropriate.

(a) If Z gn converges uniformly, then (g,,) converges uniformly to zero.

n=1

Proof.

This proposition is true.
o0
We are given that Z gn converges uniformly.
n=1
Pick an arbitrary € > 0.

By the Cauchy criterion for the uniform convergence of infinite series, there
exists N € N(e¢), such that for all m,n > N and for all z € A, we have:

|gm+1(x) +...t gn(x” <€
Hence, for all n > N and Vz € A, it follows that:

lgn ()] <€

By the definition of uniform convergence, the sequence of functions (g,,) con-
verges uniformly to the constantly zero function g(z) = 0.
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(b)If0 < f(z) < gn(z) and Z gn converges uniformly, then Z fn converges
n=1 n=1
uniformly.

Proof.
This proposition is true.

We have for all m,n € N and for all z € A:

|fm+1(x) .o+ fn(‘r)| = ferl(m) .t fn(x) {Since fn(x) > 0Vn e N}
ng+1(x)+-~-+gn($
<|gm41(z) + ... + gn(2)]

Pick an arbitrary € > 0. There exists N(¢) € N, such that for all x € A and for
allm > m > N, it follows that:

[fms1(@) + ot fu(@)] < gmaa(2) +. .+ gn(2)] <€

oo

Consequently, Z fn converges uniformly.

n=1

oo
(o) If Z fn converges uniformly on A, then there exists constants M, such that

n=1

|fn(z)| < M, forall z € Aand Z M,, converges.

n=1

Proof.

The converse of the Weierstrass M-Test is:

For all uniformly convergent series Z fu(x), M) (| fr(z)] < M)A <Z M, Converges> .

n=1 n=1

We are interested to prove, that this proposition is false.

oo

We are interested to show that there exists a uniformly convergent series Z fn(2)

n=1
such that there does not exist a sequence (}M,,) such that the properties (| f,,(z)| <

M,) and (Z M, converges) are both true.

n=1

Consider the sequence of constant functions :
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We know that, Z (=

n=1

satisfying, | f,(x)| < M,,, we must have:

converges uniformly on R. For all sequences M,

M, >

3=

o0 o0
1
But, E — is a divergent series. By the comparision test, E M, diverges.
n

n=1 n=1

[Abbott 6.4.3] (a) Show that:

cos (2™x)
o) = 3 0
n=0
is continuous on all of R.
Proof.
Since, (3M,,) such that
cos (2™x) 1
n e er— = = Mn
gnlo) = | < o

(o) (o)
and Z M, converges, by the Weierstrass M-Test, Z gn converges uniformly

n=1 n=1

on R.

Since each g, () is continuous on R, by the term-by-term Continuity theorem,
o0

Z gn(z) is continuous on R.

n=1

(b) The function g was cited in section 5.4 as an example of a continuous nowhere

differentiable function. What happens if we try to use the theorem 6.4.3 to ex-
plore whether g is differentiable?

Proof.

Let



So,

gl (x) = — sin (2"2)

Since g is nowhere differentiable, by the contrapositive of the term-by-term dif-
ferentiability theorem, we have that:

If g is not differentiable on A, then either Z gn(x) converges NOT pointwise
forallz € A, or Z g, (x) converges NOT uniformly on A.

Since Z gn converges uniformly on R, the only possibility is that Z a, =
n=1

Z sin (2"x) does not converge uniformly on R. We can actually prove this

result.

If the infinite series Z hy, is uniformly convergent on A4, it uniformly conver-
genton S, (VS C A).

If (3S € A), where Z hy, converges NOT uniformly, then Z h,, is not uni-
formly convergent on A.

Consider the point zy = g Then,

=

(g (z0)) = (—si

(_

Thus, g/, (o) is a divergent sequence. By the nth term test, Z gr.(z0) does not

27/3,—sin4m /3, —sin 87 /3, —sin 167/3, —sin 327/3, ... )
7§5_§7\/§ )

o

3 e

converge pointwise at zp = /3. Consequently, Z g, (z) does not converge

uniformly on any interval [a,b] containing zy = 7/3. So, Z g,, does not con-
verge uniformly on R.

[Abbott 6.4.4] Define:

e 2n

9@) =Y T

n=0
Find the values of = where the series converges and show that we get a contin-
uous function on this set.

Proof.

Let z be a fixed point in (—1,1). Then,
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2n

T
0< gn(xo) = ﬁ < CU(Q)n
0

We know that, Z 23" is a convergent series. Hence, by the comparison test
n=1

o p2n
Lo

T
(1),

Let = belong to any compact interval [a,b] such that -1 < a < b < 1. Let
¢ = max{lal, [b[}.

is a convergent series. Hence, E gn(z) converges pointwise on

n=1

We have:

2n
x .
gn(z) = 152 <2 < {since z*" > 0}

Define M,, = ¢*™. Then,

oo
Z :1—02

2n
By the Weierstrass M -test, the infinite series Z

n=1

T+ o converges uniformly

on [a, b].

oo

Since Z gn converges uniformly on [a, b] to g, and each g, is continuous on
n=1

[a, b], by the term-by-term continuity theorem, g is continuous on [a, b].

Let’s show that the radius of convergence does not exceed 1.

Assume that |zo| = 1. Let s;(x) be the sequence of partial sums of the infinite
oo

series Z gn(x). We have:

l\.’)\»—t

k k
o) = X onlan) =32 5 =

We know that this is a divergent sequence. Hence, Z gn(x) does not converge

n=1
atl'():]..
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Assume that |zg| > 1. We know that, if Z a, converges, then (a,) — 0. We
n=1
have:

2n
T ! -y
14 (z9)2" (I/zg)>»+1 0+1

o0
Thus, Z gn(x) does not converge for || > 1.
n=1

[Kaczor&Nowak 3.2.1] Find where the following series converges pointwise:

@ w1

n=1

Proof.

Case L. Fix ¢ = ¢ and assume that |zg| < 1. Then, —1 < 29 < 1. We have:

. T 1
limy, o0 fn(l’o) = limy, 00 THar
_ 1
T 14limy, oo

_ 1 _
71-"-071

We know that if Z a, converges, then (a,) — 0. Thus, Z fn(x) does not
n=1 n=1
converge for |z| < 1.

Case Il If xyp = —1, then f,,(zo) is an unbounded sequence and hence diverges.

Case III. Assume that zg > 1 or g < —1. If zg > 1, then it follows that

1 1
0 < — < 1. Moreover, if 29 < —1, then —1 < — < 0. Consequently, we must
Zo Zo

1
have —1 < — < 1. We have:

Lo
0 < fula) = 15— < = = gn(s0)
x0) = — =gn(x

n\+L0 1+ SCg .Tg gn Zo

- 1
Since E —- is a geometric series with 0 < ‘ < 1, it follows that the series

x x
n=1"0 0

o0 oo
Z gn(x0) is convergent. By the comparison test, Z fn(z) also converges for
n=1 n=1

|z > 1.
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oo xn
®) 2 g o7 L
n=1

Proof.

Case I. Fix z = z¢. Let’s quickly dispose off the case when |zy| > 1. We have:

lim f,(zg) = lim i = 2= =1
n (%) 41 0+1
o0
We know that, if the infinite series Z a, converges, then (a,) — 0. Thus,
n=1

o0
Z fn(z) does not converge for |xo| > 1.
n=1

1
Case II. Also, if zp = 1, then lim f,,(z¢) = 3 Thus, f,(x0) does not converge

for zg = 1.

Case III. Assume that 0 < 2y < 1. Since zy > 0, zj > 0 and thus 1 + 27 > 1.
Consequently,

T
0< Tg) = O <= x
fn( 0) 1+x701 0 gn( O)

o0
We know that, Z gn (o) is a convergent series. Hence, by the comparison test,
o n=1
Z fn(z0) converges for 0 < zy < 1.
n=1

Case IV. If zy = 0, the series converges to 0.

Case V. Now, assume that —1 < zg < 0. We have:

1
ni1 s ‘ 1+ af 2ol ’ 1+ zy
e . - 1‘0 M
, 1 1
an zy L+apt 1425t
So,
. Ap+1 . 1 + IO
lim | ——=| = |zo| - lim T
n + )
Since lim|a,,| = | lim a,,|, we have:
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. |ant1 1+ limazy
lim|——| = |zg| - | ————| = |z0| < 1
" | 0| ’1+1ima:g+1 | 0|
Hence, by the ratio test, Z an converges absolutely over —1 < zp < 0.
n=1
2" + ™ 1
©) Z 3 "7 73
Proof.
Case I. Fix x = zg. Assume that ¢ > 1. Then,
2" + 2" + 2" + 1 1
0 < fnlxo) = 0 < 0_ 0 - — 4 —

14 3mzy = 1+ 2" 2nxg T 2n

1
Since (1/xp) < 1, it follows that Z —n + on converges.
— %o 2"

o0

By the comparison test, Z fn(zo) converges.

n=1

Case II. Assume that .

[Abbott 6.4.5] (a) Prove that:

is continuous on [—1, 1].
Proof.

Assume that z € [—1, 1]. We have:

"
n2

1
ORI

|hn (2)] = {since |z|" < 1}

<

n n

1
Let M,, = ol We know that, Z M, is a convergent series. By the Weierstrass

n=1

M-Test, Z hy () converges uniformly on [—1,1]. Further, since each h,(z) is

n=1
continuous on [—1, 1], by the term-by-term continuity theorem, h(x) is contin-

uous on [—1,1].
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(b) The series

S 2 oz gt

converges for every x in the half-open interval [—1,1) but does not converge
when x = 1. For a fixed zy € (—1, 1) explain how we can still use the Weierstrass
M-Test to prove that f is continuous at xy.

Proof.

Let xy be an arbitrary point in (—1,1) and let ¢ < 1 be such that the interval

(_1’0)

| fu(zo)] = Lze=
<zo|”
Define:
M, = |x0|n

o0
We know that, Z M, converges, since |zo| < 1. Hence, by the Weierstrass M-

n=1
o

Test, Z fn converges uniformly at x¢. Since each f,(x) is continuous at z, by
n=1
the Term—by—term continuity theorem, f (x) is continuous at xg.

[Abbott 6.4.6] Let

1 1 1 1 1

f(x)zgix—kl+x+27m+3+a§+47'”

Show that f is defined for all z > 0. Is f continuous on (0,00)? How about
differentiable?

Proof.
Well-definedness of f.

Define




Then,

f@) = falz)
n=0

Let 2 be an arbitrary point, such that zo > 0. Fix z = .

We have:

1 1 1

—_— > > >...>0

IO_I0+1_CCO—|—2_ -
Moreover,

1
lim =0
To+n

o0
By the Alternating Series Test for convergence, Z fn(z) converges pointwise

n=0
onz > 0.
Continuity of f.

Let [a, 00) be any interval such that ¢ > 0. Let us pair of the terms of f and
write:

_ (1 1 1 1 1 1
1@ = (3= 5) + (5~ ) + (5 — ) + o
Infinite addition is associative, as long as we have conditional convergence.

Define:
=L 1 B 1
i) = (x+2n) (x+2n+1) (z+2n)(z+2n+1)
Then,
f@) =Y gnlx)
n=0
1
Now, 90(1') = m = My. Moreover,
1 1
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for all n > 1. Since Z M,, converges, by the Weierstrass M-Test, Z gn(T)
n=0 n=0
converges uniformly on [a, o) for any a > 0.

Since each g, () is continuous for z > 0, by the Term-by-term continuity the-
orem, f(x) is continuous on [a,c0), where ¢ > 0. Thus, f is continuous on
(0, 00).

Differentiability of f.

We have:

fil@)=(-1)"- (_ 1 ) _ -y

@+np) " (@tn)?

Again let [a, 00) be an interval such that a > 0 is arbitrary. Now,

1
faf@)] < — = My
and
, 1
fa@)] < =5 = M,

oo
Since Z M,, converges, by the Weierstrass M-Test, Z ), is uniformly conver-
n=1

gent on [a, 00). Since each f, is differentiable, and Z fn(z) converges point-

wise on [a, 00), by the Term-by-Term differentiability theorem, f(x) = Z fnl(x)
n=0
is differentiable and further f’(z) = Z fl(z).
n=0

[Abbott 6.4.7] Let

>, sin kx
fla) =3 2

k=1

(a) Show that f(z) is differentiable and the derivative f’(z) is continuous.
Proof.

Let us recall that, the infinite series
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1
D
n=1

converges if and only if p > 1. If p > 1, we have:

Consider the Cauchy series:

22%2% = by + 2y + 4by + . ..
n=0

which is:

112202 (2n)P ZHZ:O <2p—1>

< 1,thatis 27~ ! > 1, which means

The latter series converges if and only if =

o0
p—1 > 0orp > 1. By the Cauchy condensation test, if the series Z 2"bgn

n=0
0o

converges, it implies that Z b, converges.

n=1
Uniform Convergence of fi(z).

We have:

1
=8

sin kx

0 < [fr(zo)l = | =5~

:Mk

We know that Z Mj, converges and hence by the Weierstrass M -Test, Z fr
k=1 k=1
converges uniformly on R.

Uniform Convergence of f(z).

We have:
cos kx
/i:(x) = k2
And,
cos kx 1
0< 1@ = || < 5 =G




oo

We know that, Z C, is convergent. Hence, by the Weierstrass M-Test, Z 1
k=1

converges uniformly on R.

Since Z f1. converges uniformly on R, Z fx converges uniformly on R and
each fj is differentiable, by the term by term differentiability theorem, f(x) is
differentiable and further f’(x Z fi.(z) forall z € R.

Moreover, since each f; is continuous on R, by the term-by-term continuity
theorem, f'(z Z f7.(x) is continuous on R.

(b) Can we determine if f is twice-differentiable?
Proof.

We have:

It is not possible to determine if f is twice differentiable.

[Abbott 6.4.8] Consider the function

flz) = Z sin(z/k:)

k=1

Where is f defined? Continuous? Differentiable? Twice-differentiable?
Proof.

Well-definedness.

Fix x = zy and consider the absolute value series:

>

k=1

sin( :vo/k: '

We have that:

sin(mo/k)’ < [zo/k| _ |zol

k ko k2
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sin(zo/k)
k

oo
: Lol . . L
Since E |k—2| is a convergent series, by the comparision test, E is

k=1

convergent. By the Absolute convergence test, Z sin(zo/k)

k=1

also converges.

Consequently, f is defined on R.
Uniform Convergence and continuity.

Let z € [-1, 1]. Define M, as:

0<

sin(x/k) < |z /K| < 1
k -k Tk
Since Z Mj, is a convergent series, by the Weierstrass M -Test, Z fr converges

uniformly on [—1, 1]. Since each fj, is continuous on [—1, 1], by the term-by-term
continuity theorem, f is continuous on [—1, 1].

Differentiability.
We have:
cosz/k
Define C}, as :
cosz/k 1
0= ‘ <52

Since Z C, is convergent, by the Weierstrass M -Test, Z /7, is uniformly con-
vergent on R. Z fr is convergent pointwise on atleast one point in [—1,1].
Each f;, is differentiable on R. Hence, by the term-by-term differentiability the-
orem, f is differentiable on R and f'(z) = Z f1(z) for all z € R. In turn, this
implies f is continuous on R.

Twice Differentiability.
We have:
sinxz/k
l;/(x) = - k3
Define Dy, as:
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0< ‘Smx/k‘ < 1

KTk
Since Z Dy, is convergent, by the Weierstrass M -Test, Z f# is uniformly con-

vergent on R. Z 1. is convergent pointwise on atleast one point in R. Each f},

is differentiable on R. Hence, by the term-by-term differentiability theorem, f
is twice-differentiable on R.

In fact, f is infinitely differentiable.

[Abbott 6.4.9] Let

M) =Y

n=1

(a) Show that h is a continuous function defined on all of R.
Proof.
Since 22 > 0, we have that:

1

< = Mn

1
n?

By the Weierstrass M -Test, since Z M,, converges, it follows that Z h,, con-

verges uniformly on R. Since each h, () is continuous on R, by the term-by-
term continuity theorem, h is continuous on R.

(b) Is h differentiable? If so, is the derivative function 4’ continuous?
Proof.
We have:

2z

(x2 + n2)?

Power Series.

It is time to put some mathematical teeth into our understanding of functions
expressed in the form of a power series; that is functions of the form:

o
fz) = Zanl"” =ag + a1z + a2z’ + azaz® + ...
n=0
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The first order of business is to determine the points = € R for which the result-
ing series on the right-hand side converges. This set certainly contains x = 0
and as the next result demonstrates it takes a very predictable form.

oo
Theorem 6.5.1. If a power series Z anx™ converges at some point zp € R, then

n=1

it converges absolutely for any x satisfying |z| < |zo|.

Proof.

o0
If Z anx(y converges, then (a,xj) — 0. Since convergent sequences are bounded,
n=0
(anzq) is a boundd sequence. Let M > 0 and satisfy |a,z(| < M foralln € N.
If x € R satisfies |z| < |z then:

T n T n
lanz™| = |anxf]| - ’ <M|—
Zo Zo
But notice that:
oo T n
> M=
n=0 Zo

is a geometric series with the ratio
Lo

< land so it converges. By the Compar-

ison Test, Z anx" converges absolutely. If a series converges absolutely, then

n=0
oo

it also converges conditionally. Hence, Z anz™ converges for all |z| < |zg].

n=0

The main implication of theorem 6.5.1 is that the set of points for which a given
power series converges must necessarily be {0}, R or a bounded interval cen-
tered around 2 = 0. Because of the strict inequality in theorem 6.5.1, there
is some ambiguity about the endpoints of the interval, and it is possible that
the set of convergent points may be of the form (—R, R), [-R, R), (—R, R] or
[-R,R].

The value of R is referred to as the radius of convergence of a power series, and
itis customary to assign R the value 0 or co to represent the set {0} or R respec-
tively. Some of the standard devices for computing the radius of convergence
of a power series are explored in the exercises. Of more interest to us here,
is the properties of functions defined in this way. Are they continuous? Are
they differentiable? If so, can we differentiate the series term-by-term? What
happens at the endpoints?
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Establishing Uniform Convergence.

The positive answers to the preceding questions, and the userfulness of power
series in general, are largely due to the fact that they converge uniformly on
compact sets contained in their domain of convergent points. As we are about
to see, a complete proof of this fact requires a fairly delicate argument attributed
to the Norwegian mathematician Niels Henrik Abel. A significant amount of
progress, however, can be made with the Weierstrass M -Test.

oo
Theorem 6.5.2. If a power series Z anx™ converges absolutely at a point z,

n=0
then it converges uniformly on the closed interval [—c, ¢], where ¢ = |zg].

The proof is requested in Exercise 6.5.3.

For many applications, theorem 6.5.2 is good enough. For instance, because any
z € (—R, R) is contained in the interior of a closed interval [—¢, ¢] C (=R, R), it
follows that if a power series is convergent on an open interval, then

(1) It converges absolutely on the closed interval [—c, c] by theorem 6.5.1.
(2) It follows that it converges uniformly on the closed interval [—c¢, c]
(3) By the term-by-term continuity theorem, it is continuous on [—c, ¢|

Since it is continuous for any closed interval in (—R, R), it is continuous on
(=R, R).

But, what happens if we know that a series converges at an endpoint of its inter-
val of convergence? Does the good behavior of the series on (— R, R) necessarily
extend to the endpointz = R?

If the convergence of the series at + = R is absolute, then we can again rely
on theorem 6.5.2, to conclude that the series converges uniformly on the set
[—R, R]. The remaining open question question is what happens if a series con-
verges conditionally ata point x = R. We may still use Theorem 6.5.1. to conclude
that we have pointwise convergence on the interval (—R, R], but more work is
needed to establish that we have uniform convergence on compact sets contain-
ingz = R.

Abel’s Theorem.
oo
We should remark that if the power series g(z) = Z anx™ converges condi-
n=0
tionally at z = R, then it is possible for it to diverge at x = —R. As a counterex-
ample, let:
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(o)
Z gn () converges at x = 1, but diverges at = = —1. To keep our attention
n=1

fixed on the convergent endpoint, we will prove uniform convergence on [0, R].
The first step in the argument is an estimate that should be compared to Abel’s
test for the convergence of series developed back in chapter 2. (Exercise 2.7.13).

Lemma 6.5.3 (Abel’s Lemma). Let b,, satisfy by > by > b3 > ... > 0 and Z an,

n=1
be a series for which the partial sums are bounded. In other words, assume that
there exists A > 0 such that

lay +as+...+a,| <A
for all n € N. Then, for all n € N, we have:

la1by + azbo + ... + apb,| < Aby

Proof.

Let s, = a1 + a2 + ... + a,. Using the summation-by-parts formula derived in
the exercise 2.7.12, we can write:

Z arbr = spbpy1 + Z sk (be — brs1)
=1 =1

Thus,

> ket arbi| = [snbnys + 2 p_y sk (bk — i)

< |8nllbntt] + 1>y sk(br — brt1)| {Triangle Inequality }
< Isnllbnsa| + 35—y [kl (Br — brsa)]|

< Abpgr + Y g g A(bg — bigr)

= Abpi1 + (Aby — Abg + Aby — Abg + ... + Ab, — Abpiq) {Telescopic Sum}
= Ab,

o0
Hence the sequence of partial sums of the product series Z anby, is bounded.

n=1

It is worth observing that if A were an upper bound on the partial sums of
Z |ay| (the absolute value series), then the proof of lemma 6.5.3 would be a
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simple exercise in the triangle inequality. The point of the matter is that because
we are only assuming conditional convergence, the triangle inequality is not
going to be of any use in proving Abel’s theorem, but we are now in possession
of an inequality we can use in its place.

Theorem 6.5.4 (Abel’s Theorem.) Let g(x) = Z anx™ be a power series that

n=0
converges at the point z = R > 0. Then, the series converges uniformly on the
interval [0, R]. A similar result holds if the series converges at z = —R.
Proof.

To set the stage for an application of lemma 6.5.3, we first write:

g(x) = iana?" = ianR” <%2)

n=0 n=0

Let € > 0. By the Cauchy Criterion for the Uniform Convergence of the series
(Theorem 6.4.4), we will be done, if we can produce an N such that for all
n >m > N and for all z € [0, R], we have:

|gm+1(x) +... +gn(m)| <€
that is:

m—+1 n
;m+1)+...+anRN(§{">‘<e (4)

am+1Rm+l (

o0

Because we are assuming that E an R" converges, the Cauchy criterion for an

n=1
infinite series of real numbers implies that:

(AN(e) € N)(¥n > m > N) (lams1 R + a, R"| < %)

Now, fix z € [0, R] and fix the index m € N.

o
Consider the partial sums of Z am+1R™ 1. The sequence of partial sums
Jj=m+1
is bounded by €/2. Moreover,

(xm+1 an
—— ] 2>...2 | =20
Rm“)_ _<R”)_

form a non-negative monotonically decreasing sequence.
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Hence, applying Abel’s lemma, we have:

wm-&-l

- il oz € (x\mtl
k:zwa’”“R (Rm+1>+”'+a"R (z?) <3 (7)<

Since m > N was arbitrary and « € [0, R] was arbitrary, this holds true for all
n>m > N and for all z € [0, R].

Consequently, by the Cauchy criterion for the uniform convergence of series of
o

functions, Z apx" converges uniformly on the interval [0, R].

n=0

The Success of the Power Series.

An economical way to summarize the conclusions of theorem 6.5.2 and Abel’s
theorem is with the following statement:

Theorem 6.5.5. If a power series converges pointwise on the set A C R, then it
converges uniformly on any compact set K C A.

Proof.

Let K C A be an arbitrary compact set in A. A compact set contains both it’s

maximum z; and a minimum xy, which by the hypothesis must be in A. Since
oo

the power series Z anx™ converges at x = x1, by the Abel’s theorem, the series

n=1
converges uniformly on [z¢, 21]. Hence, it converges uniformly on K. Since K
was arbitrary, the series converges uniformly VK C A, where K is a compact
set.

oo

Let cbe an arbitrary point in the domain of convergence, A, of the series Z anz".
n=1

We can always construct a compact interval containing ¢. Hence, the power

series is uniformly convergent on this compact interval. By the term-by-term

o0

continuity theorem, g(z) = Z anx™ is continuous on this compact interval
n=1

and therefore at c. Since c was arbitrary, g is continuous for all ¢ € A. Thus, a

power series is continuous at every point at which it converges.

To make an argument for differentiation, we would like to appeal to the Term-

by-Term differentiability theorem. However, this result has a more involved set
o

of hypotheses. In order to conclude that a power series Z anz™ is differen-

n=0
tiable, and that term-by-term differentiation is allowed, we need to know be-
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forehand that the differentiated series Z na,z""* converges uniformly.

Theorem 6.5.6. If Z anx™ converges for all z € (—R, R), then the differentiated

n=0
oo

series Z na,z™* converges at each z € (—R, R) as well. Consequently, the

Conver%:eilce is uniform on compact sets contained in (- R, R).

Proof.

Exercise 6.5.5.

We should point out that it is possible for a series to converge at an endpoint

> n
x
x = Rbut for the differentiated series to diverge at this point. The series Z —
n
n=1
has this property at « = —1. On the other hand, if the differentiated series does
converge at the point x = R, then Abel’s theorem applies and the convergence
of the differentiated series is uniform on compact sets that contain R.

With all pieces in place, we summarize the impressive conclusions of this sec-
tion.

Theorem 6.5.7. Assume that:

fz) = Z anx"

n=0

converges on an interval A C R. The function f is continuous on A and differ-
entiable on any open interval (—R, R) C A. The derivative is given by:

oo
flx) = Z napz"
n=1

Moreover, f is infinitely differentiable on (—R, R), and the successive deriva-
tives can be obtained by term-by-term differentiation of the appropriate series.

Proof.

The details of why f is continuous have already been discussed. Theorem 6.5.6
justifies that the differentiated series converges uniformly on any compact set
in (—R, R). Hence, by the Term-by-Term differentiability theorem, f is differ-

entiable and f'(z) = Z na,z" L.
n=1
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A differentiated power series is a power series in it’s own right, and applying
theorem 6.5.6 implies that, although the series may no longer converge at a
particular end-point, the radius of convergence does not change. By induction
then, power series are differentiable an infinite number of times.

[Abbott 6.5.1] Consider the formula g defined by the power series

2?2 23 ozt 2P

g(x):x—j—l-?—Z—&-g—...

(a) Is g defined on (—1,1)? Is it continuous on this set? Is g defined on (-1, 1]?
Is it continuous on this set? What happens on [—1, 1]? Can the power series for
g(x) possibly converge for any other points |x| > 1? Explain.

Proof.

Fix zg € (—1,1). Define:

n

T
a, = -4
n
oo
Then, Z(—l)”“an is an alternating series. We have, a1 > a2 > ... > 0 and
n=1

(an) — 0. Hence, by the alternating series test, Z(*l)”ﬂan converges on

(—1,1). Hence, g is defined on (—1,1). Since a power series is continuous on
it’s domain of convergence, it is continuous on (—1, 1).

o (_1)n+1
is convergent, g is defined at x = 1. Hence, g is continuous

oo
1
Since g — is divergent, g is not defined at v = —1.
n

n=1
The power series cannot converge for any other points || > 1. Consider an
arbitrary point o, such that |zo| > 1. We have:

|zo|™ _ |zo|™

— > n/2
|yn| n - |J]0|”/2 = |330|
(7 1)n+1xn
Consequently, (y,) = L2 "0 s an unbounded and hence divergent se-
n
oo (—1)n+15€77'
quence. So, (y,) does not converge to zero. Hence, by the nth term test Z ~—r 90
n
n=1

is divergent. Since, ¢ was arbitrary, this is true for all |z| > 1.
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(b) For what values of z is ¢'(z) defined? Find a formula for ¢'(x).
Proof.

By the theorem on the convergence of a power-series, if a power series converges
on A, it is continuous on A and differentiable on all (—R, R) C A. Thus, ¢’ is
defined on (—1,1). Also, ¢’ is given by the term-by-term differentiation of g:

g (z) = Z(fl)"*lxnfl =l-z+a?—a2>+...

n=1
[Abbott 6.5.2] Find suitable coefficients (a,,) so that the resulting power series
Z anz™ has the given properties, or explain why such a request is impossible.

(a) Converges for every value of 2 € R.

Consider the power series for the function

2 ZC3 ZC4

e r
The radius of convergence of this infinite series is R.

Fix = x¢. We have:

()
. (n+1)!
= lim |~——<%

P 2
Lo
n!

. Ty . . .
Hence, by the ratio test, E — is a convergent series. Since x( was arbitrary,
n

a
ntl =0=r<1

an

= lim‘xo ’
(n+1)

this must be true for all z € R.

(b) Diverges for every value of € R.

Proof.

This request is impossible. Any power series converges at z = 0.
(c) Converges absolutely for all z € [—1, 1] and diverges off this set.
Proof.

Consider the series
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e} xn
g9(z) :Zﬁ
n=1

This power series converges at 1. Moreover, if x = —1:
[GRYS P
0= n? = n2
Hence, the series converges absolutely at = 1 and « = —1.

If a power series converges at one of the end-points, z = 1, it converges abso-
lutely for all |z| < 1. Thus, it converges for all « € [—1, 1].

The above power series diverges for |z| > 1. Fix |z¢| > 1. Then,

|zo|" _ n

n? = n?
l,n
Consequently, the sequence <—g) is unbounded. Unbounded sequences are
n

divergent. So, it does not converge to zero. Hence, by the nth term test, it di-
verges for all |z| > 1.

(d) Converges conditionally at z = —1 and converges absolutely at 2 = 1.

This request is impossible.

oo
We are given that Z anx" is conditionally convergent at + = —1. Hence, it is
n=1
o0
convergent at z = —1, but not absolutely convergent. So, Z |an(—1)"] is not
n=1

o0 o0

convergent. That is, Z |a,| is not convergent. So, Z anz™ is not absolutely
n=1 n=1

convergent at x = 1.

(e) Converges conditionally at both z = —1 and « = 1.

Consider the series

e 2n

>

n=1

The series converges conditionally at bothz = —1and z = 1.

[Abbott 6.5.3] Use the Weierstrass M-Test to prove the theorem 6.5.2.
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Theorem. If a power series converges absolutely at a point z, it converges uni-
formly on the interval [—c, ¢] where ¢ = |zg].

Proof.

Define

fl@) =" falz) =) ana"
n=1 n=1

Consider x € [—|zo], |zo]]. Then, |z| < |zo|. The power series of f(z) converges
oo

absolutely at ¢ = x¢. Thus, Z lanz( | is convergent. We have:

n=1
0 < [fn(@)] = lanz"| = |an| - 2" < |an| - 20" = My

[e ) o0
Since Z M, = Z lanxq| is convergent, by the Weierstrass M-Test, it follows

n=1 n=1

that Z fn(z) converges uniformly for all x € [—c, ¢] where ¢ = |zg].
n=1

[Abbott6.5.4] (Term-by-term Anti-differentiation). Assume that f(z) = Z anz"”
n=0
converges on (—R, R).

(a) Show that:

= a
F(JJ)ZZ n_gntl
n:On—i—l

is defined on (—R, R) and satisfies F'(z) = f(z).
Proof.

R — |zo

oo
3 . Then, Z anty converges at the point

Fixzg € (—R,R). Let 6y =

n=0

o0
¢ = xo + . Thus, Z ant, converges absolutely for all |x| < |c¢|. Hence,

n=0
oo
Z anx, converges absolutely at z.
n=0
Define
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Up = AnT)

o0
Then, E |uy| is a convergent series.
n=0
Define
o
V. =
"on+1

Then,

ol = [or] = [vg| > ... >0

By Abel’s test of convergence for an infinite series of real numbers, the product

oo
series E un vy, converges absolutely at z¢. Since ¢ was arbitrary, this must be

n=0

true for all z € (—R, R).

o0
If a power series F(z) = Z F,,(x) converges on A, then it is continuous on A

n=0
and differentiable on all intervals (—R, R) C A. And, further F'(x) is given by
the term-by-term differentiation of F'(x). Thus,

Fl(z) =) ana" = f(x)
(b) Anti-derivatives are not unique. If g is an arbitrary function satisfying

g'(x) = f(z) on (—R, R), find a power series representation for g.

[Abbott 6.5.5] (a) If s satisfies 0 < s < 1, show that ns" ! is bounded for all
n>1.

Proof.

LetC = % Then, C > 1. Consider:

lim ns" ' = lim
n— 00 n—o00 Cnfl

This is of the form f. Applying the L'hopital’s rule:
00

1
lim ns"~' = lim o lim 0

n—o00 n—oo O'n—1 n—oo CM—1 IOgC -
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This is also apparent by the fact, that an exponential term grows much faster
than a polynomial term.

Since convergent sequences are bounded, it implies that ns" "' is a bounded
sequence.

(b) Given an arbitrary « € (—R, R), pick t to satisfy |z| < ¢t < R. Use this start
to constuct a proof for the theorem 6.5.6.

Proof.
Let z € (—R, R) be arbitrary. We can always pick ¢ such that 0 < |z| < ¢ < R.

Define

We have:

n—1
0 < [ful(@)| = [napz""' < n- (@) I

Since 0 < |z|/t < 1, the quantity n(|z|/t)" " is bounded. So, we can write:

0 < [fu(@)] = [napa™ ) < M - fay|t"

Moreover, since Z apx" is convergent for all z € (—R, R) it is absolutely con-

o0
vergent at ¢t. So, E |a,, |t" is a convergent series.

n=1

o0

From the properties of the infinite series for real numbers, if Z ar = A, then

n=1

o0 oo o0
an |t"
Z car, = cA. Consequently, for a fixed ¢, the series M Z % =M Z |a, |t
n=1 n=1 n=1
is also convergent.

o0
By the comparison test, Z Ina,z""'| is convergent.

n=1

As z was arbitrary, Z na,z™ "' is absolutely convergent for all = € (—R, R).

n=1

[Abbott 6.5.6] Previous work on the geometric series justifies the formula:

226



1
17:1+33+x2+:1:3+..., forall |z| < 1
— X

Use the results about the power series proved in this section to find values for
o

o 2
Z 2% and Z ;L—n The discussion in section 6.1 might be helpful.
n=1

n=1

Proof.

The power series

o0

oo
f@) =3 fala) = 3 ana”
n=1 n=1
is continuous on its domain of convergence A and it is differentiable on all open

intervals (—R, R) C A. Moreover, the derivative of the power series is given by
the differentiated series:

fla) =Y frl@) =" ana""
n=1 n=1

Let

1 = .
g(:ﬂ)fl_xfn;m

where |z| < 1.

Then,
§(@) = = 3 et
-z 5
Multiplying both sides by z, we have
x SN
1—z2 > n=
n=1

This is also a power series with the same domain of convergence. The derivative
of this power series is given by:
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(1-2)’+w-2(1-a) o oo

(I—2)* =2p=1"M
O(If);;gx = (11—+;;E)3 =Y nfa !
Umot = Loz nla”
Hence,
> = = tmE =
n=1
and
S _ 020412 13
L gn (1—1/2)3 22

[Abbott 6.5.7] Let Z anx" be a power series with a,, # 0, and assume that

anJrl
A

L = lim

n— oo

exists.

(a) Show that if L # 0, then the series converges for all z in (—1/L,1/L). (The
advice in exercise 2.7.9 may be helpful).

Proof.
Fix 9 € (=1/L,1/L) be an arbitrary point.
The absolute value ratio of the successive terms of the power series at the point

xo is given by:

n+1
(p41T Ap41

n
anTg

|0

n

Passing to the limits, as n — oo, we have:

. An+1
lim |=2F

n— oo

IfL #0,then0 < L-|xg| =7 < 1.

ol =L - |zo| < 1

o
By the ratio test for the convergence of an infinite series of real numbers, Z an Ty

n=1
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converges. Since, x( was arbitrary, this holds true for all z € (-1/L,1/L). Con-

sequently, Z ap ™ converges.

n=1
(b) Show that if L = 0, then the series converges for all € R.

Proof.

An41

We are given that L = 0. So, the lim P

Fix an arbitrary « = z¢ and consider the series E anxj. Then, we have:

n+1
Gnt1Tg

n
Lo

An+41

n

Hence, by the ratio test, E anxy is a convergent series.

Since z = ¢ was arbitrary, E anx™ converges for all z € R.

(c) Show that (a) and (b) continue to hold if L is replaced by the limit

a
L' =lims, where s, = sup{ LAY 2 > n}
ar
Proof.
. 1 1
Fix Xo € <_ﬁ’f>
Define
k+1
Akt1T, a a
snzsup{ e :an}zsup{"““ feol b >} = aolsup | %51+ & >
arx§ ar
and
n+1
Tn = - \CU()|
n
We know that:
Tn < Sp

229



[Abbott 6.5.8] (a) Show that power series representations are unique
have:

oo oo
E anac":E b,x™

n=0 n=0

for all z in an interval (—R, R), prove that a,, = b, foralln =0,1,2, ...
Proof.

Define:

f@) =" falz) =D anz™ =Y bua"
n=0

n=0 n=0

Subtracting the two power series, we have:

o o
E anx” — E b =0
n=0 n=0

Thus, the power series

Z(an —bp)z" =0

n=0

converges to the constantly zero function g(z) = 0 for all z € (—R, R).

At the point z = 0, we must have:

(ao —bo) =0

. If we

The differentiated series also converges to the constantly zero function g(z) = 0

forall z € (—R, R). Hence,

Zn(an —b,)x" =0
n=1

At the point z = 0, we must have:

(a1 —bl) :0
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Again, it’s differentiated series converges to the constantly zero function g(z) =
0 for all x € (—R, R). Hence,

o0

Z n(n —1)(a, —by)z" 2 =0

n=2

At the point = 0, we have:

2! (a2 —bg) =0

Continuing in this fashion, a,, = b, Vn € N.

(b) Let f(z) = Z an,z™ converge on (—R, R) and assume that f'(z) = f(z) for

n=0
all z € (—R, R) and f(0) = 1. Deduce the values of a,.

Proof.
We have:
oo
flz) = Zanx" =ag+ a1z +agx® + ...
n=0
and

f(z) = Z nanz” "t = ay + 2asx + 3azx® + ...
n=1

Clearly, since f(z) = f'(z) for all z € (—R, R), we must have:

_a1_1

2= 5 =5
_ag_l

=3 =3
1
an—*'
n.

Moreover, since f(0) = 1, it follows that ap = 1. Hence,

2 SCS

A
fl@)=ldao+ 5+ +.
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[Abbott 6.5.9] Review the definitions and results from secti  on 2.8 concern-
ing the products of series and Cauchy products in particular. At the end of

section 2.9, we mentioned the following result: if both Z a, and Z b, con-

verge conditionally to A and B respectively, then it is possible for the Cauchy
product,

Zdn where  d,, = agby, + a1bn_1 + ...+ anbo

to diverge. However, if Z d,, does converge, then it must converge to AB. To
prove this, set

fl@) = Zanx”, g(z) = an:ﬂ" and h(z) = Zdn;ﬂ"

Use Abel’s theorem and the result in exercise 2.8.7 to establish this result.
Proof.

[Abbott 6.6.1] The derivation in the example 6.6.1 shows the Taylor’s series
for arctan(z) is valid for all x € (—1,1). Notice, however, that the series also
converges when = 1. Assuming that arctan(z) is continuous, explain why
the value of the series at x = 1 must necessarily be arctan(1). What interesting
identity do we get in this case?

Proof.
Let
> I'B I’5 I’7
an(x):x—§+€—7+...
n=0
At x = 1, the series
1 1 n 1 1 n
3 5 7 7

is convergent by the alternating series test. Thus, Z fn(z) is well-defined at

n=0
rz=1.

Both the functions Z fn(x) and arctan(x) agree for all values of z € (—1,1).

n=0
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Since a power series continuous on its interval of convergence, it follows that

Z fn(x) is continuous on (—1, 1].
n=0

Passing to the limits on both sides, we may write:

o0
lim g fn(z) = lim arctan =
z—1 0 z—1

n=

Since arctan(z) is continuous at 1, we get the following identity:

1 1 1
1*§+57?+:arc‘can(l):%

[Abbott 6.6.2] Starting from one of the previously generated series in this sec-
tion, use the manipulations similar to those in example 6.6.1 to find the Taylor
series representations for each of the following functions. For precisely what
values of z is each series representation valid?

(a) zcos (z°).
Proof.
Consider the Taylor’s series expansion for sin(xz). We have:

Sin(x)zz:ana:":x—a—i—g—ﬁ—i—...

We know, by the Lagrange’s remainder theorem, that the above Taylor’s series
converges uniformly to sin(z) over any interval of the form [—R, R].

By Theorem 6.5.7, the above power series is continuous on R and infinitely dif-
ferentiable on R.

We have:

Applying the theorem on the continuity and differentiability of a power se-
ries(Theorem 6.5.7) to the above result, we have:

Thus,
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56'5 1‘9 1,13 .1‘17

xcos(wQ):m—§+1_ﬁ+§_

(b) 2/ (1 +422).
Proof.

We know that:

1

=l4az+22+23+2*. ..
1—=x

forall |z| < 1.

Replacing = by —42?, we get:

1
1+ 422

By the theorem on continuity and differentiation of a power series (Theorem
6.5.7), the above power series is continuous on (—1,1) and differentiable on

(-1,1).

=1— 42 + 162* — 642° + 2562% + ...

We have:
8z 3 5 7
+ 4z

So,

x 3 5 7

+4x
forallz € (—1,1).
(c) log (1 +2?)
Proof.
We know that:
1 2 3
— =l4+ax+z°+2°+...

forall |z| < 1.

By the Term-by-Term Anti-differentiation theorem, we have:
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dx 2 oz 2t
/ =—In(l—-2)=z+ —+—+—+...

1—2z 2 3 4
for all |z| < 1.
Thus,
4 6 8 4 6
I (1 z:<_27_£ z _ )_2_1 = _
n (1+ 27 e -ty et

[Abbott 6.6.3] Derive the formula for the Taylor coefficients given in the theo-
rem 6.6.2.

Proof.
Let f(z) have the power series representation:
flx) = ag+ a1x + asx® + asz® + agxt + .+ aa” + ...
for all 2 belonging to some neighborhood (—R, R) centered at zero.
Hence, at x = 0, we have:
ag = f(0)

By the theorem on continuity and differentiability of the power series (Theorem
6.5.7), we have:

flx) =a + 2a0x + 3azx® + ...+ naz" ...

forallz € (—R, R).

Hence, at x = 0, we have:

ayp = f/(O)

Since f'(x) is in its own right a power series, by the theorem on continuity and
differentiability of the power series (Theorem 6.5.7), we have:

() =2 -Dag+ (3-2azzx+...+n-(n—1)-apz" >+ ...
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forallx € (—R, R).
Hence, at x = 0, we have:
)
2=

Since f”(x) is in its own right a power series, by the theorem on continuity and
differentiability of the power series (Theorem 6.5.7), we have:

fO@)=0B-2-Dag+...4+n-(n—1)-(n—2) - apz" >+ ...
forallz € (—R, R).

Hence, at x = 0, we have:

0

3 3!

Continuing in this fashion, we have that:

()

n!

an,
This closes the proof.

[Abbott 6.6.4] Explain how Lagrange’s remainder theorem can be modified to
prove that

Proof.

We can modify Lagrange’s remainder theorem, such that the result holds, if f
is (N + 1) times differentiable on the interval [0, R].

Thus, there exists 0 < ¢ < x < R, such that:

(N+1)
En(z) = JEN n f;)xNH

We have:
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DYV

Ev@) = argvaw s oi®
1
|EN(x)‘ < m

{sincel+c >1,z <1}

Thus, the sequence of partial sums of the Taylor’s series (Sy (z))%~o converges
uniformly to log(1 4 x) on the interval [0, 1].

Consequently,

TR S U U IR P
23 45 6 %

[Abbott 6.6.5] (a) Generate Taylor’s coefficients for the exponential function
f(z) = e” and then prove that the corresponding Taylor’s series converges uni-
formly to e” on any interval of the form [-R, R].

Proof.

We have:

By the Taylor’s formula:

So, the Taylor’s series for e” is:

n 2 3
!

o0
e N2 zZ
e 7;71 —1+x+2!+3!+...

Let

an+1
Qn

. n!
= lim

L= i _  lim

n— 00

X ..n
x
Since L = 0, by the ratio test, the power series E — converges absolutely for
n

n=0

allz € R.
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Pick an arbitrary point x = R. Then, by theorem 6.5.2, it converges uniformly
on the closed interval [—R, R).

(b) Verify the fomula f'(x) = e”.

Since the power series converges for all x € R, by the theorem on continuity
and differentiability of power series, we have:

2z 3x? 4 z? a2l
/ _ - - e _ - - _ T
fl@)=1+ 7+ 5+t =ltat gt =e
(c) Use a substitution to generate the series for e~ *, and then informally calcu-
late e” - 7" by multiplying together the two series and collecting the common

powers of x.
Proof.

We have:

2 CES £U4

o T E T

Multiplying the series for e~ with e”, we get:

e =1—x2+

et =(l-o+G -4 ) (l+o+g+5+..)
2 2 3 3 3 3
—lto-ot G+ - E-H-F+H+
=1
[Abbott 6.6.6] Review the proof that ¢'(0) = 0 for the function:
(@) e/ forx #£0
€T) =
g 0 forz =0

introduced at the end of this section.

(a) Compute ¢'(z) for x # 0. Then use the definition of the derivative to find
1"
9°(0).

Proof.
We have:
2 2
/ _ —1/z
g'(z)= ge /
By definition,
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g"(0) = limg o2 (Ig)?_g 0
g'(z)
4
= liml‘*}O elt/%
. w3~(—4/a:5) , Y
= lim,_,q ey {L'Hospital’s rule, co/oo}

1

. =
=2 hml_>0 elm/ﬁ
2

=lim,_,¢

= 2lim, .0 —%— {LHospital’s rule, co/co}
=,

=2 hml_>0 m

=0

(b) Compute g”(z) and ¢"’(z) for  # 0. Use these observations and invent
whatever notation is needed to give a general description for the nth derivative

g™ (z) at points different from zero.
Proof.

If x # 0, we have:

Jx? [12 13024 6 4 oo
_ —1/z* [12 _ 12 _ 6 4
2 |:z5 z7 z7 + ngl

Our propsition is that, for all # # 0, and for alln € N, ¢ (z) = e 1/ -p(1/x),
where p is some polynomial in 1/z .

(c) Construct a general argument for why ¢ (0) = 0 for all n € N.
Proof.

We proceed by mathematical induction. We know that, g(0) = 0, ¢'(0) = 0,
1
9"(0)=0.

Assume that ™) (0) = 0.
Our claim is that g1 (0) = 0.

We have:
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= lim; 0 /22
Assume that by (z) = 1 Then
N - I‘N . 7
(N+1) o (o~7)
b (0) =limg 0~/
v+
= lim,_.o J:fr/iz {Lhopital’s rule}
* 1
= (N+1) limg iv/:;
(N+1) T M1
= I hmx_>0 m {L hopltal S rule}
3
_ DN /f

L
If N is even, then the limit on the RHS will be eventually reduced to hm i / —L - =
1

1
= lim z - —— = 0. If N is odd, then the limit on the RHS will be eventually

2 z—0 1/582

reduced to hm Syr 0.

Any polynomial in (1/x) is a finite linear combination of the basis functions
(1/z)" and hence the derivative ¢V *1(0) = 0.

By the principle of mathematical induction, g™ (0) = 0 for all n € N.

[Abbott 6.6.7] Find an example of each of the following or explain why no such
function exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor’s series
that converges to g(z) only for z € (—1,1).

Proof.

Consider the infinite series :

l+z+22+22+...

which converges to the function:

forall |z| < 1.
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Pick an arbitrary zp > 1. The nth term of the series is a, = (. Since the
o0 o0

sequence (a,) does NOT converge to zero, the infinite series E an, = E xy
n=1 n=1

diverges. Since x( was arbitrary, this applies for all || > 1.

Since g(x) has a power series representation, it is infinitely differentiable on
(717 1)

(b) An infinitely differentiable function h(z) with the same Taylor’s series as
sin(z) but such that h(x) # sin(z) for all = # 0.

Proof.

This request is impossible. We proceed by contradiction. Assume that there
exists h(z) having the same Taylor’s series as sin(z), but the power series does
NOT converge to sin z for all z # 0.

We have:

forall z € R.

Since the power series is infinitely differentiable for all (—R, R) C R, we can
write:

x?2 ozt S

M) — r¥.r _
h(w)—1—2!+4! 6!+...—cos(x)

By the Term-By-Term antidifferentiation theorem,

satisfies ¢’ (z) = h'(x)

(c) An infinitely differentiable function f(x) on all of R with a Taylor’s series
that converges to f(x) if and only if z < 0.

Proof.

[Abbott 7.2.1] Let f be a bounded function on [a,b] and let P be an arbitrary
partition of [a, b]. First explain why L(f, P) < U(f)? Now, prove Lemma 7.2.6.

Proof.
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Let P be the set of all partitions of the closed interval [a, b]. Fix P € P. We know
that:

L(f,P) <U(f,Q)
(VQ € P).

Since {U(f,Q) : @ € P} is bounded below, by the axiom of completeness,
inf{U(f,Q) : Q@ € P} exists. We can easily construct a sequence of partitions
Q1 C Q2 CQ3C...,suchthat:

ImU(f,@Qn) = mf{U(f,Q) : Q € P} = U(f)

By definition, U(f) is a limit point of the set {U(f,Q) : @ € P}.

By the Order Limit Theorem:

L(f,P) < lim U(f,Qn) =U(f)
Claim. For any bounded function f on [a, ], it is always the case that U(f) >
L(f).
Proof.

We know that, the set {L(f,P) : P € P} is bounded above. By the Axiom
of Completeness(AoC), sup{L(f,P) : P € P} = L(f) exists. We can easily
construct a sequence of partitions P, C P, C P; C ..., such that (L(f, P,))isa
monotonically increasing sequence and

lim L(f, Pn) = L(f)
By the Order Limit Theorem:

L(f) <U(f)
This closes the proof.

[Abbott 7.2.2] Consider f(x) = 1/x over the interval [1,4]. Let P be the parti-
tion consisting of the points {1,3/2,2,4}.

(a) Compute L(f, P), U(f,P)and U(f, P) — L(f, P).

Proof.
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We have:

ZmAx gl 11+12—,+1+,—§+1—E
RATE =g T o AT 4 473 12
1211 3 1 11 22

M Az, =~-+=-=+--2= Za41=242 - - _=
=2 MiAwy 573373 t3tiTe 3T T

Finally,

9 3

(b) What happens to the value of U(f, P) — L(f, P) when we add the point 3
to the partition?

Proof.

We have:
1 2 1 7 14
P =3+ 37173 276 12

and

4 16
P)= -4 -f-d-=gl=Cc=2"
U(f7 ) + -+ =+ 3+ 3 19

1
The difference U(f, P) — L(f, P) decreases to 5

(c) Find a partition P’ of [1, 4] for which U(f, P") — L(f, P') < 2/5.

Proof.
8 11 14 17
Let P’ = {1,3 T E,4}.Wehave:
5 5 5 5) 3 1 1 1 1
/ J— J— - = = J— R
ult, P = <5+8+ +17 5 5+8+14+17
5 5 5 5 3 1 1 1 1
L P/:< _— —_— >'*:* - g A
(£, P) 8+ +17+20 5 8+ +17+20
Thus,
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1 1 3 2

[Abbott 7.2.3] (Sequential Criterion for Integrability).
(a) Prove that a bounded function f is integrable on [a, b] if and only if there

exists a sequence of partitions (P, ),~, satisfying:

n— oo

and in this case:

b
f= lim U(f,P,) = lim L(f, Py)

a n—roo
Proof.
(=) direction.

We are given that the function f : [¢,b] — R is bounded and integrable.

By the theorem on the criterion for integrability, it follows that:

(Ve > 0)(3P)(U(f, P) — L(f, Pc) <)
Pick € = 1. There exists P;, such that:

U(f,P)—L(f,P) <1

1
Pick € = 3 There exists P,, such that:

1
U(fvp2) _L(faPQ) < 5
1
Continuing in this fashion, let € = — (Vn € N). There exists P, such that:
1

1
Now, let € > 0 be arbitrary. If we choose N > —, then for all n > N, we have:
€

U(f,Pn)*L(f,Pn)<€
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Consequently, there exists a sequence (P,);~,, such that:

lim(U(f, Pn) — L(f, P,)) =0
By definition,

b
l/fzuﬁ:Um

(<) direction.

We are given that, f is bounded and that there exists a sequence of partitions
(Py)o2 satisfying:

11mU(f7Pn)_L(fan):0

Our claim is that f is integrable.

Pick an arbitrary € > 0. There exists P. such that:

‘U(pre)_L(faPe) :U(faPE)_L(.ﬂPe) <€

Since € was arbitrary, this must be true for all ¢ > 0. Consequently, by the
theorem on the criterion for integrability, f is integrable.

(b) For each n, let P, be the partition of [0,1] into n equal subintervals. Find
formulas for U(f, P,,) and L(f, P,) if f(z) = . The formula1+2+4+34...4n =
n(n + 1)/2 will be useful.

Proof.
We have:
1 2 -1
Pn:{oafva 7n 71}
n'n n
Thus,
(1 n)l_n(n—i—l)l_n—i—l_l 1
0P = (bt k) = T =B =
and
1+2+3+...n—1 n—1)n n—1 1 1

n2 2n2 2n 2 2n
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(c) Use the sequential criterion for integrability from (a) to show directly that

1
f(z) = z is integrable on [0, 1] and compute / f.
0

Proof.

We have shown, that there exists a sequence of intervals (P, ), ;, where:

Pn:{lzjez,ogs?z}
n

such that
. 1
ImU(f, P,) = 3
and
. 1
lim L(f, P,) = 3
and thus

Consequently, f(z) = « is integrable on [0, 1]. Moreover:

I

[Abbott7.2.4] Let g be bounded on [a, b] and assume that there exists a partition
with L(g, P) = U(g, P). Describe g. Is g necessarily continuous. Is it integrable?

b
If so, what is the value of / qg?

Proof.

Let P = {z¢ = a, 21, z2,,z, = b}. Define:
My, = sup{f(z) : ¢ € [xf—1,2k]}
my, = inf{f(2) : 2 € [w_1, 74}
Since U(f, P) — L(f, P) = 0, we must have:
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n

Z(Mk — mk)Axk =0

k=1
Since Axy, # 0 for all k, we must have My, = my, (Vk € N).

Consequently, g must be constant function of the form g(z) = c.

Pick any arbitrary € > 0. Let P, be any refinement of P. Then, we have:

Ulg, Pe) — L(g, Pe) <U(g,P) — L(g, P) =0 <€

Thus, ¢ is Riemann integrable.

[Abbott 7.2.5] Assume that, for each n, f,, is an integrable function on [a, b]. If
(fn) — f uniformly on [a, b], prove that f is also integrable on this set. (We
will see that, this conclusion does not necessarily follow if the convergence is
pointwise.)

Proof.
Pick an arbitrary € > 0.

Let P be any arbitrary partition. We can write:

U(f,P)—L(f,P) :U(fvp)_U(fnaP)+U(f7L7P)_L(f7L7P)+L(f7uP)—L(f7p)

Since (f,,) — f uniformly, 3N, such that for all = € [a, b], we have:

[fn(x) = f(2)] <

3(b—a)

Since fy is integrable, we can write:

(3P. € P) (U(fN,Pe) — L(fn, Pe) < %)

We choose the partition P = P.. Assume that P. = {z¢ = a,z1,..., %, = b}.
Define z;, € [x;—1, k] such that f(z}) = sup{f(z) : © € [vk_1,2k]}.

Define zj, € [xx_1, zx] such that fx(zx) = sup{fn(z) : © € [xg_1,2k]}-
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Define y;, € [xx—_1, 2] such that f(y;) = inf{f(x) : ¢ € [xr_1,zk]}.
Define yj, € [zx—1, 2] such that fn(yx) = inf{fn(2) : 2 € [zp_1, 4]}

We have:

L(fNape)_L(fvpe)

IN

AIA I
M

Yo (fn(yr) — flyg)) Ay,
|f (y) (yk)\Axk
=D

w\m W

Similarly, we have:

U(fape)_U(fNape) <§

Consequently,

U(f, Pe) = L(f, Fe) U(fn,P)+U(fn, P) = L(fn, P) + L(fn, P) = L(f, P)

This closes the proof.

[Abbott7.2.6] A tagged partition (P, {c }) is one where in addition to a partition
P we choose a sampling point ¢j in each of the subintervals [z;_1,2z5]. The
corresponding Riemann sum:

R(f,P) = flex) Ay,
k=1
is discussed in section 7.1., where the original definition is alluded to.

Riemann’s original definition of the Integral. A bounded function f is inte-
b

grable on [a,b] with [ f = Aif for all € > 0 there exists a § > 0 such that for
any tagged partition ((}3, {ex}) satisfying Az, < 6 for all k, it follows that

|R(f,P)— Al <e

Show that if f satisfies Riemann’s definition above, then f is integrable in the
sense of the definition 7.2.7. (The full equivalence of these two characterizations
of integrability is proved in section 8.1).
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Proof.

Pick an arbitrary € > 0. There exists a partition P = {zo, 1, 22, ...,z } of [a, D]
such that for any choice of tags {c; }, we have:

€ €
A= <R(fP)<A+]

Since, f is bounded, define

My, =sup{f(z) : ® € [xg—1, 2]}, My =nf{f(z):z € [vr_1,zk]}

By the properties of supremum and infimum, there exists i, € [Tr—1,Tk]
such that:

€

m<f(fk)<Mk

My, —

and

mk<f(77k)<mk+4(b_a)

Then, we can write:

R(f, P A&} = f(&)(xn — x-1)
k=1

> ’é (M;c — 4([)6_60) (xk — Th—1)

= ;Mk(xk —Tp_1) — m ;(Ik — Tp_1)
= U(f7 P) - Z

And,
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R(f, P A{mk}) =D fOmw)(wr — z1)
=1

<> (e + o= a)) (= = 21-1)
k=1

n
€

= ;mk(l'k - xk*l) + m Z(LE}C — xkfl)

k=1
= L(f,P)+ ]
Thus,
U(f,P) 1 <A+ 1
L(f,P)+1 >A—1
Consequently,

U(f,P)—L(f,P) <e

This closes the proof.

[Abbott 7.3.1] Consider the function:

<
h<x){1 for0<z<1

2 forx=1

over the interval [0, 1].

(a) Show that L( f, P) = 1 for every partition P of [0, 1].

Proof.
We have:
L(f, P) = Z mkAack
k=1
Since my = 1forallk =1,2,...,n,
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L(f,P)=) Az, =1
k=1
(b) Construct a partition P for which U(f, P) < 1+ 1/10.

Proof.

Consider the partition P, = {0,1 — ¢, 1}. Then,

Uf,P)=(1—-€)+2e=1+c¢
If we pick € < 1/10, then

U(f,P.) <1+1/10
19
For example, P = {O7 30’ 1} satisfies the above property.

(c) P.={0,1-§,1}.

[Abbott 7.3.2] Recall that Thomae’s function

1 ifx=0
t(x) =< 1/n ifx=m/ne Q)\ {0} isin its lowest terms with n > 0
0 ifr¢Q

has a countable set of discontinuities occurring at precisely every rational num-

1
ber. Follow these steps to prove that ¢(x) is integrable on [0, 1] with / t=0.
0

(a) First argue that L(¢, P) = 0 for any partition P of [0, 1].
Proof.

Let P be any arbitrary partition of [0, 1]. Since the irrational numbers are dense
in R, every sub-interval of P contains an irrational number. Thus:

L(t, P) = kaAZEk =0 {.my=0,Vk}
k=1

(b) Let € > 0 and consider the set of points D/, = {z € [0,1] : t(x) > €/2}.
How big is D, /5?

Proof.
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We define N € N to be the smallest natural number such that, for alln > N

S
[N e

Thus, the set {t(z) : t(x) > ¢/2} consists of :
{ 1 1 1}
N—-1"N=-2"""
Thus, the set D,/ consists of:

D _{N—QN—?) 1 N -3 1 }1}
6/2_ N_17N_1)""N_]-’N_27"'7N_2)""27

D, /, contains at most a finite number of points.

(c) To complete the argument, explain how to construct a partition P, of [0, 1]
sothat U(t, P.) < e.

Proof.
Pick an arbitrary € > 0.

We define N to be the smallest natural number such that:

1<
N

N

Since D, , is a finite non-empty set, let us denote it by the ordered set {¢; <
.<q M}

We now surround each of the points g, by subintervals of length 5%;. Thus, we
have M subintervals each of length given by :

. €
&= mln{ma% — qk—1,9k+1 *Qk}

Their total contribution to the upper Riemann sum is
M M .
kZ_IMkAkakZ_llmzﬁ/2
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The region between those intervals forms the rest of the partition. Again, these
are finitely many in number. For this entire region, ¢(z) < ¢/2. And ) Az, < 1.
Consequently, its contribution to the upper sum is lesser than €/2.

[Abbott 7.3.3] Let

1 ifx=1/n forsomen € N
f(x) = .
0 otherwise

1
Show that f is integrable on [0, 1] and compute [ f.
0

Proof.
Firstly, for any arbitrary partition P, the lower Riemann sum L(f, P) = 0.

Pick an arbitrary € > 0. Pick IV to be the smallest natural number such that for
allm > N, % <s.

We cut [0,1] into two parts A = [0, 1] and B = [+, 1]. Surround each of the N
points in B by a subinterval of length

gzmm{zjv’N(NI—n}

and the end points are surrounded by [+, + + ¢] and [1 — &, 1].

There are at most finitely many gaps between these subintervals in B, but f(z) =
0 on these gaps, so their contribution of U(f, P) = 0.

The total contribution of the points in B is

N N c c
Do MpAup <y 1 oo =1
k=1 k=1

The total contribution of the points in A is:

1

N

1
L=<
v S

This closes the proof.
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[Abbott 7.3.4] Let f and g be functions defined on (possibly different) closed
intervals and assume that the range of f is contained in the domain of g so that
the composition g o f is properly defined.

(a) Show, by example that it is not the case that if fand g are integrable then
g o f is integrable.

Proof.
Unbounded functions like % are not Riemann integrable.

Consider f(z) = = — 2 and f(z) = 15 on the interval [0, 1]. Then,

which does not have an upper Riemann sum.

Now decide on the validity of each of the following conjectures, supplying a
proof or counterexample as appropriate.

(b) If f is increasing and g is integrable, then g o f is integrable.
Proof.

This proposition is false. The functions f and g discussed above suffice as
counter-example.

(c)If f is integrable and ¢ is increasing, then g(f(-)) is integrable.
Proof.

Let f(z) = = + 2 and g(z) = — 15 on the interval [0, 1]. Then, g(f(z)) = —

which is not Riemann integrable on [0, 1].

8=

[Abbott 7.3.5] Provide an example or give a reason why the request is impos-
sible.

(a) A sequence (f,) — f pointwise, where each f,, has at most a finite number
of discontinuities but f is not integrable.

Proof.

The set of rational numbers is countable. Let Q = {q1, ¢2, g3, - - ., }. Define:

1 ifxef{qg:1<j<n,jeN
-} Sreaziznen

0 otherwise
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The function fx has a finite number n of discontinuities, and we can easily sur-
round each rational ¢; by the sub-interval [¢; —§, ¢; +&], where § = min{5%;, g ,
d =min{gj+1 —q; : j =1,2,3,...,n} to see that the upper intergral is ¢ and the
lower integral is 0, so the sequence ( f,,) is Riemann integrable. But, (f,) — Iq,
the Dirichlet function which is not Riemann integrable.
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