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Abstract

This is a solution manual for Understanding Analysis, 2nd edition, by Stephen Abbott.

[Abbott 1.3.7] Let A ⊆ R be nonempty and bounded above and let c ∈ R.
Define the set c+A by

c+A = {c+ a : a ∈ A}

Then, sup(c+A) = c+ supA.

Proof.

Since A is non-empty, bounded subset of R, by the Axiom Of Completeness,
there exists a least upper bound of A; we denote it by supA.

By the definition of least upper bound, we are required to prove that:

(1) c + supA is an upper bound of c+A.

(2) If u is an upper bound of c+A, then c+ supA ≤ u.

(1) We know that, a ≤ supA, for all a ∈ A.

So, c + a ≤ c + supA for all c + a ∈ c + A. So, c + supA is an upper bound of
c+A.

(2) Let u be an arbitrary upper bound of c + A. Then, c + a ≤ u for all a ∈ A.
Thus, a ≤ u−c for all a ∈ A. Thus, u−c is an upper bound forA. Consequently,
supA ≤ u − c. Thus, c + supA ≤ u. As u was arbitrary to begin with, this is
true for all such upper bounds.

Consequently, sup(c+A) = c+ supA.

Lemma1.3.8. Assume s ∈ R is an upper bound for a setA ⊆ R. Then, s = supA
if and only if, for all ϵ > 0, there exists an element a ∈ A satisfying s− ϵ < a.

Proof.
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=⇒direction.

We are given that, s be an upper bound for the set A ⊆ R. We proceed by
contradiction. Assume that s = supA, such that there exists ϵ0 > 0, such that
for all a ∈ A, s − ϵ0 > a. Clearly, s − ϵ0 is an upper bound for A. But, s − ϵ0 <
s = supA. This is a contradiction. Hence our initial assumption is false.

It follows, that if s = supA, then for all ϵ > 0, there exists a ∈ A, such that
s− ϵ < a < s.

⇐=direction.

s is an upper bound for A. We are given that, for all ϵ > 0, ∃a ∈ A, such that
s− ϵ < a. We proceed by contradiction. Assume that s is not the supremum of
A. Then, there exists an upper bound t for A, such that t < s.

Put ϵ = s− t. Then, ∃a ∈ A, such that s− (s− t) = t < a. But, this contradicts
the fact that t is an upper bound for A. Hence, our initial assumption is false.
s = supA.

[Abbott 1.3.1. (a)] Write a formal definition in the style of definition 1.3.2 for
the infimum or the greatest lower bound of a set.

Definition (Greatest Lower Bound). A real number l is the greatest lower
bound for a set A ⊆ R, if it meets the following two criteria:

(i) l is a lower bound for A.

(ii) If m is an arbitrary lower bound for A,m ≤ l.

(b) Now, state and prove a version Lemma 1.3.8. for the greatest lower bound.

Let l be a lower bound for A ⊆ R.Then, l = inf A, if and only for all ϵ > 0, there
exists a ∈ A, such that a < l + ϵ.

=⇒direction. l is a lower bound for A. We are given that l = inf A. We proceed
by contradiction. Assume that ∃ϵ0 > 0, such that ∀a ∈ A, a ≥ l+ ϵ0. Thus, l+ ϵ0
is a lower bound for A. But, l + ϵ0 > l = inf A. This is a contradiction. Hence,
our initial assumption is false.

∀ϵ > 0, ∃a ∈ A, such that a < l + ϵ.

⇐=direction.

l is a lower bound of A. We are given that, ∀ϵ > 0, ∃a ∈ A, such that a < l + ϵ.
We proceed by contradiction. Assume that l is not the infimum of A. Then,
there exists a lower bound m for A, such that m > l.

2



Put ϵ = m − l. It follows that, there exists a ∈ A, such a < l + (m − l) = m.
But, this contradicts the fact that m is a lower bound for A. Hence, our initial
assumption must be false.

l = inf A.

[Abbott 1.3.2] Give an example of each of the following, or state the request is
impossible.

(a) A set B with inf B ≥ supB.

It is impossible for a set to satisfy inf B > supB. For a singleton set, inf B =
supB.

(b) A finite set that contains its infimum but not its supremum.

This request is impossible. A finite set always contains its infimum and supre-
mum.

(c) A bounded subset of Q, that contains its supremum but not it’s infimum.

Consider A = {r : 0 < r ≤ 1, r ∈ Q}. This is a bounded subset of Q.

We have, inf A = 0. 0 /∈ A. supA = 1. 1 ∈ A.

[Abbott 1.3.4]LetA1, A2, A3, . . . be a collection of non-empty sets, each ofwhich
is bounded above.

(a) Find a formula for sup(A1 ∪A2). Extend this to sup

(
N⋃

k=1

Ak

)
.

Proof .

Our claim is that sup(A1 ∪A2) = max {supA1, supA2}.

Let s1 = supA1 and s2 = supA2. Let m = max{s1, s2}.

(a)Claim: m is an upper bound for A1 ∪A2.

Let a be an arbitrary element of A1 ∪A2. Then, either a ∈ A1 or a ∈ A2 or both
are true. Consequently, either a ≤ s1 or a ≤ s2 or both are true. Since, s1 ≤ and
s2 ≤ m, in both cases, we must have that, a ≤ m.

(b)Claim: If u is an upper bound for A1 ∪A2, thenm ≤ u.

Let u be an upper bound for A1 ∪A2. Then, a ≤ u for all a ∈ A1 ∪A2.

So, a′ ≤ u for all a′ ∈ A1 and a′′ ≤ u for all a′′ ∈ A2. So, u is an upper bound
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for A1 and A2. So, s1 ≤ u and s2 ≤ u are both true. Consequently, m ≤ u.

From (a) and (b) it follows that, m = sup(A1 ∪A2).

We can extend this to finite N .

Claim: sup (∪nk=1Ak) = max
1≤k≤n

supAk.

The claim is true for k = 1 and k = 2. We proceed by the principle of mathe-
matical induction.

Assume that P (n) is true. That is, we assume that

sup (∪nk=1Ak) = max
1≤k≤n

supAk

Our inductive hypotheses is:

sup
(
∪n+1
k=1Ak

)
= max

1≤k≤n+1
supAk

We have:

sup
(
∪n+1
k=1Ak

)
= sup ((∪nk=1Ak) ∪An+1)

= max {sup (∪nk=1Ak) , supAn+1}

= max

§
max

1≤k≤n
{supAk} , supAn+1

ª

= max
1≤k≤n+1

{supAk}

(b) Consider sup
( ∞⋃

k=1

Ak

)
. Does the formula in (a) extend to the infinite case?

[Abbott 1.4.1] Recall that I stands for the set of irrational numbers.

(a) Show that if a, b ∈ Q, then ab and a+ b are elements ofQ as well.

Proof.

Let a =
m

n
, b = p

q
with n and q matural numbers, m and p as integers in Z.

The addition of rational numbers a+ b is defined as :

m

n
+

p

q
:=

mq + np

nq
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Since, both n and q are non-zero, nq ̸= 0. The product of two natural numbers
is a natural number so, nq ∈ N. Moreover,mq+np ∈ Z. Consequently,m/n +
p/q ∈ Q. Hence,Q is closed under addition.

The product of rational numbers ab is defined as:

a× b =
mp

nq

Since, Z is closed under multiplication, mp ∈ Z. Similarly, nq ∈ N and nq ̸= 0.
Consequently, the product a × b belongs to Q.

(b) Show that if a ∈ Q and t ∈ I, then a+ t ∈ I and at ∈ I as long as a ̸= 0.

[Abbott 1.4.2] Let A ⊆ R be non-empty and bounded above, and let s ∈ R

have the property that for all n ∈ N, s+ 1

n
is an upper bound for A and s− 1

n
is not an upper bound for A. Show that s = supA.

Proof.

Claim. s is an upper bound for A.

We proceed by contradiction.

Assume that s is not an upper bound for A. Then there exists a0 ∈ A, such that
s < a0. By the Archimedean property, there exists a natural number n0 ∈ N,
such that

1

n0
< a0 − s

Thus, there exists n0 ∈ N such that:

s+
1

n0
< s+ (a0 − s)

s+
1

n0
< a0

That is, there exists n0 ∈ N, such that s+ 1

n0
is not an upper bound for A.

But, this is a contradiction. ∀n ∈ N, s+ 1

n
is an upper bound for A.

Claim. If t is any other upper bound for A, s ≤ t.

We proceed by contradiction.
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Assume that there exists an upper bound t0, for A, such that t0 < s. By the
Archimedean property there exists m0 ∈ N such that

1

m0
< s− t0

So, there exists m0 such that:

s− 1

m0
> s− (s− t0)

= t0

That is, there exists m0 ∈ N, such that s− 1

m0
is an upper bound for A.

But this is a contradiction. ∀m ∈ N, s− 1

m
is not an upper bound for A.

This closes the proof. s = supA.

[Abbott 1.4.3] Prove that ∩∞n=1

�
0,

1

n

�
= ∅. Notice that this demonstrates that

the intervals in the Nested Interval Property must be closed for the conclusion
of the theorem to hold.

Proof.

Let In =

�
0,

1

n

�
. Let x be an arbitrary real number in I1 = (0, 1). By the

Archimedean property, there exists a natural number n0 ∈ N, such that

1

n0
< x

Thus, x /∈ In0 and therefore x /∈ ∩∞n=1In.

Since x was arbitrary, this holds for all 0 < x < 1.

∩∞n=1In = ∅

Cantor’s Diagonalization Method

Cantor published his discovery that R is uncountable in 1874. Althoug it has
some modern polish on it, the argument presented in theorem 1.5.6 (ii) is ac-
tually quite similar to the one Cantor originally found. In 1891, Cantor offered
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another proof of this same fact that is startling in its simplicity. It relies on dec-
imal representations for real numbers, which we will accept and use without
any formal definitions.

Theorem 1.6.1. The open interval (0, 1) = {x ∈ R : 0 < x < 1} is uncountable.

[Abbott 1.6.1] Show that (0, 1) is countable if and only if R is uncountable.

Proof. As with Theorem 1.5.6., we proceed by contradiction and assume that
there does exist a function f : N→ (0, 1) that is 1−1 and onto. For eachm ∈ N,
f(m) is a real number between 0 and 1 and we represent it using the decimal
notation

f(m) = .am1
am2

am3
am4

. . .

What is meant here is that for each m,n ∈ N, amn is the digit from the set
{0, 1, 2, . . . , 9} that represents the nth digit in the decimal expansion of f(m).
The 1−1 correspondence betweenN and (0, 1) can be summarized in the doubly
indexed array:

N (0, 1)
1 ←→ f(1) = .a11 a12 a13 a14 a15 a16 . . .
2 ←→ f(2) = .a21 a22 a23 a24 a25 a26 . . .
3 ←→ f(3) = .a31 a32 a33 a34 a35 a36 . . .
4 ←→ f(4) = .a41 a42 a43 a44 a45 a46 . . .
5 ←→ f(5) = .a51 a52 a53 a54 a55 a56 . . .
6 ←→ f(6) = .a61 a62 a63 a64 a65 a66 . . .
...

...
...

...
...

...
...

...
. . .

The key assumption abou this correspondence is that every real number in (0, 1)
is assumed to appear somewhere on the list.

Now for the pearl of the argument. Define a real number x ∈ (0, 1) with the
decimal expansion x = .b1b2b3b4 . . . using the rule:

bn =

¨
2 if ann ̸= 2

3 if ann = 2

[Abbott 1.6.2] (a) Explain why the real number x = .b1b2b3b4 . . . cannot be
f(1).

Since the first digit b1 in the decimal expansion of x differs from the first digit
a11 in the decimal expansion of f(1), x ̸= f(1).

7



(b) Now, explain why x ̸= f(2) and in general why x ̸= f(n) for any n ∈ N.

Since the second digit b2 in the decimal expansion of x differs from the second
digit a22 in the decimal expansion of f(2), x ̸= f(2).

In general, since the nth digit bn in the decimal expansion of x differs from the
nth digit ann in the decimal expansion of f(n), x ̸= f(n), for all n ∈ N.

(c) Point out the contradiction that arises from these observations and conclude
that (0, 1) is uncountable.

This shows that x does not belong to the set {f(1), f(2), f(3), . . . }. This contra-
dicts the fact that x ∈ (0, 1). Hence our initial assumption is false. The set (0, 1)
is uncountable.

[Abbott 2.2.1] What happens if we reverse the order of the quantifiers in defi-
nition 2.2.3?

Definition. A sequence (xn) verconges to x if there exists ϵ > 0 such that for all
N ∈ N, it is true that n ≥ N implies |xn − x| < ϵ.

Give an example of a vercongent sequence. Is there an example of a vercongent
sequence that is divergent? Can a sequence verconge to two different values?
What exactly is being described in this strange definition?

Proof.

The sequence (xn) =
1

n
is vercongent.

Consider the sequence (xn)
∞
n=1 = (−1)n. Pick ϵ = 2. For all N ∈ N, if n ≥ N , it

follows that

|xn − 0| = 1 < 2 = ϵ

Thus, it is a vercongent sequence.

A sequence can verconge to two different values. Let (xn) = (−1)n.

Pick ϵ = 2. For all N ∈ N, if n ≥ N , it follows that

|xn −
1

2
| < 2 = ϵ

Consequently, (xn) also verconges to 1

2
.

[Abbott 2.2.2]Verify using the definition of the convergence of a sequence, that
the following sequences converge to the proposed limit.
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(a) lim 2n+ 1

5n+ 4
=

2

5
.

Solution.

We are interested to make the distance |2n+ 1

5n+ 4
− 2

5
| as small as we please.

Let’s explore the inequality:

|2n+ 1

5n+ 4
− 2

5
| < ϵ

∴
|5(2n+ 1)− 2(5n+ 4)|

|5(5n+ 4)|
< ϵ

3

5(5n+ 4)
< ϵ

We know that 3

5(5n+ 4)
<

3

5(5n)
. We can strengthen the inequality we wish to

prove, by choosing an upper bound for the left hand side of the inequality. So,
we are interested to have:

3

25n
< ϵ

Let’s choose N >
3

25ϵ
. To show that this choice of N indeed works, pick an

arbitrary ϵ > 0. Then, n ≥ N implies that:

n > 3
25ϵ

=⇒ 1
n < 25ϵ

3
=⇒ 3

25n < ϵ
=⇒ | 2n+1

5n+4 −
2
5 | < ϵ

(b) lim 2n2

n3 + 3
= 0.

Solution.

We are interested to make the distance | 2n2

n3 + 3
− 0| as small as we please.

Let’s explore the inequality:

| 2n2

n3 + 3
| < ϵ
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Since all quantities are positive, we may write:

2n2

n3 + 3
< ϵ

Now, 2n2

n3 + 3
<

2n2

n3
. We can strengthen the condition we wish to prove by

replacing the left hand side of the above inequality by it’s upper bound. There-
fore, we are interested in making

2

n
< ϵ

We choose N >
2

ϵ
. To show that this choice of N indeed works, we pick an

arbitrary ϵ > 0. Then, for all n ≥ N , we have

n > 2
ϵ

=⇒ 2
n < ϵ

=⇒ | 2n2

n3+3 | < ϵ

Hence, lim 2n2

n3 + 3
= 0.

(c) lim sinn2

3
√
n

= 0.

Proof.

We are interested to make the distance | sinn
2

3
√
n
| as small as we please.

Let’s explore the inequality :

| sinn
2

3
√
n
| < ϵ (1)

We know that,

| sinn2| < 1

We can strengthen the condition we are interested to prove by replacing left-
hand side in the inequality (1) by it’s upper bound. We have:

1
3
√
n
< ϵ
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Let’s pick N >
1

ϵ3
. Then, for all n ≥ N , it follows that:

n > 1
ϵ3

=⇒ 1
3
√
n

< ϵ

=⇒ | sinn2

3
√
n
| < ϵ

Consequently, lim sinn2

3
√
n

= 0.

Example 2.2.4. Give an example of each or state that the request is impossible.
For any that are impossible, give a compelling argument forwhy that is the case.

(a) A sequence with an infinite number of ones that does not converge to one.

Proof.

Consider the sequence

(xn) = (1, 0, 1, 0, 1, 0, . . . )

This sequence does not converge to 1, but has an infinite number of 1s.

(b) A sequence with an infinite number of ones that converges to a limit not
equal to one.

This request is impossible. We proceed by contradiction. Assume that there
exists a sequence (xn) with an infinite number of 1s and converges to a limit
l ̸= 1.

The sequence (xn) has infinite number of 1s. The distance between 1 and l is
|l − 1|.

Pick ϵ0 =
|l − 1|

2
.For all N ∈ N, it follows that there are atleast some terms of

the sequence (xn) beginning with or after the N th term, such that the distance
|xn − l| ≥ ϵ0. Consequently, the sequence does not converge to l. This is a
contradiction.

Thus, there is no sequence (xn).

(c) A divergent sequence such that for every n ∈ N, it is possible to find conse-
ceutive ones somewhere in the sequence.

Solution.

Consider the sequence (xn) = (1, 1,−1, 1, 1,−1, 1, 1,−1, . . . ). This is a diver-
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gent sequence, where for all n ∈ N, it is possible to find consecutive ones in the
sequence.

[Abbott 2.2.6] Prove theorem 2.2.7. To get started, assume (an) → a and also
that (an)→ b. Now argue that a = b.

Assume that (an)→ a and (an)→ b. Pick an arbitrary ϵ > 0.

There exists N1(ϵ) ∈ N such that for all n ≥ N1 :

|an − a| < ϵ/2 (2)

There exists N2(ϵ) ∈ N such that for all n ≥ N2 :

|an − b| < ϵ/2 (3)

Pick N = max{N1, N2}. For n ≥ N , both the inequalities (1) and (2) are satis-
fied.

We have:

|(an − b)− (an − a)| ≤ |an − b|+ |an − a| {Triangle Inequality}
|a− b| < ϵ

2 + ϵ
2 = ϵ

Since ϵwas arbitrary to begin with, this is true for all ϵ > 0. So, for all ϵ > 0, the
distance |a− b| can be made smaller than ϵ. Consequently, a = b.

[Abbott 2.3.1] Let xn ≥ 0 for all n ∈ N.

(a) If (xn)→ 0, show that (√xn)→ 0.

Proof.

We are interested to make the distance |√xn| as small as we please.

Let’s explore the inequality:

|√xn| < ϵ

|√xn|2 = |
(√

xn

)2 | = |xn| < ϵ2

Pick an arbitrary ϵ > 0. As (xn) → 0, we know that there exists Nϵ ∈ N such
that, for all n ≥ Nϵ, we have:

|xn| < ϵ2
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Since ϵ was arbitrary, it follows that for all ϵ > 0, there exists N ∈ N, such that,
for all n ≥ N ,

|
√
xn| < ϵ

(b) If (xn)→ x, show that (√xn)→
√
x.

If x = 0, then (a) holds and we are done. Assume that x ̸= 0.

We are interested to prove that the distance |√xn −
√
x| can be made as small

as well please. Pick an arbitrary ϵ > 0. Let’s explore the inequality :

|
√
xn −

√
x| < ϵ

This can be rewritten as:

|xn − x|
√
xn +

√
x
< ϵ

We can strengthen the condition we wish to prove, by replacing 1
√
xn +

√
x
by

its upper bound. Since, xn ≥ 0, √xn ≥ 0. So,

1
√
xn +

√
x
<

1√
x

So, our claim is:

|xn−x|√
x

< ϵ

that is, |xn − x| < ϵ
√
x

Since (xn)→ x, there exists N ∈ N, such that for all n ≥ N , we have:

|xn − x| < ϵ
√
x

Thus, for all n ≥ N ,

|
√
xn −

√
x| < ϵ

Consequently, (√xn)→ x.

Abbott 2.3.2. Using only definition 2.2.3, prove that if (xn)→ 2, then
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(a)
�
2xn − 1

3

�
→ 1.

Proof.

We are interested to make the distance
∣∣∣∣2xn − 1

3
− 1

∣∣∣∣ as small as we please.

Pick an arbitrary ϵ > 0. We would like to have:

∣∣ 2xn−1
3 − 1

∣∣ < ϵ
or ,

∣∣ 2xn−1−3
3

∣∣ < ϵ
2
3 |xn − 2| < ϵ
|xn − 2| < 3ϵ

2

Since (xn) → 2, there exists N ∈ N, such that for all n ≥ N , |xn − 2| < 3ϵ/2.
Consequently, for all n ≥ N the above inequality would be satisfied, and there-

fore |(2xn − 1)/3− 1| < ϵ. Hence,
�
2xn − 1

3

�
→ 1.

(b)We are interested to make the distance
∣∣∣∣ 1xn
− 1

2

∣∣∣∣ as small as we please. Pick
an arbitrary ϵ > 0.

We would like to show that: ∣∣∣ 1
xn
− 1

2

∣∣∣ < ϵ
|xn−2|
2|xn| < ϵ

We can strengthen the condition we wish to prove by finding an upper bound
for the left hand side of the above inequality.

Let’s pick ϵ = 1. Since (xn) → 2, there exists N1 ∈ N, such that for all n ≥ N1,
the distance |xn − 2| < 1. In other words,

1 < xn < 3

Thus, |xn| > 1. Consequently,

|xn − 2|
2|xn|

<
|xn − 2|

2

So, our claim is:

|xn − 2|
2

< ϵ
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Since (xn)→ 2, there exists N2 ∈ N, such that for all n ≥ N2, the distance

|xn − 2| < 2ϵ

We pick N = max{N1, N2}. To show that this choice of N works, let n ≥ N .
We have:

∣∣∣∣ 1xn
− 1

2

∣∣∣∣ = |xn − 2|
2|xn|

<
1

2
|xn − 2| < 1

2
· 2ϵ = ϵ

Abbott 2.3.3. (Squeeze Theorem.) Show that if xn ≤ yn ≤ zn for all n ∈ N,
and if limxn = lim zn = l, then lim yn = l as well.

Proof.

Pick an arbitrary ϵ > 0.

Since (xn)→ l, there exists N1 ∈ N, such that for all n ≥ N1:

l − ϵ < xn < l + ϵ

Since (yn)→ l, there exists N2 ∈ N, such that for all n ≥ N2:

l − ϵ < yn < l + ϵ

Pick N = max{N1, N2}. Since, xn ≤ yn ≤ zn, for all n ∈ N, we have that for all
n ≥ N ,

l − ϵ < xn ≤ yn ≤ zn < l + ϵ

That is:

l − ϵ < yn < l + ϵ

As ϵ was arbitrary to begin with, this holds true for all ϵ. Consequently, (yn) is
a convergent sequence and (yn)→ l.

Abbott 2.3.4. Let (an) → 0 and use the Algebraic Limit Theorem to compute
each of the following limits (assuming the fractions are always defined):
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(a) lim
�

1 + 2an
1 + 3an − 4a2n

�

Proof.

lim 1+2an

1+3an−4a2
n

= lim 1+2an

lim 1+3an−4a2
n

= 1+2·0
1+3·0−4·0

= 1

(b) lim
�
(an + 2)2 − 4

an

�

Proof.

lim
(

(an+2)2−4
an

)
= lim

a2
n+4an+4−4

an

= lim
a2
n+4an

an

= lim��an(an+4)

��an
{Since an ̸= 0}

= lim(an + 4)
= 4

(c) lim
� 2

an
+ 3

1
an

+ 5

�
.

Proof.

lim
( 2

an
+3

1
an

+5

)
= lim 2+3an

1+5an

= lim 2+3an

lim 1+5an

= 2+3·0
1+5·0

2

Abbott 2.3.5. Let (xn) and (yn) be given and define (zn) to be the shuffled se-
quence (x1, y1, x2, y2, x3, y3, . . . , xn, yn, . . . ). Prove that (zn) is convergent if and
only if (xn) and (yn) are both convergent with limxn = lim yn.

Proof.

=⇒direction.

We are given that (zn) is convergent. We are interested to prove that both (xn)
and (yn) are convergent with limxn = lim yn.

Assume that (zn) → l. Pick an arbitrary ϵ > 0. There exists N ∈ N, such that
for all n ≥ N , we have:
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l − ϵ < zn < l + ϵ

If N = 2M (even), then for all m > M , both (xm) and (ym) fall in the interval
(l − ϵ, l + ϵ).

If N = 2K + 1 (odd), then for all k ≥ K, both (xk) and (yk) fall in the interval
(l − ϵ, l + ϵ).

In both cases, we are able to find a response to the given ϵ−challenge and the
sequences (xn) and (yn) eventually settle in (l−ϵ, l+ϵ). Consequently, limxn =
lim yn = l.

⇐=direction.

We are given that both (xn) and (yn) are convergent sequences with limxn =
lim yn and we are interested to prove that the shuffled sequence (zn) is also
convergent.

Pick an arbitrary ϵ > 0.

Since (xn)→ l, there exists N1 ∈ N, such that for all n ≥ N1, we have:

|xn − l| < ϵ

Since (yn)→ l, there exists N2 ∈ N, such that for all n ≥ N2, we have:

|yn − l| < ϵ

Note that xn = z2n−1 and yn = z2n. Let N = max{2N1 − 1, 2N2}. Then for all
n ≥ N , it follows that

l − ϵ < zn < l + ϵ

Consequently, (zn)→ l.

[Abbott 2.3.6] Consider the sequence given by bn = n −
√
n2 + 2n. Taking

(1/n)→ 0 as given and using both the Algebraic Limit Theorem and the result
in exercise 2.3.1., show that lim bn exists and find the value of the limit.

Proof.

We have:
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limn−
√
n2 + 2n = limn−

√
n2 + 2n · n+

√
n2+2n

n+
√
n2+2n

= lim
n2−(n2+2n)
n+

√
n2+2n

= − lim 2n
n+

√
n2+2n

= − lim 2

1+
√

1+ 2
n

= − 2
1+1 = −1

[Abbott 2.3.7] Give an example of each of the following, or state that such a
request is impossible by referencing the proper theorem(s):

(a) Sequences (xn) and (yn), which both diverge, but whose sum (xn + yn)
converges.

Proof.

Consider (xn) = n and (yn) = −n. Both (xn) and (yn) are divergent sequences
but (xn + yn) is constant zero sequence.

(b) sequences (xn) and (yn)where (xn) converges, (yn) diverges and (xn + yn)
converges.

Proof.

This request is impossible. We have:

yn = (xn + yn)− xn

lim yn = lim[(xn + yn)− xn]
= lim(xn + yn)− limxn

Since both lim(xn + yn) and limxn are well-defined, the sequence (yn)must be
convergent.

(c) a convergent sequence (bn)with bn ̸= 0 for all n such that (1/bn) diverges.

Let bn :=
1

n
. Then, 1

bn
= n is a divergent sequence.

(d) an unbounded sequence (an) and a convergent sequence (bn)with (an−bn)
bounded.

Proof.

This request is impossible.

If (an − bn) is a bounded sequence, then there exists M1 ∈ N, such that for all
n ∈ N, |an − bn| ≤M1.
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By theorem 2.3.3, convergent sequences are bounded. So, (bn) is a bounded
sequence. Hence, there exists M2 ∈ N such that |bn| ≤M2 for all n ∈ N.

We have:

|an| = |(an − bn) + bn|
≤ |(an − bn)|+ |bn| {Triangle Inequality}
≤M1 +M2

Thus, (an)must be a bounded sequence.

(e) two sequences (an) and (bn) where (anbn) and (an) converge but (bn) does
not.

Proof.

Consider (an) =
1

n
and (bn) = n. The sequences (anbn) = 1 and (an) =

1

n
converge but (bn) = n does not.

Abbott 2.3.8. Let (xn)→ x and let p(x) be a polynomial.

(a) Show p(xn)→ p(x).

Proof.

Let p(x) be the polynomial :

p(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ amxm

The image sequence p(xn) is defined as :

p(xn) = a0 + a1(xn) + a2(xn)
2 + a3(xn)

3 + . . .+ am(xn)
m

Taking limits on both sides, we have:

lim p(xn) = lim a0 + a1(xn) + a2(xn)
2 + a3(xn)

3 + . . .+ am(xn)
m

= lim a0 + a1 limxn + a2 limxn · limxn + . . . {Algebraic Limit Theorem}
= a0 + a1x+ a2x

2 + . . .+ amxm

= p(x)

(b) Find an example of a function f(x) and a convergent sequence (xn) → x
where the sequence f(xn) converges, but not to f(x).
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Consider the function

f(x) =

¨
x2 if x ̸= 0

1 if x = 0

and let (xn) be the sequence

xn =
1

n

Then, (xn)→ 0, and f(xn) =
1

n2
, so f(xn)→ 0, but f(0) = 1.

Abbott 2.3.9. (a) Let (an) be a bounded (not necessarily convergent) sequence,
and assume lim bn = 0. Show that lim(anbn) = 0. Why are we not allowed to
use the Algebraic Limit Theorem to prove this?

Proof.

(a) We are interested to prove that the distance |anbn| can be made as small as
we please.

Pick an arbitrary ϵ > 0. Since (an) is a bounded sequence there existM ∈ N for
all n ∈ N such that |an| ≤M .

As (bn)→ 0, there exists N ∈ N, such that for all n ≥ N , we have:

|bn| <
ϵ

M

Together, for all n ≥ N , we have:

|anbn| < M · ϵ

M
= ϵ

Thus, (anbn)→ 0.

The Algebraic Limit Theorem is applicable, if and only if, the sequences (an)
and (bn) are both convergent.

(b) Can we conclude anything about the convergence of (anbn) if we assume
that (bn) converges to some nonzero limit b?

No, we cannot conclude anything about the convergence of (anbn). Consider
the sequence (an) = (−1)n, (bn) = 1 +

1

n
. Here, (an) is a bounded sequence.

(bn)→ 1. But, (anbn) is divergent.

(c) Use (a) to prove theorem 2.3.3. part (iii) for the case when a = 0.
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Proof.

We are interested to prove that lim anbn = ab where a = 0.

We have that lim an = 0. As (bn) is a convergent sequence, and convergent
sequences are bounded, so (bn) is bounded. From (a) it follows that lim anbn =
0.

Abbott 2.3.10. Consider the following list of conjectures. Provide a short proof
for those that are true and a counterexample for any that are false.

(a) If lim(an − bn) = 0, then lim an = lim bn.

This proposition is false. Consider (an) = n and (bn) = n− 1

n
. Then, lim(an −

bn) = 0, but both (an) and (bn) are divergent sequences.

(b) If (bn)→ b, then |bn| → |b|.

This proposition is true.

We are interested to make the distance ||bn| − |b|| as small as we please.

Pick an arbitrary ϵ > 0. We are interested to prove that:

||bn| − |b|| < ϵ

We can strengthen the condition we wish to prove by replacing the left-hand
side of the inequality by its upper bound. We know that, ||bn| − |b|| ≤ |bn − b|.
Thus, we shall prove that:

|bn − b| < ϵ

Since (bn)→ b, there exists N ∈ N such that for all n ≥ N , we have:

|bn − b| < ϵ

Consequently, |bn| → |b|.

(c) If (an)→ a and (bn − an)→ 0, then (bn)→ a.

Proof.

This proposition is true.

By the Algebraic Limit Theorem,

21



lim bn = lim(an + (bn − an))
= lim an + lim(bn − an)
= a+ 0
= a

Abbott 2.3.11. (Cesaro Means).

(a) Show that if (xn) is a convergent sequence, then the sequence given by the
averages:

yn =
x1 + x2 + . . .+ xn

n

also converges to the same limit.

Proof.

Let (xn)→ x. We are interested to make the distance |(x1+x2+ . . .+xn)/n−x|
as small as we please. Pick an arbitrary ϵ > 0.

We are interested to prove that:

∣∣x1+x2+...+xn

n − x
∣∣ < ϵ∣∣∣ (x1+x2+...+xn)−nx

n

∣∣∣ < ϵ

Consider the expression:

∣∣∣ (x1+x2+...+xn)−nx
n

∣∣∣ = 1
n |(x1 − x) + (x2 − x) + (x3 − x) + . . .+ (xn − x)|

≤ 1
n (|(x1 − x)|+ |(x2 − x)|+ . . .+ |xl − x|+ . . .+ |xn − x|)

≤
∑l

i=1 |xi−x|
n +

∑n
i=l+1 |xi−x|

n

Let ϵ > 0. Since, (xn) → x, we can pick l such that for all k > l, |xl − x| < ϵ/2.
Now that l is fixed, pickN large enough so that for all n > N , we can make the
first term:

∑l
i=1 |xi − x|

n
<

ϵ

2

It follows that for all n > N :

∑l
i=1 |xi − x|

n
+

∑n
i=l+1 |xi − x|

n
≤ ϵ

2
+

(n− l)(ϵ/2)

n
< ϵ
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Abbott 2.4.1. (a) Prove that the sequence defined by x1 = 3 and

xn+1 =
1

4− xn

converges.

Proof.

Claim. (xn) is a bounded sequence.

We prove using induction that (xn) is a bounded sequence.

(1) Base case : 0 < x1 ≤ 3

(2) We assume that 0 < xn ≤ 3.

(3) We are interested to prove that 0 < xn+1 ≤ 3.

Clearly,
xn+1 =

1

4− xn
≤ 1

4− 3
= 1 < 3

And,

xn+1 =
1

4− xn
≥ 1

4− 0
=

1

4
> 0

By the principle of mathematical induction, 0 < xn ≤ 3 for all n ∈ N.

Claim. (xn) is a monotonically decreasing sequence.

(1) Base case: x1 = 3 and x2 =
1

3
. Thus, x1 ≥ x2.

(2) We assume that xn ≥ xn+1.

(3) We are interested to prove that xn+1 ≥ xn+2.

We have:

xn+1 − xn+2 = 1
4−xn

− 1
4−xn+1

= xn−xn+1

(4−xn)(4−xn+1)

> 1
16 (xn − xn+1) {xn > 0 ∀n ∈ N}

> 0

Consequently, by the principle of mathematical induction, xn−xn+1 ≥ 0 for all
n ∈ N.
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Thus, (xn) is a monotonically decreasing and bounded sequence. By theMono-
tone Convergence Theorem (MCT), (xn) is a convergent sequence.

(b) Now that we know that limxn exists, explain why limxn+1 must also exist
and equal the same value.

Pick an arbitrary ϵ > 0. Since (xn) converges to x, there exists N(ϵ) ∈ N, such
that for all n ≥ N , we have

x− ϵ < xn < x+ ϵ

Define N ′ = N + 1. If yn = xn+1, then for all n ≥ N ′, we have:

x− ϵ < yn < x+ ϵ

So, (yn)→ x.

(c) Taking limits on both sides, we have:

x = 1
4−x

x(4− x) = 1
4x− x2 = 1
x2 − 4x = −1

x2 − 4x+ 1 = 0

(x− 2)2 −
�√

3
�2

= 0

x = 2±
√
3

Since, (xn) ≤ 3, by the Order Limit Theorem, x < 3. So, x = 2−
√
3.

Abbott 2.4.2. (a) Consider the recursively defined sequence y1 = 1,

yn+1 = 3− yn

and set y = lim yn. Because (yn) and (yn+1) have the same limit, taking the limit
across the recursive equation gives y = 3 − y. Solving for y we conclude that
lim yn = 3/2. What is wrong with this statement?

Proof.

This is incorrect, aswe do notwhether the sequence (yn) is convergent. Looking
at the first few terms of the sequence:
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(yn) = (1, 2, 1, 2, 1, 2, . . . )

it is indeed a divergent sequence.

(b) This time set (y1) and (yn+1) = 3 − 1

yn
. Can the strategy in (a) be applied

to compute the limit of this sequence?

Proof.

The first few terms of the sequence are :

(yn) =

�
1, 2,

5

2
,
13

5
,
34

13
, . . .

�

Claim. The sequence (yn) is bounded. 1 ≤ yn < 3 for all n ∈ N.

Base Case: P (1) is true. 1 ≤ y1 < 3.

Hypotheses : Assume that P (n) is true. We assume that 1 ≤ yn < 3.

Inductive step : We are interested to prove that 1 ≤ yn+1 < 3.

We have:

yn+1 = 3− 1

yn
≥ 3− 1 = 2

Also,

yn+1 = 3− 1

yn
< 3− 1

3
=

8

3

Consequently:

1 ≤ yn+1 < 3

Thus, by the principle of mathematical induction 1 ≤ yn < 3 for all n ∈ N.

Claim. The sequence (yn) is monotonically increasing. yn ≤ yn+1 for all n ∈ N.

Proof.

Base Case: y1 ≤ y2.

25



Hypotheses : Assume that yn ≤ yn+1, that is yn+1 − yn ≥ 0.

Inductive step: Consider

yn+2 − yn+1 =
�
3− 1

yn+1

�
−
�
3− 1

yn

�
= 1

yn
− 1

yn+1

= yn+1−yn

ynyn+1

≥ 0 {yn > 0 ∀n ∈ N,
yn+1 − yn ≥ 0}

By the principle of mathematical induction (yn) is a monotonically increasing
sequence.

By the Monotone convergence theorem, (yn) is convergent and lim yn exists.
The strategy in (a) can be applied to compute the limit of this sequence. Let
y = lim yn. We have:

y = 3− 1
y

y2 = 3y − 1
y2 − 3y + 1 = 0

y = 3±
√
9−4·1·1
2·1 = 3±

√
5

2

Since (yn) ≥ 1, by the order limit theorem y ≥ 1. So, y =
3 +
√
5

2
.

Abbott. 2.4.3. (a) Show that :

√
2,

È
2 +
√
2,

√
2 +

È
2 +
√
2, . . .

converges and find the limit.

Proof.

This sequence is recursively defined as :

yn+1 =
√

2 + yn

(a) Claim. The sequence (yn) is bounded. 0 < yn < 2.

Base Case. P (1) is true. 0 < y1 < 2.

Hypotheses. We assume that 0 < yn < 2.

Inductive Step. We are interested to prove that:
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0 < yn+1 < 2

We have:

yn+1 =
√
2 + yn

>
√
2 {yn > 0}

> 0

Moreover,

yn+1 =
√
2 + yn

<
√
2 + 2

= 2

Thus, by the priniciple of mathematical induction, 0 < yn < 2 for all n ∈ N.

Claim. The sequence (yn) is monotonically increasing. yn ≤ yn+1 for all n ∈ N.

Base Case. y1 ≤ y2.

Hypotheses. We assume that yn ≤ yn+1.

Inductive step. We have:

yn ≤ yn+1

(2 + yn) ≤ (2 + yn+1)
(2 + yn)

2 ≤ (2 + yn+1)
2

y2n+1 ≤ y2n+2

yn+1 ≤ yn+2 {As yn > 0 ∀n ∈ N,
we can take square roots on both sides.}

Consequently, the sequence (yn) is a monotonically increasing sequence.

By the Monotone Convergence Theorem, (yn) is a convergent sequence. Let
lim yn = y. Then,

y =
√
2 + y

y2 = 2 + y
y2 − y − 2 = 0

y2 − 2y + y − 2 = 0
y(y − 2) + 1(y − 2) = 0

(y − 2)(y + 1) = 0

Since y > 0, y = 2.
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(b) Does the sequence

√
2,

È
2
√
2,

√
2

È
2
√
2, . . .

converge? If so find the limit.

Solution.

This sequence can be recursively defined as:

yn+1 =
√
2yn

Let’s prove that this sequence is bounded. Our claim is that
√
2 ≤ yn < 2 for all

n ∈ N.

Base case.
√
2 ≤ y1 < 2.

Hypotheses. We assume that,
√
2 ≤ yn < 2.

Inductive step. We are interested to prove that
√
2 ≤ yn+1 < 2.

We have:

yn+1 =
√
2yn

≥
√

2
√
2

≥
√
2 · 1 =

√
2

Also,

yn+1 ≤
√
2 · 2

= 2

Thus, by the principle of mathematical induction, the sequence (yn) is bounded
and

√
2 ≤ yn < 2

for all n ∈ N.

Let’s prove that this sequence is monotonically increasing. Our claim is that
yn ≤ yn+1 for all n ∈ N.

Base Case. We have y1 ≤ y2.
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Hypotheses. We assume that yn ≤ yn+1.

Inductive step. We are interested to prove that yn+1 ≤ yn+2. We have:

yn+2 =
√
2yn+1

>
√
yn+1 · yn+1

= yn+1

By the principle of mathematical induction, (yn) is a monotonically increasing
sequence.

Since, (yn) is a bounded and monotonically increasing sequence, by the Mono-
tone Convergence Theorem, (yn) is a convergent sequence. Let lim yn = y. Then
we have:

y =
√
2y

√
y
�√

y −
√
2
�
= 0

∴ y = 2

Abbott 2.4.4. (a) In section 1.4, we used the Axiom of Completeness(AoC) to
prove the Archimedean property of R. Show that the Monotone Convergence
Theorem can also be used to prove the Archimedean property without making
any use of the AoC.

Proof.

Archimedean Property of Real Numbers. Given any real number x ∈ R, there
exists a natural number n ∈ N, such that x < n.

Proof.

We proceed by contradiction. We are given a real number x ∈ R. Assume
that for all natural numbers n ∈ N, we have n ≤ x. Thus, N is a bounded
set. Moreover, (xn) = n is a monotonically increasing sequence. Hence, by
the Montone Convergence Theorem, (xn) = n is a convergent sequence. Let
l = limxn.

By the definition of convergence, for all ϵ > 0, there exists N ∈ N, such that for
all n ≥ N , |xn − l| < ϵ. Pick ϵ0 = 1. Then,

l − 1 < N < l + 1

But, N + 2 and all the successive natural numbers do not belong to this ϵ-
neighbourhood. This is a contradiction.
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Hence our initial assumption is false.

(b) Use the Monotone Convergence Theorem to supply a proof for the Nested
Interval Property that doesn’t make use of AoC.

These two results suggest that we could have used the Monotone Convergence
Theorem in place of AoC as our starting axiom for building a proper theory of
real numbers.

Proof.

Abbott 2.4.5. (Calculating Square roots). Let x1 = 2 and define xn+1 =
1

2

�
xn +

2

xn

�
.

(a) Show that x2
n is always greater than or equal to 2, and then use this to prove

that xn − xn+1 ≥ 0. Conclude that limxn =
√
2.

(b) Modify the sequence (xn) so that it converges to
√
c.

Proof.

(a)

Let us prove that (xn) is a bounded sequence. We claim that 1 ≤ xn ≤ 2. P (1)
is true. x1 = 2. We assume that P (n) is true. So, 1 ≤ xn ≤ 2. We have:

xn+1 = 1
2

�
xn + 2

xn

�
≥ 1

2

(
1 + 2

2

)
= 1

And,

xn+1 = 1
2

�
xn + 2

xn

�
≤ 1

2

(
2 + 2

1

)
= 2

By the principle of mathematical induction, 1 ≤ xn ≤ 2 for all n ∈ N.

We are interested to prove that (xn) is a monotonically decreasing sequence.
Our claim is xn − xn+1 ≥ 2 for all n ∈ N.

We are also interested to prove that x2
n ≥ 2. We will induct on n.

Base Case. x2
1 = 4. So, x2

1 ≥ 2

Hypotheses. Our claim is that x2
n ≥ 2.
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Inductive step. We have:

2xn+1xn = x2
n + 2

x2
n − 2xnxn+1 + 2 = 0

We know that xn is real and 1 ≤ xn ≤ 2. For this equation to have real roots,
we must have b2 − 4ac ≥ 0 or 4x2

n+1 − 4(2) ≥ 0. Consequently, x2
n+1 ≥ 2.

By the principle of mathematical induction, x2
n ≥ 2 for all natural numbers

n ∈ N.

Base Case. x2 =
1

2

�
x1 +

2

x1

�
=

1

2

�
2 +

2

2

�
=

3

2
. So, x1 ≥ x2.

Hypotheses. We assume that xn − xn+1 ≥ 0.

Inductive step. We have:

xn+1 − xn+2 = xn+1 − 1
2

�
xn+1 +

2
xn+1

�
= xn+1

2 − 1
xn+1

=
x2
n+1−2

2xn+1

≥ 0
{
x2
n+1 ≥ 2, 1 ≤ xn ≤ 2

}
Thus, (xn) is a bounded andmonotonically decreasing sequence. Consequently,
by theMontoneConvergence theorem, (xn) is a convergent sequence. Let limxn =
x. Then,

x = 1
2

(
x+ 2

x

)
2x = x+ 2

x
x = 2

x
x2 = 2

x =
√
2 {since 1 ≤ x ≤ 2}

(b) Modify the sequence (xn) so that it converges to
√
c.

Let xn+1 =
1

2

�
xn +

c

xn

�
. This sequence converges to

√
c.

Abbott 2.4.6. (Arithmetic-Geometric Mean).

(a) Explain why √xy ≤ (x + y)/2 for any two positive real numbers x and y.
(The geometric mean is always less than or equal to the arithmetic mean).

Proof.

31



We have:

(x− y)2 ≥ 0

for any two real numbers x and y. Thus,

(x+ y)2 − 4xy ≥ 0(
x+y
2

)2 ≥ xy
x+y
2 ≥ √xy

(b) Now let 0 ≤ x1 ≤ y1 and define

xn+1 =
√
xnyn and yn+1 =

xn + yn
2

Show that limxn and lim yn both exist and are equal.

Proof.

We claim that 0 ≤ xn ≤ yn for all n ∈ N. P (1) is true. 0 ≤ x1 ≤ y1. We assume
that P (n) is true. We are interested to prove that 0 ≤ xn+1 ≤ yn+1.

We have that:

GM ≤ AM

Thus,

√
xnyn ≤ (xn+yn)

2
∴ xn+1 ≤ yn+1

Moreover, since xn and yn are non-negative, xn+1 ≥ 0 and so 0 ≤ xn+1 ≤ yn+1.
Thus, by the principle of mathematical induction,

0 ≤ xn ≤ yn ∀n ∈ N

Also, consider the sequence (yn).

yn+1 = xn+yn

2

≤ yn+yn

2 = yn

Consequently, (yn) is a monotonically decreasing and bounded below by 0. By
the Montone Convergence Theorem, lim yn exists.
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Furthermore, if we consider the sequence (xn):

xn+1 =
√
xnyn

≥ √xn · xn = xn

So, (xn) is a monotonically increasing sequence and bounded above by y1. By
the Montone Convergence Theorem, limxn exists.

Consider the expression yn+1 = (xn + yn)/2. Taking limits on both sides, we
have:

lim yn+1 = 1
2 (limxn + lim yn)

lim yn = 1
2 (limxn + lim yn) {since lim yn = lim yn+1}

1
2 lim yn = 1

2 limxn

lim yn = limxn

Abbott 2.4.7. Let (an) be a bounded sequence.

(a) Prove that the sequence defined by yn = sup{ak : k ≥ n} converges.

Proof.

We are given that (an) is a bounded sequence. Consider the set:

A = {an : n ∈ N}

By Axiom Of Completeness (AoC), A has an infimum and supremum. Thus,
supA and inf A exist.

We propose that (yn) is a decreasing sequence. We have

yn = sup{ak : k ≥ n}
= max {an, sup{ak : k ≥ n+ 1}}
≥ sup{ak : k ≥ n+ 1}
= yn+1

By the principle of mathematical induction, yn ≥ yn+1 for all n ∈ N.

Thus, (yn) is a monotonically decreasing sequence.

Moreover, define (zn) = inf{ak : k ≥ n}. We know that, inf{ak : k ≥ n} ≥
inf{ak : k ≥ 1} = inf A. Thus, we can write:

supA = y1 ≥ . . . ≥ yn ≥ . . . ≥ zn ≥ . . . ≥ z1 = inf A
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Thus, the sequence (yn) is bounded by inf A. By the Montone Convergence
Theorem, (yn) is a convergent sequence and lim

n→∞
yn exists.

(b) The limit infimum of (an) or lim inf an is defined by:

lim inf an = lim zn

Since, (zn) is a montonically increasing and bounded sequence, by the Mono-
tone Convergence Theorem, (zn) is a convergent sequence.

(c) Prove that lim inf an ≤ lim sup an for every bounded sequence, and give and
example of a sequence for which the inequality is strict.

Proof.

We have that zn ≤ yn for all n ∈ N. Since both (yn) and (zn) are convergent
sequences, by the Order Limit Theorem,

lim zn ≤ lim yn
lim inf an ≤ lim sup an

Consider the sequence

(an) = (−1)n
�
1 +

1

n

�

We observe that:

lim sup an = 1
lim inf an = −1

Thus, for this sequence, lim inf an < lim sup an.

(d) Show that lim inf an = lim sup an if and only lim an exists. In this case, all
three share the same value.

Proof.

=⇒ direction.

We are given that lim inf an = lim sup an. We are interested to prove that lim an
exists.

Let lim inf an = lim sup an = a. We know that:

inf{ak : k ≥ n} ≤ an ≤ sup{ak : k ≥ n}
zn ≤ an ≤ yn
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Since, lim zn = lim yn, by the Squeeze Theorem, lim an exists and lim an = l

⇐= direction.

For the sake of an example consider the sequence (an) =
(−1)n

n
. By the Alge-

braic limit theorem,

lim an = lim(−1)n · lim 1

n
= lim(−1)n · 0 = 0.

Pick an arbitrary ϵ > 0. Since (an) → a, there exists N ∈ N, such that for all
n > N :

an ∈ (a− ϵ/2, a+ ϵ/2)

Since yN = sup
k≥N
{ak : k ∈ N}, wemust have yN ∈ [a−ϵ/2, a+ϵ/2] ⊆ (a−ϵ, a+ϵ).

In fact, for all n > N , yn ∈ (a− ϵ, a+ ϵ).

Also, since zN = inf
k≥N
{ak : k ∈ N}, we must have zN ∈ [a − ϵ/2, a + ϵ/2] ⊆

(a− ϵ, a+ ϵ). In fact, for all n > N , zn ∈ (a− ϵ, a+ ϵ).

Consequently, lim yn = a and lim zn = a. And we have:

lim yn = lim zn = lim an = a

Abbott 2.4.8. For each series, find an explicit formula for the sequence of the
partial sums and determine if the series converges.

(a)
∞∑

n=1

1

2n

Proof.

Let (sn) be the sequence of partial sums. We have:

sk =
∑k

n=1
1
2n

= 1
2 ·

(1−(1/2)n)
1−(1/2)

= 1− 1
2n

The sequence (sn) is monotonically increasing sequence and bounded above by
1. Consequently, the infinite series is convergent.
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(b)
∞∑

n=1

1

n(n+ 1)

Proof.

Let (sn) be the sequence of partial sums. We have:

sk =
∑∞

n=1
1

n(n+1)

= 1
1·2 + 1

2·3 + . . .+ 1
k(k+1)

= 1
1 −

1
2 + 1

2 −
1
3 + . . .+ 1

k −
1

k+1

= 1
1 − ��

1
2 + ��

1
2 − ��

1
3 + . . .+ ��

1
k −

1
k+1

= 1− 1
k+1

This is monotonically increasing sequence bounded above by 1. Hence, the
infinite series is convergent.

(c)
∞∑

n=1

log

�
n+ 1

n

�

Proof.

Again this can bewritten as a telescopic sum. Let (sn) be the sequence of partial
sums. Then,

sk =
∑k

n=1 log
(
n+1
n

)
= log 2

1 + log 3
2 + . . .+ log k+1

k
= log 2− log 1 + log 3− log 2 + . . .+ log k + 1− log k
= log k + 1

However, (sk) is unbounded and hence it is a divergent series.

Abbott 2.4.9. Complete the proof of the Cauchy condensation test theorem

2.4.6. by showing that if the series
∞∑

n=0

2nb2n diverges, then so does
∞∑

n=1

bn. Ex-

ample 2.4.5. may be a useful reference.

Proof.

(⇐=direction)

We know that bn ≥ 0 and decreasing. Let (sn) be the sequence of partial sums

of the infinite series
∞∑

n=0

bn. We have:
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s2k = b1 + b2 + b3 + . . .+ b2k
= b1 + b2 + (b3 + b4) + (b5 + b6 + b7 + b8) + . . .+ (b2k−1+1 + . . .+ b2k)
≥ b1 + b2 + (b4 + b4) + (b8 + b8 + b8 + b8) + . . .+ 2k−1b2k
= b1 +

1
2

(
2b2 + 4b4 + 8b8 + . . .+ 2kb2k

)
= b1

2 +
∑k

n=0 2
nb2n

Since
k∑

n=0

2nb2n is unbounded,
∞∑

n=0

bn is unbounded and divergent.

Abbott 2.5.1. Give an example of each of the following, or argue that such a
request is impossible.

(a) A sequence that has a subsequence that is bounded but contains no subse-
quence that converges.

Proof.

This request is impossible. Assume that a sequence (an) contains a bounded
subsequence (ank

). By the Bolzanno Weierstrass Theorem, every bounded se-
quence has atleast one convergent subsequence. So, (ank

) has atleast one sub-
sequence (anki

) that is convergent. Since (anki
) is a subsequence of the original

sequence (an), the given request is impossible.

(b) A sequence that does not contain 0 or 1 as a term but contains subsequences
converging to each of these values.

Proof.

Consider the sequence:

(an) =

�
1

2
,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
, . . .

�

where the odd term is given by a2n−1 =
1

n
and the even term is given by a2n =

1− 1

n
.

(c) A sequence that contains subsequences converging to every point in the
infinite set {1, 1/2, 1/3, 1/4, 1/5, . . . }.

Proof.

Consider the sequence:
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�
1, 1,

1

2
, 1,

1

2
,
1

3
, 1,

1

2
,
1

3
,
1

4
, . . .

�

(d) A sequence that contains subsequences converging to every point in the
infinite set {1, 1/2, 1/3, 1/4, 1/5, . . . } and no subsequences converging to points
outside of this set.

Solution.

This request is impossible. Consider the sequence
�
1, 1,

1

2
, 1,

1

2
,
1

3
, 1,

1

2
,
1

3
,
1

4
, . . .

�

This contains a subsequence that converges to 0.

Abbott 2.5.2. Decide whether the following propositions are true or false, pro-
viding a short justification for each conclusion.

(a) If every proper subsequence of (xn) converges, then (xn) converges as well.

Solution.

Consider the tail subsequence (xn)
∞
n=2. Let x = lim{xn}∞n=2. Pick an arbitrary

ϵ > 0. There exists N ∈ N, such that for all n > N , xn ∈ (x − ϵ, x + ϵ).
Consequently, (xn) is a convergent sequence.

(b) If (xn) contains a divergent subsequence, then (xn) diverges.

Solution.

This proposition is true. We proceed by contradiction.

We are given that (xn) contains a divergent subsequence. Assume that (xn) is
a convergent sequence.

By Theorem 2.5.2, every subsequence of (xn) converges to the same limit as the
original sequence. This contradicts the fact that, (xn) contains a divergent sub-
sequence. Hence, our initial assumption is false. (xn) is a divergent sequence.

(c) If (xn) is bounded and diverges, then there exist two subsequences of (xn)
that converge to different limits.

Proof.

This proposition is true.

We are given that (xn) is a bounded sequence and diverges. We proceed by
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contradiction.

Assume that all subsequences of (xn) converge to the same limit l. Then the
tail subsequence {xn}∞n=2 converges to l. But this implies that (xn) is a conver-
gent sequence and (xn) → l. This contradicts the fact that (xn) is a divergent
sequence.

Hence, our initial assumption is false. There exist two subsequences of (xn) that
converge to two different limits.

(d) If (xn) is monotone and contains a convergent subsequence, then (xn) con-
verges.

Proof.

This proposition is true.

Let (xnk
) be a subsequence of (xn). Since (xnk

) is convergent, it is bounded.
Thus, ∃M > 0 for all k ∈ N, such that |xnk

| ≤ M . Since, (xn) is monotone, we
must have:

xnk
≤ xnk+1 ≤ xnk+2 ≤ . . . ≤ xnk+1

or

xnk
≥ xnk+1 ≥ xnk+2 ≥ . . . ≥ xnk+1

Since, xnk
and xnk+1

belong to the closed interval [−M,M ], we must have that
all intermediate terms xnk+1, . . . , xnk+1−1 of the sequence (xn) also lie in the
closed interval [−M,M ]. So, this is true for all of (xn). Consequently, (xn) is a
bounded sequence.

By the Montone Convergence Theorem, (xn) is convergent.

Abbott 2.5.3. (a) Prove that if an infinite series converges, then the associative
property holds. Assume a1+a2+a3+a4+a5+ . . . converges to a limit L (that
is the sequence of partial sums (sn) → L). Show that any regrouping of the
terms

(a1 + a2 + . . .+ an1
) + (an1+1 + . . .+ an2

) + (an2+1 + . . .+ an3
) + . . .

leads to a series that also converges to L.

Proof.
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The sequence of partial sums (sn) → L. By Theorem 2.5.2, every subsequence
of a convergent equence converges to the same limit as the original sequence.
Therefore, the subsequence

(sn1
, sn2

, sn3
, . . . )

converges to L. That is the sequence:

(a1 + . . .+ an1
)

(a1 + . . .+ an1) + (an1+1 + . . .+ an2)
(a1 + . . .+ an1) + (an1+1 + . . .+ an2) + (an2+1 + . . .+ an3)
...

Consequently, any regrouping of the terms of the infinite series leads to a series
that also converges to L.

(b) Compare this result to the example discussed at the end of section 2.1where
infinite addition was shown not be associative. Why doesn’t our proof in (a)
apply to this example?

Proof.

Our proof in (a) applies only to an infinite series if it is convergent. The example
at the end of section 2.1 is a divergent series. Consider the sequence of partial
sums (sn):

(−1, 0,−1, 0,−1, 0, . . . )

which as we know is divergent.

Example 2.5.4. The Bolzano-Weierstrass Theorem is extremely important and
so is the strategy employed in the proof. To gain some more experience with
this technique, assume that the Nested Interval Property (NIP) is true and use
it to provide a proof of the Axiom of Completeness. To prevent the argument
from being circular, assume also that (1/2n) → 0. (Why precisely is this last
assumption needed to avoid circularity)?

Proof.

Let S be a subset ofR bounded above byM . Our claim is that supS exists.

40



b1 = M

x = supS

a1

I1

I2

I3

If S is a finite subset of R, then supS = max{x : x ∈ S}.

Let’s assume that S is an infinite set. Let I1 = [a1, b1] be a closed interval such
that b1 = M , a1 < b1 with [a1, b1] containing an infinite number of terms of S.
We bisect I1 into two intervals L1 = [a1, (a1 + b1)/2] and R1 = [(a1 + b1)/2, b1].

We define I2 = L1 if R1 ∩ S = ∅ else I2 = R1. In general,

Ik+1 =

¨
Lk if Rk ∩ S = ∅
Rk otherwise

Since

I1 ⊇ I2 ⊇ I3 ⊇ . . . ⊇ Ik ⊇ Ik+1 ⊇ . . .

by the Nested Interval Property (NIP) there exists an element s ∈
∞⋂
k=1

Ik.

Our claim is that s = supS. Since (1/2)n → 0, for all ϵ > 0, there exists N such

that for all n > N , l(In) =
l(I1)

2n
< ϵ. Thus, lim an = lim bn = s.

(1) s is an upper bound for S.

It is clear that all bn’s are an upper bound S. By the Order Limit Theorem, x ≤ s
for all x ∈ S.

(2) Ik ∩ S ̸= ∅ for all k ∈ N. Thus, for all ϵ > 0, ∃x ∈ Ik ∩ S such that s− ϵ < x.
Consequently, by lemma 1.3.8, s = supS.

Abbott 2.5.5. Assume that (an) is a bounded sequence with the property that
every convergent subsequence of (an) converges to the same limit a ∈ R. Show
that (an)must converge to a.

Proof.
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We are given that (an) is a bounded sequence with the property that every con-
vergent subsequence (an) converges to the same limit a ∈ R. We proceed by
contradiction.

Assume that (an) is a divergent sequence.

From 2.5.2 (c), since (an) is a bounded and divergent sequence, there exist
atleast two subsequences of (an) that converge to different limits. This contra-
dicts the fact that every convergent subsequence of (an) converges to the same
limit a ∈ R.

Hence, our initial assumption is false. (an)must be a convergent sequence.

Abbott 2.5.6. Use a similar strategy to the one in example 2.5.3. to show that
b1/n exists for all b ≥ 0 and find the value of the limit.

Solution.

Assume that 0 ≤ b < 1. Then, since

b ≤ b1/2 ≤ b1/3 ≤ b1/4 ≤ . . .

(bn) is a monotonically increasing sequence and bounded by 1, (bn) is a conver-
gent sequence. Let lim bn = l. Since, lim b2n = lim

�
b1/n

�1/2
=
√
l, we have that

√
l = l. So, l = 1.

Assume that b ≥ 1. Then, since

b ≥ b1/2 ≥ b1/3 ≥ b1/4 ≥ . . .�
b1/n

�
is a monotonically decreasing sequence bounded below by 1. Again,�

b1/n
�
→ 1.

Abbott 2.5.7. Extend the result proved in example 2.5.3 to the case |b| < 1, that
is show that lim bn = 0 if and only if −1 < b < 1.

Proof.

(=⇒) direction.

Assume that lim bn = 0. Then, lim |bn| = 0. We proceed by contradiction.
Assume that |b| ≥ 1. Then:

1 ≤ |b| ≤ |b|2 ≤ |b|3 ≤ . . . ≤ |b|n ≤ . . .
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Since (|b|n) is convergent, by the Order Limit Theorem:

1 ≤ lim |b|n

This contradicts the fact that lim |b|n = 0.

(⇐=) direction.

Assume that −1 < b < 0. Pick an arbitrary ϵ > 0. We pick N ∈ N such that,

|b|N < ϵ

that is :

N log |b| < ϵ
∴ N > ϵ

log |b|

Then, for all n > N , we have:

bn ∈ (−ϵ, ϵ)

Consequently, lim bn = 0.

If b = 0, then the constant sequence (0, 0, 0, . . . ) converges to 0.

Abbott 2.6.1. Suppy a proof for the Theorem 2.6.2.

Every convergent sequence is a Cauchy sequence.

Proof.

Let (xn) be a convergent sequence. Assume that (xn) → x. Pick an arbitrary
ϵ > 0. There exists N ∈ N, for all n ≥ N , the distance

|xn − x| < ϵ/2

Now, consider the expression |xn − xm|wherem,n ≥ N . We have:

|xn − xm| = |(xn − x)− (xm − x)|
≤ |xn − x|+ |xm − x| {Triangle Inequality}
< ϵ

2 + ϵ
2 = ϵ

Thus, (xn) is a Cauchy sequence.
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Abbott 2.6.2. Give an example of each of the following or argue that such a
request is impossible.

(a) A Cauchy sequence that is not monotone.

Proof.

Consider an =
(−1)n

n
. This is a convergent sequence and hence Cauchy. More-

over, it is not monotone.

(b) A Cauchy sequence with an unbounded subsequence.

Solution.

This request is impossible. By Lemma 2.6.3, Cauchy sequences are bounded.
Thus, there exists M > 0, for all n ∈ N, such that |xn| ≤ M . Let (xnk

) be any
arbitrary subsequence of (xn). Then it follows that, |xnk

| ≤M for all k ∈ N.

Thus, all subsequences of a Cauchy sequence are bounded.

(c) A divergent montone sequence with a Cauchy subsequence.

Solution.

This request is impossible. A divergent monotone sequence cannot contain a
Cauchy subsequence. We proceed by contradiction.

Let (xn) be a divergentmonotone sequence. Assume that, there exists a Cauchy
subsequence (xnk

) of (xn).

We know, from theorem 2.6.4, that if a sequence is convergent⇐⇒the sequence
is Cauchy. So, Cauchy sequences are convergent. Thus, if a sequence is diver-
gent, it is not Cauchy. Thus, (xn) is not Cauchy.

Carefully negating the definition of a Cauchy sequence, we have that ∃ϵ0 > 0,
for all N ∈ N, such that for some n > m ≥ N , it follows that |xn − xm| ≥ ϵ0.

We know that (xnk
) is Cauchy. Pick ϵ = ϵ0. There exists C ∈ N, such that for

all nk+1 > nk ≥ C, it follows that |xnk+1
− xnk

| < ϵ0.

Since (xn) is monotone, it follows that all the intermediate terms {xn : n ∈
N, nk < n < nk+1} lie between xnk

and xnk+1
on the real line. Consequently,

the distance amongst them must be smaller than ϵ0. Thus, we conclude that,
for all n > m ≥ C, |xn − xm| < ϵ0.

This is a contradiction. Our initial assumption is false.

(d) An unbounded sequence containing a subsequence that is Cauchy.
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Consider the sequence formed by juxtaposing the terms of the sequence (an) =
(0, 0, 0, 0, . . . )which isCauchy and (bn) = (1, 2, 3, 4, 5, . . . )which is unbounded.
The shuffle sequence (cn) = (0, 1, 0, 2, 0, 3, . . . ) is unbounded and contains a
Cauchy subsequence.

Abbott 2.6.3. If (xn) and (yn) are Cauchy sequences, then one easyway to prove
that (xn + yn) is Cauchy is to use the Cauchy criterion. By theorem 2.6.4, (xn)
and (yn)must be convergent, and the Algebraic Limit Theorem the implies that
(xn + yn) is convergent and hence Cauchy.

(a) Give a direct argument that (xn + yn) is a Cauchy sequence that does not
use the Cauchy criterion or the Algebraic Limit Theorem.

Proof.

Pick an arbitrary ϵ > 0.

Since (xn) is a Cauchy sequence, there exists N1 > 0, such that for all n > m ≥
N1, we have |xn − xm| < ϵ/2.

Since (yn) is a Cauchy sequence, there exists N2 > 0, such that for all n > m ≥
N2, we have |yn − ym| < ϵ/2.

Consider two arbitrary terms zm, zn of the sum sequence (zn) = (xn+yn), such
thatm,n ≥ N = max{N1, N2}. We have:

|zn − zm| = |xn + yn − (xm + ym)|
≤ |xn − xm|+ |yn − ym| {Triangle Inequality}
< ϵ

2 + ϵ
2 = ϵ

Thus, by definition, (zn) is a Cauchy sequence.

(b) Do the same for the product (xnyn).

Proof.

Pick an arbitrary ϵ > 0.

Consider two arbitrary terms zm, zn of the product sequence (zn) = (xnyn). We
have:

|zn − zm| = |xnyn − xmym|
= |xnyn − xmyn + xmyn − xmym|
≤ |xnyn − xmyn|+ |xmyn − xmym| {Triangle Inequality}
= |yn||xn − xm|+ |xm||yn − ym|

Since (xn) and (yn) are Cauchy sequences and Cauchy sequences are bounded,
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it follows that (xn) and (yn) are bounded. There exists M1 > 0, for all n ∈ N,
such that |xn| ≤M1. There exists M2 > 0, for all n ∈ N, such that |yn| ≤M2.

Since (xn) is a Cauchy sequence, there exists N1 > 0, such that for all n > m ≥
N1, we have |xn − xm| < ϵ/2M2.

Since (yn) is a Cauchy sequence, there exists N2 > 0, such that for all n > m ≥
N2, we have |yn − ym| < ϵ/2M1.

Thus, for all n > m ≥ N = max{N1, N2}, we can write:

|zn − zm| ≤ |yn||xn − xm|+ |xm||yn − ym|
< M2 · ϵ

2M2
+M1 · ϵ

2M1
= ϵ

Consequently, (zn) is Cauchy.

Abbott 2.6.4. Let (an) and (bn) be Cauchy sequences. Decide whether each of
the following sequences is a Cauchy sequence justifying each conclusion.

(a) cn = |an − bn|.

Proof.

If (an) and (bn) are Cauchy sequences, by the Cauchy criterion, (an) and (bn)
are convergent. Applying the algebraic limit theorem, (an− bn) is a convergent
sequence. Moreover, if (xn) is a convergent sequence, then from Exercise 2.3.10,
|xn| is a convergent sequence. Thus, |an−bn| is a convergent sequence, and there
Cauchy.

(b) cn = (−1)nan.

This conclusion is false. Consider the counterexample:

cn = (−1)n
�
1 +

1

n

�
where an = 1+

1

n
. (an) is Cauchy, but (cn) is not a Cauchy

sequence.

(c) cn = [[an]] where [[x]] is the greatest integer less than or equal to x.

Proof.

This proposition is false. Consider the sequence an =
(−1)n

n
.

(an) =

�
−1, 1

2
,−1

3
,
1

4
,−1

5
, . . .

�

so (an)→ 0 whilst
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(cn) = (−1, 0,−1, 0,−1, 0, . . . )

so (cn) is not a Cauchy sequence.

Abbott 2.6.5. Consider the following (invented) definition: A sequence (sn)
is pseudo-Cauchy if for all ϵ > 0, there exists an N such that if n ≥ N , then
|sn+1 − sn| < ϵ.

Decide for which one of the following two propositions is actually true. Supply
a proof for the valid statement and a counterexample for the other.

(i) Pseudo-Cauchy sequences are bounded.

Solution.

This proposition is false.

Consider the sequence of partial sums sn =

n∑
k=1

1

n
. This is a pseudo-cauchy

sequence. The difference between successive terms can be made as small as
possible. However, the sum keeps increasing ever-so slowly, and does not stop
even if you took one million, one billion or one trillion terms.

image[mc://users/ec70f086d36050429d70122065f9a453/contents/cd362e2d1daba4cb43f2ec8530e0dcae-
1oDju9eE1t-harmonicseries.png]

(ii) If (xn) and (yn) are pseudo-Cauchy, then (xn + yn) is Pseudo-Cauchy as
well.

This proposition is true.

Pick an arbitrary ϵ > 0.

Since (xn) is pseudo-cauchy, ∃N1 such that for all n ≥ N1, we have:

|xn+1 − xn| < ϵ/2

Since (yn) is pseudo-cauchy, ∃N2 such that for all n ≥ N2, we have:

|yn+1 − yn| < ϵ/2

Let N = max{N1, N2}.

Then, for all n ≥ N , we have:
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|(xn+1 + yn+1)− (xn + yn)| = |(xn+1 − xn) + (yn+1 − yn)|
≤ |(xn+1 − xn)| + |(yn+1 − yn)| {Triangle Inequality}
< ϵ

2 + ϵ
2 = ϵ

Thus, (xn + yn) is pseudo-Cauchy.

Abbott 2.7.1. Proving the Alternating Series Test (Theorem 2.7.7) amounts to
show that the sequence of partial sums

sn = a1 − a2 + a3 − . . .± an

converges. Different characterizations of completeness lead to different proofs.

(a) Prove theAlternating Series Test by showing that (sn) is a Cauchy sequence.

Proof.

Firstly, we have a1 ≥ an for all n ≥ 1. Taking limits on both sides, by the Order
Limit theorem, a1 ≥ lim an = 0. Similarly, we can conclude

(a) Consider the distance |sn − sm|. We are interested to make this distance as
small as we please.

|sn − sm| = |(−1)mam+1 + . . .+ (−1)nan|

(b) Consider the sequence of partial sums (s1, s2, s3, s4, . . . )

Let S = {s1, s2, s3, . . . }.

s0 = 0 s1s2 s3s4 s5. . . . . .

The sequence of partial sums (sn)

Define I1 = [0, s1]. We bisect the interval I1 into two halves L1 and R1. We let:

I2 =

¨
R1 if R1 ∩ S contains an infinite number of points
L1 otherwise

In general, we let:

Ik+1 =

¨
Rk if Rk ∩ S contains an infinite number of points of S
Lk otherwise
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We have Ik ⊇ Ik+1. By the Nested Interval Property, there exists s ∈
∞⋂
k=1

Ik.

Our claim is that (sn)→ s. Pick an arbitrary ϵ > 0.

We can pick K such that:

l(IK) =
s1

2K−1
< ϵ

Then, for all k > K, since s ∈ Ik, we must have that |sk−s| < ϵ. Thus, (sk)→ s.

(c) We find that:

s2k+2 = s2k + (a2k+1 − a2k+2)
≥ s2k {since (a2k+1 − a2k+2) ≥ 0}

And,

s2k+3 = s2k+1 − a2k+2 + a2k+3

= s2k+1 − (a2k+2 − a2k+3)
≤ s2k+1 {since (a2k+2 − a2k+3) ≥ 0}

Thus, the subsequence (s2n) is amonotonically increasing sequence. And (s2n+1)
is a monotonically decreasing sequence. Moreover,

s2n = s2n+1 − a2n+1

≤ s2n+1

And therefore we conclude:

0 ≤ s2 ≤ s4 ≤ s6 ≤ . . . ≤ s2n ≤ s2n+1 ≤ . . . ≤ s5 ≤ s3 ≤ s1

Since (s2n) is monotonically increasing and bounded above by all (s2n+1)’s, by
the Monotone Convergence Theorem (MCT), (s2n) is a convergent sequence.

Since (s2n+1) is monotonically increasing and bounded below by all (s2n)’s, by
theMonotone Convergence Theorem (MCT), (s2n+1) is a convergent sequence.

The limits of (s2n) and (s2n+1) could be different. We will prove that the limits
are same.

Let s = lim s2n. Pick an arbitrary ϵ > 0. Consider the ϵ−neighbourhood (s −
ϵ, s+ ϵ).

There exists N1 ∈ N, such that for all n ≥ N1, s2n ∈ (s− ϵ, s+ ϵ).

There exists N2 ∈ N, such that for all n ≥ N2, |a2n+1| < ϵ/2
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Let N = max{N1, N2}. Then, 2N + 1 ≥ 2N1 + 1 > 2N1 and 2N + 1 ≥ 2N2 + 1.
Consider the distance:

|s2N+1 − s| = |s2N+1 − s2N + s2N − s|
≤ |s2N+1 − s2N |+ |s2N − s|
= |a2N+1|+ |s2N − s|
< ϵ

2 + ϵ
2 = ϵ

So, s2N and s2N+1 belong to (s− ϵ, s+ ϵ). Since,

s− ϵ < s2N ≤ s2N+2 ≤ . . . ≤ s2N+3 ≤ s2N+1 < s+ ϵ

we have that for all n ≥ N , sn ∈ (s− ϵ, s+ ϵ). Consequently, (sn)→ s.

Abbott 2.7.2. Decidewhether each of the following series converges or diverges:

(a)
∞∑

n=1

1

2n + n

We have:
0 ≤ 1

2n + n
≤ 1

2n

Since the infinite series
∞∑

n=1

1

2n
converges, by the comparision test,

∞∑
n=1

1

2n + n

also converges.

(b)
∞∑

n=1

sin(n)

n2
.

We have:

0 ≤ | sinn|
n2

≤ 1

n2

Since
∞∑

n=1

1

np
converges if p > 1, by the comparision test,

∞∑
n=1

| sinn|
n2

converges.

By the absolute convergence test,
∞∑

n=1

sinn

n2
also converges.

(c) 1− 3

4
+

4

6
− 5

8
+

6

10
− 7

12
+ . . .

Solution.
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The general term of this infinite series is ak =

∞∑
k=1

(−1)k+1 k + 1

2k
.

We know that, if
∞∑

n=1

an converges, an → 0. Consequently, if lim an ̸= 0, then

∞∑
n=1

an diverges. This is called the nth term test. Clearly, both lim(−1)n and

lim
n+ 1

2n
are non-zero, and hence by the nth term test, this series diverges.

(d) 1 + 1

2
− 1

3
+

1

4
+

1

5
− 1

6
+

1

7
+

1

8
− 1

9
+ . . .

Solution.

We have:

S = 1 + 1
2 −

1
3 + 1

4 + 1
5 −

1
6 + 1

7 + 1
8 −

1
9 + . . .

> 1 + 1
3 −

1
3 + 1

4 + 1
6 −

1
6 + 1

7 + 1
9 −

1
9 + . . .

= 1 + 1
4 + 1

7 + 1
9 + 1

12 + 1
15 + 1

18 + 1
21 + . . .

> 1 + 1
9 + 1

9 + 1
9 + 1

18 + 1
18 + 1

18 + . . .
= 1 + 1

3 + 1
6 + 1

9 + 1
12 + . . .

= 1 + 1
3

(
1 + 1

2 + 1
3 + 1

4 + . . .
)

Since the harmonic series is unbounded, S is unbounded and divergent.

(e) 1− 1

22
+

1

3
− 1

42
+

1

5
− 1

62
+

1

7
− 1

82
+ . . .

Solution.

Let (an) be the sequence of terms

�
1,

1

22
,
1

3
,
1

42
,
1

5
,
1

62
, . . .

�

Clearly, a1 ≥ a2 ≥ a3 ≥ a4 ≥ . . . . And (an) → 0. Therefore by the alternating

series test,
∞∑

n=1

(−1)n+1an is convergent.

Abbott 2.7.3. (a) Provide the details for the proof of the Comparision Test using
the Cauchy Criterion for Series.

(b) Give another proof for the Comparison test, this time using the Monotone
Convergence Theorem.

Proof.
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(a) We have that 0 ≤ ak ≤ bk for all k ∈ N.

(i) Suppose that
∞∑
k=0

bk is convergent.

Since,
∞∑
k=0

bk converges, by the Cauchy Criterion, for all ϵ > 0, ∃N ∈ N, such

that, for all m,n ≥ N , we have:

|bm+1 + . . .+ bn| < ϵ

Since, 0 ≤ ak ≤ bk, it follows that:

|am+1 + . . .+ an| ≤ |bm+1 + . . .+ bn| < ϵ

Consequently, by the Cauchy criterion,
∞∑

n=1

ak converges.

(ii) Next, suppose that
∞∑
k=0

ak is divergent.

There exists ϵ0 > 0, for all N ∈ N, such that for some m,n ≥ N , we have:

|am+1 + . . .+ an| ≥ ϵ0

Since, |bm+1 + . . .+ bn| ≥ |am+1 + . . .+ an|, it follows that, for somem,n ≥ N :

|bm+1 + . . .+ bn| ≥ |am+1 + . . .+ an| ≥ ϵ0

Consequently, by the Cauchy criterion,
∞∑

n=1

bk diverges.

(b) Give another proof of the Comparison Test, this time using the Monotone
Convergence Theorem.

Proof.

(1) We have that 0 ≤ ak ≤ bk. Let (αn) be the sequence of partial sums of the

infinite series
∞∑
k=0

ak and let (βn) be the sequence of partial sums of the infinite
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series
∞∑
k=0

bk.

We know that (βn) is convergent. Let β = limβn. We have:

αn ≤ βn ≤ β

since bn ≥ 0 for all n ∈ N.

Thus, the sequence (αn) is monotonically increasing and bounded by β. By the
Monotone Convergence Theorem, the sequence of partial sums (αn) is conver-
gent.

(2) Suppose that (αn) is divergent. Since, (αn) is monotone and divergent, it is
unbounded. Thus, (βn) is unbounded and therefore, (βn) is divergent.

Abbott 2.7.4. Give an example of each or explain why the request is impossible
referencing the proper theorem(s).

(a) Two series
∑

xn and
∑

yn that both diverge but where
∑

xnyn con-
verges.

Solution.

Consider
∑

(−1)n+1 and
∑ 1

n
. Both these series diverge, but the alternating

harmonic series
∑ (−1)n+1

n
converges.

(b) A convergent series
∑

xn and a bounded sequence (yn) such that
∑

xnyn
diverges.

Consider the infinite series
∑ (−1)n+1

n
and the sequence (yn) = (−1)n+1. The

alternating harmonic series
∑ (−1)n+1

n
is convergent and the sequence (yn) =

(−1)n+1 is bounded in [−1, 1]. But, the infinite series
∑ (−1)2n+2

n
=
∑ 1

n
diverges.

(c) Two sequences (xn) and (yn)where
∑

xn and
∑

(xn + yn) both converge
but

∑
yn diverges.

This request is impossible.

53



∑
yn =

∑
(xn + yn)− xn

=
∑

(xn + yn)−
∑

xn

By the Algebraic Limit Theorem for infinite series, if
∑

(xn + yn) → A and∑
xn → B, then

∑
yn → A−B.

(d) A sequence (xn) satisfying 0 ≤ xn ≤ 1/n where
∑

(−1)nxn diverges.

Abbott 2.7.5. Now that we have proved the basic facts about the Geometric
series, supply a proof for the Corollary 2.4.7.

Proof.

Corollary 2.4.7. The series
∞∑

n=1

1/np converges if and only if p > 1.

Proof.

=⇒ direction.

Let bn =
1

np
.

By the Cauchy condensation test, since
∞∑

n=0

bn converges, we have that
∞∑

n=0

2nb2n

also converges.

Thus,

S = b1 + 2b2 + 22b4 + 23b8 + . . .

= 1
1p + 2

2p + 22

4p + 23

8p + 24

16p + . . .
= 1 + 1

2p−1 + 1
(2p−1)2

+ 1
(2p−1)3

+ . . .

But the latter is a geometric series which converges if and only if |r| < 1. Since
1

2p−1
> 0 for all p ∈ R, we must have 0 <

1

2p−1
< 1. Thus, 2p−1 > 1 so p−1 > 0

and therefore p > 1.

⇐= direction.

This direction should be trivial.

Abbott 2.7.6. Let’s say that a series subverges if the sequence partial sums con-
tains a subsequence that converges. Consider this (invented) definition for a
moment, and then decide which of the following statements are valid proposi-
tions about the subvergent series.
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(a) If (an) is bounded, then
∑

an subverges.

Proof.

This proposition is false.

Consider the constant sequence (an) = (1, 1, 1, 1, . . . ). (an) is a bounded se-
quence. Consider the sequence of partial sums of

∑
an.

(1, 2, 3, 4, . . . )

No subsequence of of the partial sums is convergent.

(b) All convergent series are subvergent.

This proposition is true.

Let (sn) be the sequence of partial sums of the infinite series
∑

an. Since (sn)
is convergent, so is (sn)∞n=2. Thus, (sn) is subvergent.

(c) If
∑
|an| subverges, then

∑
an subverges as well.

Let (sn) be the sequence of partial sums of the absolute value series
∑
|an| and

let (tn) be the sequence of partial sums of the series
∑

an.

Since (sn) subverges, there exists a subsequence (snk
) of (sn) that converges.

Pick an arbitrary ϵ > 0. By the Cauchy criterion, there exists N > 0, such that
for all m > l ≥ N , we have:

|snm
− snl

| < ϵ

Thus,

||anl+1|+ . . .+ |anm
|| < ϵ

But,
||anl+1|+ . . .+ |anm

|| = |anl+1| + . . . + |anm
|

From the triangle inequality, we know that,

|anl+1 + . . .+ anm
| ≤ |anl+1| + . . . + |anm

| < ϵ

Thus, for m > l ≥ N ,
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|tnm − tnl
| < ϵ

Thus, (tnk
) is Cauchy. Thus,

∑
an is subvergent.

(d) If
∑

an subverges, then (an) has a convergent subsequence.

This proposition is false.

Consider the sequence

(an) = (1,−1, 2,−2, 3,−3, 4,−4, . . . )

The sequence of partial sums (sn) of the infinite series
∑

an is:

(sn) = (1, 0, 2, 0, 3, 0, 4, 0, . . . )

The sequence of partial sums (sn) has a convergent subsequence, (0, 0, 0, 0, . . . ).
Hence, the infinite series

∑
an is subvergent. But, (an) has no convergent sub-

sequence.

Abbott 2.7.7. (a) Show that if an > 0 and limnan = l, with l ̸= 0, then the series∑
an diverges.

Firstly, since nan > 0, by the order limit theorem, l ≥ 0. We are given that l ̸= 0,
so l > 0. Pick ϵ = l/2. Since nan → l, there exists N ∈ N, such that for all
n ≥ N :

l − l

2
< nan < l +

l

2

that is:

0 <
l

2
< nan <

3l

2

Wemultiply the above inequality throughout by 1/n. Since n ̸= 0, and 1/n > 0,
we have:

0 <
l

2n
< an
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Now,
∞∑

n=N

l

2n
diverges and therefore by the comparison test,

∞∑
n=N

an is diver-

gent. Thus,
∞∑

n=1

an is divergent.

(b) Assume that an > 0 and limn2an exists. Show that
∑

an converges.

Let limn2an = l. Pick ϵ = |l|/2. There existsN ∈ N, such that for all n ≥ N , we
have:

0 ≤ |l|
2
≤ n2an ≤

3|l|
2

Multiplying throughout by 1/n2:

0 ≤ |l|
2n2
≤ an ≤

3|l|
2n2

Since
∞∑

n=N

3|l|
2n2

is convergent, by the comparison test,
∞∑

n=N

an is also convergent.

Consequently,
∞∑

n=1

an converges.

Abbott 2.7.8. Consider each of the following propositions. Provide short proofs
for those that are true and counterexamples for any that are not.

(a) If
∑

(an) converges absolutely, then
∑

a2n also converges absolutely.

Solution.

Pick an arbitrary ϵ > 0. Since
∑

an converges absolutely, there exists N ∈ N,
such that, for all n > m ≥ N :

|am+1|+ . . .+ |an| <
√
ϵ

Squaring both sides,

(|am+1|+ . . .+ |an|)2 < ϵ

We have:

|am+1|2 + . . .+ |an|2 ≤ (|am+1|+ . . .+ |an|)2
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So, for all n > m ≥ N , it follows that:

|am+1|2 + . . .+ |an|2 < ϵ

Consequently,
∑

a2n converges absolutely.

(b) If
∑

an converges and (bn) converges, then
∑

anbn converges.

Solution.

This proposition is false.

As a counterexample, let an =
(−1)n+1

√
n

and bn =
(−1)n+1

√
n

. And let a′n =
1√
n
.

Since a
′

1 ≥ a
′

2 ≥ . . . and (a′n)→ 0, by the alternating series test
∑

(−1)n+1a′n is
convergent. Thus,

∑
an is convergent and (bn) is a convergent sequence. But,∑

anbn =
∑ 1

n
is the harmonic series and we know this is divergent.

(c) If
∑

an converges conditionally, then
∑

n2an diverges.

Solution.

Let’s proceed by contradiction. We are given that
∑

an is convergent, but it is
not absolutely convergent. Assume that

∑
n2an converges.

Since
∑

n2an converges, by theorem 2.7.3, limn2an → 0. Pick ϵ = 1. There
exists N ∈ N, such that, for all n ≥ N , we have:

−1 < n2an < 1

that is,

0 ≤ n2|an| < 1

which implies:

0 ≤ |an| <
1

n2

By the comparison test, since
∞∑

n=N

1

n2
is convergent, it follows that

∞∑
n=N

|an| is

convergent, so adding a finite number N of terms to this,
∞∑

n=1

|an| should also
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be convergent. Thus,
∑

an is absolutely convergent. This is a contradiction.

Hence, our initial assumption is false.
∑

n2an diverges.

Abbott 2.7.9. Given a series
∞∑

n=1

an with an ̸= 0, the ratio Test states that if (an)

satisfies:

lim

∣∣∣∣an+1

an

∣∣∣∣ = r < 1

then the series converges absolutely.

(a) Let r′ satisfy r < r′ < 1. Explain why there exists an N such that n ≥ N
implies that |an+1| ≤ |an|r′.

Proof.

Pick ϵ = (r′ − r). There exists N ∈ N, such that for all n ≥ N , we have

r − (r′ − r) <

∣∣∣∣an+1

an

∣∣∣∣ < r + (r′ − r)

that is,

0 ≤
∣∣∣∣an+1

an

∣∣∣∣ < r′ < 1

or |an+1| < |an|r′.

(b) Why does |aN |
∑

(r′)n converge?

Proof.

Since |r′| < 1, the geometric series |aN |
∑

(r′)n is convergent.

(c) Now, show that
∑
|an| converges, and conclude that

∑
an converges.

Solution.

Consider the series
∞∑

n=1

|an|. Let (sn) be the sequence of partial sums of this

infinite series. Since the terms of this series are non-negative, (sn) is a mono-
tonically increasing sequence. Moreover, let n ≥ N , then we can write:
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sn = |a1|+ . . .+ |aN |+ |aN+1|+ . . .+ |an|
< |a1|+ . . .+ |aN |+ |aN |r′ + |aN |(r′)2 + . . .+ |aN |(r′)n−1

< |a1|+ . . .+ |aN |
∑∞

n=0(r
′)n

= |a1|+ . . .+ |aN−1|+ |aN |
1−r′

Thus, the sequence (sn)has an upper bound thatwe found above. By theMono-
tone convergence Theorem (MCT), (sn) is a convergent sequence. So,

∑
|an|

converges. By the absolute convergence test,
∑

an converges.

[Abbott 2.7.11] Find examples of two series
∑

an and
∑

bn both of which
diverge but for which

∑
min{an, bn} converges. To make it more challenging,

produce examples where (an) and (bn) are strictly positive and decreasing.

Proof.

Let (an) be the sequence (0, 1, 0, 1, 0, 1, . . . ) and (bn) be the sequence
�
1, 0,

1

2
, 0,

1

3
, 0, . . .

�
.

Both
∞∑

n=1

an and
∞∑

n=1

bn diverge. But,min{an, bn} = 0 and thus,
∞∑

n=1

min{an, bn}

converges.

This would also work, for example, with:

(an) =

�
1, 1,

1

32
,

�

(bn) = (1,
1

22
,
1

2
,

[Abbott 2.7.12] (Summation-by-parts). Let (xn) and (yn) be sequences, let
sn = x1 + x2 + . . . xn and set s0 = 0. Use the observation that xj = sj − sj−1 to
verify the formula

n∑
j=m

xjyj = snyn+1 − sm−1ym +

n∑
j=m

sj(yj − yj+1)

Proof.

We can simplify the expression on the RHS as follows:
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∑n
j=m sj(yj − yj+1) = smym − smym+1 + sm+1ym+1

−sm+1ym+2 + . . .+ snyn − snyn+1

= smym + ym+1(sm+1 − sm) + ym+2(sm+2 − sm+1)
+ . . .+ yn(sn − sn−1)− snyn+1

= smym − snyn+1 + ym+1xm+1 + ym+2xm+2 + . . .+ ynxn

= smym − snyn+1 +
∑n

j=m+1 xjyj∑n
j=m sj(yj − yj+1)− sm−1ym = smym − sm−1ym − snyn+1 +

∑n
j=m+1 xjyj

= ym(sm − sm−1)− snyn+1 +
∑n

j=m+1 xjyj∑n
j=m sj(yj − yj+1) + snyn+1 − sm−1ym = xmym +

∑n
j=m+1 xjyj∑n

j=m sj(yj − yj+1) + snyn+1 − sm−1ym =
∑n

j=m xjyj

[Abbott 2.7.13] (Abel’s Test). Abel’s test for convergence states that if the series
∞∑
k=1

xk converges and if (yk) is a sequence satisfying:

y1 ≥ y2 ≥ y3 ≥ . . . ≥ 0

then the series
∞∑
k=1

xkyk converges.

(a) Use Abbott 2.7.12 to show that:

n∑
k=1

xkyk = snyn+1 +

n∑
k=1

sk(yk − yk+1)

where sn = x1 + . . .+ xn.

Proof.

By the formula for summation by parts, we have:

∑n
k=1 xkyk = snyn+1 − s0y1 +

∑n
k=1 sk(yk − yk+1)

= snyn+1 − 0 · y1 +
∑n

k=1 sk(yk − yk+1)
= snyn+1 +

∑n
k=1 sk(yk − yk+1)

(b) Use the comparison test to argue that:
∞∑
k=1

sk(yk − yk+1) converges abso-

lutely, and show how this leads directly to a proof of Abel’s test.

Proof.
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Since
∞∑
k=1

xk converges, (sk) is a convergent sequence and hence it is bounded.

There exists M > 0 for all k ∈ N, such that |sk| ≤M . Thus,

|sk(yk − yk+1)| ≤M |yk − yk+1| ≤M(yk − yk+1) {∵ yk ≥ yk+1}

We know that (yk − yk+1) ≥ 0. Let (tk) be the sequence of partial sums of the

infinite series
∞∑
k=1

(yk− yk+1). Since (tk) is a monotonically-increasing sequence

and

tk = (y1 − y2) + (y2 − y3) + . . .+ (yk − yk+1)
= y1 − y2 + y2 − y3 + y3 + . . .+ yk − yk+1

= y1 − yk+1

≤ y1

it is bounded by y1, by the Montone convergence theorem, tk is a convergent

series. By the Algebraic limit theorem for infinite series,M ·
∞∑
k=1

(yk − yk+1) is a

convergent series.

Hence, by the comparison test,
∞∑
k=1

|sk(yk − yk+1)| is a convergent series.

By the Absolute convergence test,
∞∑
k=1

sk(yk − yk+1) is a convergent series.

Passing to the limits, we have:

limn→∞
∑n

k=1 xkyk = limn→∞ [snyn+1 +
∑n

k=1 sk(yk − yk+1)]

Note that, (yn) is bounded by [0, y1] and is amonotonically decreasing sequence.
Hence, by MCT, it is a convergent sequence. (sn) is also given to be a conver-
gent sequence. Hence, the limit of the right hand side of the expression can be
written as:

lim
n→∞

[
snyn+1 +

n∑
k=1

sk(yk − yk+1)

]
= lim

n→∞
snyn+1 + lim

n→∞

n∑
k=1

sk(yk − yk+1)

Since both these limits exist, the limit on the right hand side exists. Thus, the

product series
∞∑
k=1

xkyk converges.
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[Abbott 2.7.14] (Dirichlet’s Test)Dirichlet’s test for convergence states that, if

the partial sums of
∞∑
k=1

xk are bounded (but not necessarily convergent), and if

(yk) is a sequence satisfying y1 ≥ y2 ≥ y3 ≥ . . . ≥ 0 with lim yk = 0, then the

series
∞∑
k=1

xkyk converges.

(a) Point out how the hypothesis of Dirichlet’s Test differs from that of Abel’s
test in Exercise 2.7.13, but show that essentially the same strategy can be used
to provide a proof.

Proof.

Since the sequence of partial sums sn =

n∑
k=1

xk is bounded, there exists M > 0,

such that |sn| ≤M for all n ∈ N. We can use the same strategy as in part (a) of
exercise 2.7.13 to show that the infinite product series is convergent.

(b) Show how the Alternating Series Test (Theorem 2.7.7) can be derived as a
special case of the Dirichlet’s test.

Proof.

Let xk = (−1)k+1 and yk = ak, such that a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0 and lim ak = 0.

Since the partial sums (sk) of the infinite series
∞∑
k=1

(−1)k+1 are bounded, by the

Dirichlet test,
∞∑
k=1

(−1)k+1ak is convergent.

Abbott 3.2.1. (a)Where in the proof of theorem 3.2.3 part (ii) does the assump-
tion that the collection of open sets be finite get used?

Theorem 3.2.3 part (ii) The intersection of a finite collection {Oi : 1 ≤ i ≤
N,N ∈ N} of open sets is open.

Proof. This assumption is used to find a candidate ϵ-neighbourhood for the

point x ∈
N⋂
i=1

Oi. We chose ϵ = min{ϵ1, . . . , ϵN}. It would not be possible to

choose such a candidate should the collection of open sets be countably infinite
or uncountable. Consider the case we have a countable collection of open sets
O1, O2, . . . and where ϵi =

1

n
. Then, ϵi > 0, and inf{ϵi : i ∈ N} = 0. So, we

would be unable to choose an ϵ.

(b) Give an example of a countable collection of open sets {O1, O2, O3, . . . }
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whose intersection
∞⋂

n=1

On is closed, not empty and not all of R.

Proof.

Consider On =

�
− 1

n
,
1

n

�
. We have:

∞⋂
n=1

On = {0} which is closed, not empty

and not all of R.

[Abbott 2.8.1]Using the particular array (aij) from section 2.1, compute lim
n→∞

snn.
How does this value compare to the two iterated values for the sum already
computed?

Proof.

We have:

(aij) =


−1 1

2
1
4

1
8

1
16 . . .

0 −1 1
2

1
4

1
8 . . .

0 0 −1 1
2

1
4 . . .

0 0 0 −1 1
2 . . .

0 0 0 0 −1
. . .


We have:

s11 = −1
s22 = 2(−1) + 1 · 12 = −2 + 1

2
s33 = 3(−1) + 2 · 12 + 1 · 14 = −2 + 1

4
s44 = 4(−1) + 3 · 12 + 2 · 1

22 + 1 · 1
23 = −2 + 1

8
...

snn = n(−1) + (n− 1) · 12 + (n− 2) · 1
22 + . . .+ 1 · 1

2n−1 = −2 + 1
2n−1

Thus,

lim
n→∞

snn = −2 + lim
n→∞

1

2n−1
= −2

Also, if we compute the row-wise sum, we get:

−1 + 1

2

�
1 +

1

2
+

1

22
+ . . .

�
= −1 + 1

2
· 1

1− (1/2)
= 0

Thus, passing to the limits, we have:
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∞∑
i=1

∞∑
j=1

aij = 0

whereas if we compute the column-wise sum, we get:

−1+1

2

�
1 +

1

2
+

1

22
+ . . .+

1

2n−2

�
= −1+1

2
·
(
1− (1/2)n−1

)
(1− (1/2))

= −1+1− 1

2n−1
= − 1

2n−1

Thus, passing to the limits, we have:

∞∑
j=1

∞∑
j=1

aij = −
�
1 +

1

2
+

1

22
+ . . .

�
= −2

[Abbott 2.8.2] Show that if the iterated series

∞∑
i=1

∞∑
j=1

|aij |

converges (meaning that for each fixed i ∈ N the series
∞∑
j=1

|aij | converges to

some real number bi, and the series
∞∑
i=1

bi converges as well), then the iterated

series

∞∑
i=1

∞∑
j=1

aij

converges.

Proof.

Claim. The row-wise sums are convergent.

Fix i ∈ N.

Since
∞∑
j=1

|aij | is convergent, there exists N ∈ N such that, (∀n > m ≥ N),

|ai,m+1|+ . . .+ |ai,n| < ϵ

We are interested to prove that
∞∑
j=1

aij is convergent. We have, (∀n > m ≥ N)

|ai,m+1 + . . .+ ai,n| ≤ |ai,m+1|+ . . .+ |ai,n| < ϵ
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Thus, for a fixed i, the (row-sum)

∞∑
j=0

aij

is convergent.

As i was arbitrary, this must be true for all i ∈ N.

Claim. The sum of these row-wise sums is convergent.

Since
∞∑
i=1

bi is a convergent series, there exists L ∈ N, such that for all (l > k ≥

L)

|bk+1 + . . .+ bl| < ϵ

Since bn ≥ 0 for all n ∈ N, it follows that

|bk+1 + . . .+ bl| = bk+1 + . . .+ bl

Consider the expression:

∣∣∣∑∞
j=1 ak+1,j + . . .+

∑∞
j=1 al,j

∣∣∣ ≤ |∑∞
j=1 ak+1,j |+ . . .+

∣∣∣∑∞
j=1 al,j

∣∣∣
≤
∑∞

j=1 |ak+1,j |+ . . .+
∑∞

j=1 |al,j |
= bk+1 + . . .+ bl
= |bk+1 + . . .+ bl|
< ϵ

(∀l > k ≥ L).

Consequently, the iterated series
∞∑
i=1

∞∑
j=1

aij is a convergent series.

Theorem 2.8.1. Let {aij : i, j ∈ N} be a doubly indexed array of real numbers.
If

∞∑
i=1

∞∑
j=1

|aij |

66



converges, then both
∞∑
i=1

∞∑
j=1

aij and
∞∑
j=1

∞∑
i=1

aij converge to the samevalue. More-

over,

lim
n→∞

snn =

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij

where snn =

n∑
i=1

n∑
j=1

aij .

Proof.

In the same way that we defined rectangular partial sums smn above in the
equation (1), define:

tmn =

m∑
i=1

n∑
j=1

|aij |

[Abbott 2.8.3] (a) Prove that (tnn) converges.

Proof.

We are given that:
∞∑
i=1

∞∑
j=1

|aij |

is a convergent series. Our claim is that (tnn) is a Cauchy sequence.

Pick an arbitrary ϵ > 0.

We are interested to produce an N ∈ N, such that, (∀n > m ≥ N),

|tnn − tmm| =
n∑

i=m+1

n∑
j=m+1

|aij | < ϵ

We know that, ∃N ∈ N, such that for all n > m ≥ N ,

n∑
i=m+1

∞∑
j=0

|aij | < ϵ
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Thus, for all n > m ≥ N , it follows that:

|tnn − tmm| =
n∑

i=m+1

n∑
j=m+1

|aij | ≤
n∑

i=m+1

∞∑
j=0

|aij | < ϵ

Consequently, (tnn) is aCauchy sequence and cauchy sequences are convergent.

(b) Now, use the fact that (tnn) is a Cauchy sequence to argue that (snn) con-
verges.

Proof.

Pick an arbitrary ϵ > 0. Now, (tnn) is a Cauchy sequence. So, (∃N ∈ N)(∀n >
m ≥ N)(|tnn − tmm| < ϵ).

We have:

|snn − smm| =

∣∣∣∣∣∣
n∑

i=m+1

n∑
j=m+1

aij

∣∣∣∣∣∣ ≤
n∑

i=m+1

n∑
j=m+1

|aij | = |tnn − tmm| < ϵ

for all n > m ≥ N .

Consequently, (snn) is a Cauchy sequence.

We can now set

S = lim
n→∞

snn

In order to prove the theorem, we must show that the two iterated sums con-
verge to this same limit. We first show that,

S =

∞∑
i=1

∞∑
j=1

aij

Because {tmn : m,n ∈ N} is bounded above, we can let

B = sup{tmn : m,n ∈ N}

[Abbott 2.8.4] (a) Let ϵ > 0 be arbitrary and argue that there exists an N1 ∈ N
such that m,n ≥ N1 implies that B − ϵ/2 < tmn ≤ B.

Proof.
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(tnn) is a convergent sequence. It is amonotonically increasing sequence, bounded
above by B. We have:

t11 ≤ t22 ≤ t33 ≤ . . . ≤ tnn

Pick an arbitrary ϵ > 0. By definition, ∃N1 ∈ N, such that for all n ≥ N1,
B − ϵ

2
< tnn ≤ B < B +

ϵ

2
. Since, for all m,n ≥ N1, tnn ≤ tmn ≤ B, it follows

that

B − ϵ

2
< tmn ≤ B < B +

ϵ

2

for all m,n ≥ N1.

(b) Now, show that there exists an N such that:

|smn − S| < ϵ

for all m,n ≥ N .

Proof.

We know that, (snn) is a Cauchy sequence and converges to S.

[Abbott 3.2.2] Let

A =

§
(−1)n +

2

n
: n = 1, 2, 3, . . .

ª
and B = {x ∈ Q : 0 < x < 1}

Answer the following questions for each set.

(a) What are the limit points?

(i) Enumerating the first few points of A, we have:

§
1, 2,−1 + 2

3
, 1 +

2

4
,−1 + 2

5
, 1 +

2

6
, . . .

ª

L = {−1, 1} are the limit points of A.

(ii) [0, 1] are the set of all limit points of B. To see this, let y ∈ [0, 1] be an arbi-
trary point. Pick an arbitrary ϵ > 0 and consider the punctured neighbourhood
(y− ϵ, y+ ϵ)−{y}. SinceQ is dense inR, there exists a rational number x ∈ Q,
such that y < x < y + ϵ. Thus, (Vϵ(y)− {y}) ∩B ̸= ∅. Consequently y is a limit
point for B. Since y was arbitrary, [0, 1] is the set of all limit points of B.
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(b) Is the set open? Closed?

(i) A is not open. To see this, take the point x = 1. This is a boundary point of
A. Consider the ϵ-neighbourhood of 1: Vϵ(1) = (1− ϵ, 1 + ϵ). Vϵ(1) ⊈ A, for all
ϵ > 0.

Since L ̸ ⊆A, A is not closed.

(ii)B is not open. Letx be an arbitrary point ofB. Consider the ϵ−neighbourhood
of x : (x− ϵ, x+ ϵ). Since Q is dense in R, we know that there exists a rational
number r ∈ Q such that:

x− ϵ−
√
2 < r < x+ ϵ−

√
2

So:

x− ϵ < r +
√
2 < x+ ϵ

So, there always exists an irrational number inVϵ(x). Consequently, for all ϵ > 0.
Vϵ(x) ⊈ B.

0 is a limit point of B, that doesn’t belong to B. So, B is not closed.

(c) Does the set contain any isolated points?

(i) The set A contains an infinite number of isolated points. For n = 2m, pick
ϵ =

1

2m
− 1

2m+ 2
=

2

2m(2m+ 2)
=

1

2m(m+ 1)
, then A2, A4, A6, A8, . . . are

isolated points.

(ii) All the points in B are limit points. Hence, B has no isolated points.

(d)

(i) cl(A) = A ∪ {−1}

(ii) cl(B) = [0, 1]

Abbott 3.2.3. Decide whether the following sets are open, closed or neither. If
a set is not open, find a point in the set for which there is no ϵ-neighbourhood
contained in the set. If a set is not closed, find a limit point that is not contained
in the set.

(a) Q.

Q is neither open nor closed.
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First, let x ∈ Q, and consider any ϵ-neighbourhood, Vϵ(x) of the point x. There
exists an irrational number between any two real numbers, so there exists y ∈ I,
such that x− ϵ < y < x+ ϵ. Consequently, ∀ϵ > 0, ∃x, such that Vϵ(x) ⊈ Q.

Next, consider the point
√
2 ∈ I and the sequence xn+1 =

1

2

�
xn +

2

xn

�
with

x0 = 1. The sequence (xn) ⊆ Q, and (xn) →
√
2. Thus,

√
2 is a limit point for

Q, that does not belong to Q.

(b) N.

Let n ∈ N. Let ϵ = 1. Then, V1(n) = (n− 1, n+1) ⊈ N. Consequently,N is not
open.

N has no limit points. Therefore, N is closed.

(c) {x ∈ R : x ̸= 0}

R − {0} is open. Let y ∈ R − {0}. If y > 0, then pick ϵ = y/2. (y/2, 3y/2) ⊆
R− {0}. If y < 0, pick ϵ = |y|/2. Then, (y − |y|/2, y + |y|/2) ⊆ R− {0}.

R−{0} is not closed. 0 is a limit point forR−{0}, because for all ϵ > 0, (−ϵ, ϵ)
intersects the set in atleast one point other than 0. And 0 does not belong to the
set.

(d)
{
1 + 1/4 + 1/9 + . . .+ 1/n2 : n ∈ N

}
This set is not open. Let (sn) be the sequence of partial sums of the infinite series∑ 1

n2
. Then, the set consists of S = {s1, s2, s3, . . . , sn, . . . }. Since, an > 0,

sn > 0 and (sn) is monotonically increasing. Pick ϵ = min{sn−sn−1, sn+1−sn}.
Then, Vϵ(sn) ⊈ S.

This set is not closed. We know that,
∑ 1

np
is convergent, if and only if p > 1.

So,
∑ 1

n2
is convergent and in fact,

∑ 1

n2
=

π2

6
. Thus, the sequence (sn) →

π2

6
. So, π2/6 is a limit point for S and does not belong to S.

(e) {1 + 1/2 + 1/3 + . . .+ 1/n : n ∈ N}.

This set is not open. Again let (sn) be the sequence of partial sums of the infinite
series

∑ 1

n
. Then, the set S = {s1, s2, . . . , sn}. The rest of the argument is

similar to part(d).

S is closed. The harmonic series
∑ 1

n
is divergent. Thus, S only has isolated
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points and no limit points.

Abbott 3.2.4. Let A be nonempty and bounded above so that s = supA exists.

(a) Show that s ∈ cl(A).

Proof.

By definition, ∀ϵ > 0, ∃a ∈ A, such that s− ϵ < a ≤ s. Take ϵ = 1

n
for all n ∈ N.

Then, we can construct a sequence (an) ⊆ A, such that s − 1

n
< an ≤ s. If we

pickN >
1

ϵ
, then for all n ≥ N , s− ϵ < an < s+ ϵ. So, (an)→ s. Thus, s is limit

point for A. Consequently, s ∈ cl(A).

(b) Can an open set contain its supremum?

No, an open set cannot contain its supremum. Let O be an open set and let
s = supO. Then, s is a limit point of O. We proceed by contradiction. Assume
that s ∈ O. There exists Vϵ0(s) such that Vϵ0(s) ⊆ O, so Vϵ0(s) ∩OC = ∅.

Pick an arbitrary ϵ > 0. And let u be any point such that s − ϵ < s < u <
s + ϵ. Since, x ≤ s for all x ∈ O, we must have that u /∈ O, that is u ∈ OC .
Consequently, ∀ϵ > 0, Vϵ(s)− {s} ∩OC ̸= ∅.

This is a contradiction. Hence, our initial assumption is false. s /∈ O.

Abbott 3.2.5. Prove Theorem 3.2.8.

Theorem 3.2.8. A set F ⊆ R is closed, if and only if every Cauchy sequence
contained in F has a limit that is also an element of F .

Proof.

=⇒ direction.

We are given that F is closed. We proceed by contradiction.

Assume that, there exists a Cauchy sequence (xn) contained in F , such that
(xn)→ x, with x /∈ F . By Theorem 3.2.5, since (xn) ⊆ F and xn ̸= x, x is a limit
point of F .

But this is a contradiction. Since F is closed, xmust belong to F . Consequently,
our initial assumption is false.

∀Cauchy sequences contained in F , their limit is also an element of F .

⇐=direction.
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We are given that, every Cauchy sequence contained in F has a limit that is also
an element of F .

We proceed by contradiction. Assume that F is not closed. Then, there exists a
limit point x of F , such that x /∈ F . Since, x is a limit point of F , there exists a
sequence (xn) ⊆ F , such that xn ̸= x, and (xn)→ x. This is a contradiction.

Hence our initial assumption is false.

Abbott 3.2.6. Decide whether the following statements are true or false. Pro-
vide counterexamples for those that are false, and supply proofs for those that
are true.

(a) An open set that contains every rational number must necessarily be all of
R.

Proof.

This proposition is true. Let O be any open set containing R. We proceed by
contradiction. Assume that there exists x ∈ R, such that x /∈ O.

(b) The Nested Interval Property remains true if the term closed interval is
replaced by closed set.

Proof.

This proposition is false.

Counterexample.

Consider the set defined by Ik = {n ≥ k : n ∈ N} for k = 1, 2, 3, . . . . I1, I2, . . .

are nested closed sets. However,
∞⋂

n=1

In = ∅.

(c) Every non-empty open set contains a rational number.

Proof.

This proposition is true.

Let O be a non-empty open set. Let x ∈ O. Then, since x is an interior point,
there exists ϵ0 > 0, such that Vϵ0(x) ⊆ O. Since, Q is dense in R, there exists a
rational number r ∈ Q, such that x− ϵ < r < x+ ϵ. Hence, r ∈ O.

(d) Every bounded infinite closed set contains a rational number.

Proof.
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This proposition is false.

Counterexample.

Consider the set

S =

§√
2 +

1

n
: n ∈ N

ª
∪
¦√

2
©

S is a bounded set.
√
2 ≤ x ≤

√
2 + 1 for all x ∈ S. S is infinite and contains all

its limit points, so S is closed. But, S does not have a rational number.

(e) The Cantor set is closed.

Proof.

Since

C = [0, 1]−
§�

1

3
,
2

3

�
∪
�
1

9
,
2

9

�
∪
�
7

9
,
8

9

�
∪ . . .

ª

it is the complementation of the set�
1

3
,
2

3

�
∪
�
1

9
,
2

9

�
∪
�
7

9
,
8

9

�
∪ . . .

(which is an open set) with respect to [0, 1]. Thus, C is a closed set.

Abbott 3.2.7. Given A ⊆ R, let L be the set of all limit points of A.

(a) Show that the set L is closed.

Proof.

Let x be an arbitrary limit point of L.

Pick an arbitrary ϵ > 0. Since x is a limit point of L, (x− ϵ, x+ ϵ) intersects L in
some point l other than x. Thus, ∃l ∈ L, such that x− ϵ < l < x+ ϵ.

Since, l ∈ L, l is a limit point forA. Pick ξ = min

§
l − (x− ϵ)

2
,
(x+ ϵ)− l

2
,
|l − x|

2

ª
.

Then,Vξ(l) = (l − ξ, l + ξ) intersects A for in some point other than l and x.

Thus, Vϵ(x) intersects A in some point other than x. Since ϵ was arbitrary, this
is true for all ϵ > 0. Consequently, x is a limit point for A. Thus, x belongs to L.
Since xwas an arbitrary limit point of L and belongs to L, L is closed.

(b) Argue that if x is a limit point of A∪L, then x is a limit point of A. Use this
observation to furnish a proof for theorem 3.2.12.
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Proof.

Let x be an arbitrary limit point of A ∪ L.

Pick an arbitrary ϵ > 0. There exists y ∈ A ∪ L, y ̸= x, such that y ∈ V ϵ(x) ∩
(A ∪ L). This implies that either y ∈ V ϵ(x) ∩A or y ∈ V ϵ(x) ∩ L or both.

If y ∈ Vϵ(x)∩A, then since ϵwas arbitrary, this must be true for all ϵ > 0. Thus,
x is a limit point of A.

If y ∈ Vϵ(x)∩L, then y is a limit point ofA. We can construct a tiny ξ-neighbourhood
inside Vϵ(x), determined by the rule:

ξ = min

§
y − (x− ϵ)

2
,
(x+ ϵ)− y

2
,
|y − x|

2

ª

Since y is a limit point of A, ∃z, such that z ̸= x and z ̸= y with z ∈ Vξ(y) ∩A.

But this implies that, ∃z, with z ̸= x, such that z ∈ Vϵ(x) ∩ A. Since ϵ was
arbitrary, this is true for ϵ > 0. So, x is a limit point of A.

In both cases, x is a limit point of A.

If x is a limit point ofA, x belongs toL and thus x ∈ A∪L. Since, xwas arbitrary,
A ∪ L is closed.

[Abbott 3.2.8] Assume that A is an open set B is a closed set. Determine if the
following sets are definitely open, definitely closed, both or neither.

(a) cl(A ∪B)

We know, that the closure of any set S is closed, so cl(A∪B) is definitely closed.

(b) A \B = {x ∈ A : x /∈ B}

We haveA \B = A∩BC . BC is an open setA∩BC is definitely open, since the
intersection of a finite collection of open sets is open.

(c)
(
AC ∪B

)C .(
AC ∪B

)
is closed, since the finite union of closed sets is closed. Thus,

(
AC ∪B

)C
is definitely open.

(d) (A ∩B) ∪
(
AC ∩B

)
.

We can simplify this as,
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(
A ∪AC

)
∩B = B

Thus, it is a closed set.

(e) cl(A)C ∩ cl
(
AC
)

AC is closed, so cl
(
AC
)
= AC and so,

cl(A)C ∩AC = (cl(A) ∪A)C = (cl(A))C

Thus, it is definitely open.

[Abbott 1.2.5] (De-Morgan’s Laws) Let A and B be subsets of R.

(a) If x ∈ (A ∩ B)c, explain why x ∈ AC ∪ BC . This shows that (A ∩ B)C ⊆
AC ∪BC .

Proof.

Let x ∈ (A ∩B)c.

Intuitively, x does not belong to both A and B. This is possible if and only if, x
does not belong to atleast one of A or B. So, either x /∈ A or x /∈ B. So, x ∈ AC

or x ∈ BC . Thus, x ∈
(
AC ∪BC

)
.

Formally:
x ∈ (A ∩B)C

⇐⇒ ((x ∈ A) ∧ (x ∈ B))
⇐⇒ (x ∈ A) ∨ (x ∈ B)
⇐⇒

(
x ∈ AC

)
∨
(
x ∈ BC

)
⇐⇒ x ∈

(
AC ∪BC

)
(b) Prove the reverse inclusion (A ∩ B)c ⊇ AC ∪ BC and conclude that (A ∩
B)C = AC ∪BC .

Let x ∈
(
AC ∪BC

)
.

Intuitively, x belongs atleast one of AC , BC . Thus, x does not belong to atleast
one ofA,B. Naturally, x cannot belong to bothA andB. So, x /∈ (A∩B). Thus,
x ∈ (A ∩B)C .
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Formally:
x ∈

(
AC ∪BC

)
⇐⇒

(
x ∈ AC

)
∨
(
x ∈ BC

)
⇐⇒

((
x ∈ AC

)
∧
(
x ∈ BC

))
⇐⇒ ((x ∈ A) ∧ (x ∈ B)
⇐⇒ (x ∈ (A ∩B))
⇐⇒ x ∈ (A ∩B)C

(c) Show that (A ∪B)C = AC ∩BC by demonstrating inclusion both ways.

Let x ∈ (A ∪B)C .

Intuitively, x is an element of (A ∪ B)C . So, x belongs neither to A nor to B.
So, x must simultaneously be an element of both AC and BC . Consequently,
x ∈ AC ∩BC .

Formally:
x ∈ (A ∪B)C

⇐⇒ (x ∈ (A ∪B))
⇐⇒ ((x ∈ A) ∨ (x ∈ B))
⇐⇒ (x ∈ A) ∨ (x ∈ B)
⇐⇒

(
x ∈ AC

)
∨
(
x ∈ BC

)
⇐⇒ x ∈

(
AC ∪BC

)
Let x ∈

(
AC ∩BC

)
.

Intuitively, x belongs to both AC , BC . So, x does not belong to both A and B.
Thus, x ∈ (A ∩B)C .

x ∈
(
AC ∩BC

)
⇐⇒

(
x ∈ AC

)
∧
(
x ∈ BC

)
⇐⇒ (

(
x ∈ AC

)
∨
(
x ∈ BC

)
⇐⇒ ((x ∈ A) ∨ (x ∈ B))
⇐⇒ (x ∈ (A ∪B))
⇐⇒ x ∈ (A ∪B)C

[Abbott 3.2.9]A proof for De Morgan’s Laws in the case of two sets is outlined
in the exercise 1.2.5. The general argument is similar.

(a) Given a collection of sets {Eλ : λ ∈ Λ}, show that :

(⋃
λ∈Λ

Eλ

)c

=
⋂
λ∈Λ

EC
λ and

(⋂
λ∈Λ

Eλ

)C

=
⋃
λ∈Λ

EC
λ

Proof.
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This proof is similar to the above exercise. So, we do not repeat it.

(b) Now, provide the details for the proof of the theorem 3.2.14.

(i) The union of a finite collection of closed sets is closed.

Let O1, O2, . . . , ON be a finite collection of open sets. Let

O =

(
N⋂
i=1

Oi

)
then from theorem 3.2.3, the intersection of a finite collection of open sets is
open. Taking complementation on both sides,

OC =

(
N⋃
i=1

Oc
i

)
we must have that the union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Let {Oλ : λ ∈ Λ} be an arbitrary collection of open sets. From theorem 3.2.3,
we know that:

O =

(⋃
λ∈Λ

Oλ

)
the union of an abitrary collection of open sets is open. Taking complementa-
tion on both sides, we have that:

OC =
⋂
λ∈Λ

OC
λ

Since OC is closed and each of the OC
λ are closed, we must have that the inter-

section of an arbitrary collection of closed sets is closed.

[Abbott 3.2.10] Only one of the following three descriptions can be realized.
Provide an example that illustrates the viable description and explain why the
other two cannot exist.

Proof.

(i) A countable set contained in [0, 1]with no limit points.

This is not viable.
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Let S = {xn : n ∈ N} be a countable set. Thus, (xn) is an arbitrary sequence
in [0, 1]. By the Bolzanno Weierstrass theorem, every bounded sequence has
atleast one convergent subsequence. So, there exists (xnk

) ⊆ (xn) such that
(xnk

)→ x. So, x is a limit point of S.

(ii) A countable set contained in [0, 1]with no isolated points.

ConsiderQ∩ [0, 1]. Let x be an arbitrary rational number in (0, 1). ∀ϵ > 0, Vϵ(x)
intersects Q in atleast one point other than x. So, all points in this set are limit
points. Therefore, Q ∩ [0, 1] has no isolated points.

(iii) A set with an uncountable number of isolated points.

This is not viable.

LetS be such a set, that is uncountable, there are no holes and the set is complete
under the limiting operation. For all x ∈ S, there exists a cauchy sequence
(xn) ⊆ S, such that (xn)→ x.

Thus, every point of S is a limit point. S cannot have isolated points.

[Abbott 3.2.11] (a) Prove that cl(A ∪B) = cl(A) ∪ cl(B).

Proof.

(=⇒ direction).

Let x ∈ cl(A ∪ B). Let L be the set of limit points of A ∪ B. Since, cl(A ∪ B) =
(A ∪B) ∪ L, then atleast one of x ∈ (A ∪B) or x ∈ L holds true.

If x ∈ (A ∪B), then x ∈ cl(A) ∪ cl(B).

Suppose that x ∈ L. That is x is the limit point of A ∪ B. By definition, there
exists a sequence (xn) ⊆ (A ∪ B) such that xn ̸= x and (xn) → x. There exists
a subset (xnk

) ⊆ (xn), such that atleast one of (xnk
) ⊆ A or (xnk

) ⊆ B holds.
Every subsequence of a convergent sequence, converges to the same limit as the
original sequence. So, (xnk

) → x. Thus, x is either a limit point of A or x is a
limit point of B. Consequently, x ∈ cl(A) ∪ cl(B).

(⇐= direction).

Let x ∈ cl(A) ∪ cl(B).

x belongs to atleast one of cl(A) or cl(B). Suppose x ∈ cl(A). Let cl(A) = A∪LA.

If x belongs to A, then x ∈ (A ∪B) and so x ∈ cl(A ∪B) and we are done.

If x belongs to LA, then x is a limit point of A. So, there exists a sequence
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(xn) ⊆ A, such that xn ̸= x and (xn) → x. Therefore, (xn) ⊆ A ∪ B. So, x is
also a limit point of A ∪B. Thus, x ∈ cl(A ∪B).

We can similarly argue for the set B.

Consequently x ∈ cl(A ∪B).

(b) Does this result extend to infinite unions of sets?

No, this result does not extend to infinite unions of sets.

Counterexample.

Let An =

§
1

n

ª
, where n ∈ N. Then, An is compact for all n ∈ N. But,

∞⋃
n=1

An is

not compact, since the limit point 0 does not belong to the infinite union.

[Abbott 3.3.1] Show that if K is compact and nonempty, then supK and infK
both exist and are elements of K.

Proof.

By theHeine Borel Theorem,K is a closed andbounded set. SinceK is bounded,
by the Axiom Of Completeness (AoC), both infK and supK exist.

We are interested to prove that supK is an element ofK.

By definition, for all ϵ > 0, there exists x ∈ K, such that s − ϵ < x ≤ s < s + ϵ.
Let ϵ =

1

n
. Then, we can construct a sequence (xn) in K. Given any arbitrary

ϵ > 0, if we choose N >
1

ϵ
, then for all n ≥ N , xn ∈ (s− ϵ, s+ ϵ). So, (xn)→ s.

Thus, s is a limit point of K. Since K is closed, s belongs to K.

We can argue similarly for infK ∈ K.

[Abbott 3.3.2.] Decide which of the following sets are compact. For those that
are not compact, show how definition 3.3.1. breaks down. In other words, give
an example of a sequence contained in the given set, that does not possess a
subsequence converging to a limit in the set.

(a) N.

N is not compact. Consider (xn) = n, then no subsequence of (xn) does con-
verges to a limit in the set. N is unbounded.

(b) Q ∩ [0, 1].
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The set of rational numbers in [0, 1] is not compact. Consider the sequence (xn)

defined recursively as xn+1 =
1

2

�
xn +

2

xn

�
with x1 = 1. (xn) ⊆ Q and (xn)→

√
2, which does not belong to Q. So, clearly, not all limit points belong to the

set.

(c) The Cantor Set.

The Cantor Set C is compact. It is closed and since C ⊆ [0, 1] it is bounded.

(d)
{
1 + 1/22 + 1/32 + . . .+ 1/n2 : n ∈ N

}
.

The limit point π2/6 does not belong to the set. So, it is not compact.

(e) {1, 1/2, 2/3, 3/4, 4/5, . . . }

The general term is n

n+ 1
. By the Algebraic Limit Theorem, lim

n→∞

n

n+ 1
=

lim
n→∞

n+ 1− 1

n+ 1
= lim

n→∞
1− 1

n+ 1
= 1.

The set is closed and bounded. Hence, it is compact.

[Abbott 3.3.3.] Prove the converse of Theorem 3.3.4 by showing that if a set
K ⊆ R is closed and bounded, then it is compact.

Proof.

Let K be a closed and bounded set.

Let (xn) be an arbitrary sequence in K. As K is bounded, the sequence (xn)
is bounded. By the Bolzanno Weierstrass Theorem, there exists a converges
subsequence (xnk

) of (xn). Let (xnk
)→ l. Since K is closed, l ∈ K.

As (xn) was arbitrary, it follows that, every sequence (xn) in K has a subse-
quence that converges to a limit that is also inK. Hence,K is compact by defi-
nition.

[Abbot 3.3.4] Assume K is compact and F is closed. Decide if the following
sets are definitely compact, definitely closed, both, or neither.

(a) K ∩ F .

Proof.

Since K is closed, K ∩ F is closed. Moreover, since K is bounded, K ∩ F ⊆ K
and therefore bounded. So, K ∩ F is definitely compact.

(b) cl
(
FC ∪KC

)
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Proof.

Since FC and KC are both open sets, FC ∪ KC is an open set. The closure of
an open set is closed.

(c) K \ F .

Proof.

K \ F is neither compact nor closed.

(d) cl
(
K ∩ FC

)
Since K ∩ FC ⊆ K, it is a bounded set. Let x be an arbitrary limit point of the
set. Since K ∩ FC is bounded, it’s limit point x must lie within the bounds.
Thus, cl

(
K ∩ FC

)
is both closed and bounded. Hence, it is compact.

[Abbott 3.3.5] Decide whether the following propositions are true or false. If
the claim is valid, supply a short proof, and if the claim is false, provide a coun-
terexample.

(a) The arbitrary intersection of compact sets is compact.

Proof.

This claim is true.

The arbitrary intersection of closed sets is closed. Moreover, if the sets are
bounded, the intersection of the sets is also bounded. Consequently, the ar-
bitrary intersection of compact sets is compact.

(b) The arbitrary union of compact sets is compact.

Proof.

This proposition is false.

We define x1 = 1, with xn+1 =
1

2

�
xn +

2

xn

�
.

Let K1 = {x1} and define :

Kn = {xn}

Then,
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∞⋃
n=1

Kn

does not contain the limit point
√
2 and is therefore not compact.

(c)Let A be arbitrary, and let K be compact. Then, the intersection A ∩ K is
compact.

Proof.

This proposition is false.

Counterexample.

Let A = (0, 1) and K = [0, 1] then A ∩K = (0, 1)which is not compact.

(d) If F1 ⊇ F2 ⊇ F3 ⊇ F4 ⊇ F5 ⊇ . . . is a nested sequence of nonempty closed

sets, then the intersection
∞⋂

n=1

Fn ̸= ∅.

This proposition is false.

Counterexample.

Consider the set
∞⋂

n=1

[n,∞). Each of [n,∞) is a closed set. But, their intersection

is empty.

As yet another example, let (sn) be the sequence of partial sums of the infinite
series

∑ 1

n
. And consider the following closed sets:

F1 = {s1, s2, s3, . . . }
F2 = {s2, s3, s4, . . . }
F3 = {s3, s4, s5, . . . }

...
Fn = {sn, sn+1, sn+2, . . . }

All of these sets are closed, because they do not have a limit point. And F1 ⊇
F2 ⊇ . . . . But, their intersection is empty.

[Abbott 3.3.6] This exercise is meant to illustrate the point made in the opening
paragraph to the section 3.3. Verify that the following three statements are true
if every blank is filled in with the word finite. Which are true if every blank is
filled in with the word compact? Which are true if every blank is filled in with
the word closed?
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(a) Every set has a maximum.

Solution.

Every finite set has a maximum.

Every compact set is bounded, so it has a supremum and further supK is a
limit point of the set, so it belongs to the set. Thus, every compact set has a
maximum.

(b) If A and B are , then A+B = {a+ b : a ∈ A, b ∈ B} is also .

Solution.

If A and B are finite, then A + B has at most # of elements of A times # of
elements of B, so A+B is finite.

If A and B is bounded, then there exists M1 > 0, such that ∀a ∈ A, |a| ≤ M1

and there exists M2 > 0, such that ∀b ∈ B, |b| ≤ M2. Consequently, |a + b| ≤
|a|+ |b| ≤M1 +M2, So, A+B is also bounded.

Consider A =

§
n+

1

n
: n ∈ N

ª
and B = {−n : n ∈ N, n ̸= 2}. Both A and B

have no limit points so they are closed, but A+ B has a limit point 0 that does
not belong to the set A+B, and hence it is not closed.

Suppose that A andB are compact. Let c be a limit point of A+B. There exists
a sequence (cn) ⊆ A + B such that cn ̸= c, with (cn) → c. Every subsequence
of a convergent sequence also approached the limit point c.

Since cn ∈ A+ B, we can write (cn) as the sum of the sequences (an) ⊆ A and
(bn) ⊆ B. So:

cn = an + bn

Now, since A is compact, by the Heine Borel Theorem, there is a subsequence
(ank

) of (an) that converges to a limit in A. Let lim ank
= a,

Now, corresponding subsequence terms in B can be expressed as:

bnk
= cnk

− ank

Taking limits on both sides, we have:

lim bnk
= lim(cnk

− ank
)
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Since both lim cnk
and lim ank

exist, we are allowed to apply the Algebraic Limit
Theorem, and thus:

lim bnk
= lim cnk

− lim ank
= c− a

Consequently, (bnk
) is a convergent subsequence. Let b = lim bnk

. Since B
is compact, b ∈ B. Thus, there exists a ∈ A, b ∈ B, such that c = a + b.
Consequently, c ∈ A+B. Therefore, A+B is compact.

(c) If {An : n ∈ N} is a collection of sets with the property that every

finite subcollection has a non-empty intersection, then
∞⋂

n=1

An is non-empty as

well.

Solution.

If {An : 1 ≤ n ≤ N} is a collection of finite sets with the property that every

finite subcollection has a non-empty intersection, then
N⋂

n=1

An is non-empty as

well.

Consider An = [n,∞). Each of the An’s are closed. The intersection of any

finite subcollection of sets is non-empty, but
∞⋂

n=1

An is empty.

Let {An : n ∈ N} be a collection of compact sets. Since the arbitrary intersection
of compact sets is compact, consider the sequence of sets

B1 = A1

B2 = A1 ∩A2

B3 = A1 ∩A2 ∩A3

...
...

Bn =
⋂n

i=1 Ai

Since, any finite subcollection has a non-empty intersection, each of theBi’s are
non-empty and compact. Moreover,

B1 ⊇ B2 ⊇ B3 ⊇ B4 ⊇ . . .

By the Nested Compact set property,
∞⋂

n=1

Bi =

∞⋂
n=1

Ai is non-empty.

[Abbott 3.3.7] As some more evidence of the surprising nature of the Cantor
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set, follow these steps to show that the sum C +C = {x+ y : x, y ∈ C} is equal
to the closed interval [0, 2]. (Keep in mind that C has zero length and contains
no intervals.)

BecauseC ⊆ [0, 1],C+C ⊆ [0, 2], so we only need to prove the reverse inclusion
[0, 2] ⊆ {x + y : x, y ∈ C}. Thus, given s ∈ [0, 2], we must find two elements
x, y ∈ C, satisfying x+ y = s.

(a) Show that there exists x1, y1 ∈ C1, for which x1 + y1 = s. Show in general
that, for arbitrary n ∈ N, we can always find xn, yn ∈ Cn for which xn+yn = s.

Solution.

Consider an arbitrary s ∈ [0, 2].

Consider the straight-line x + y = s. Let us represent the regions [0, 1/3] ×
[0, 1/3], [0, 1/3] × [1/3, 2/3], [2/3, 1] × [0, 1/3] and [2/3, 1] × [2/3, 1] graphically.
For all s ∈ [0, 2], the straight-line x+y = swill pass through atleast one of these
four squares.

If s ∈
�
0,

2

3

�
, then we can pick x1 ∈

�
0,

1

3

�
and y1 ∈

�
0,

1

3

�
.

If s ∈
�
2

3
,
4

3

�
, then we can pick x1 ∈

�
2

3
, 1

�
and y1 ∈

�
0,

1

3

�
.

If s ∈
�
4

3
, 2

�
, then we can pick x1 ∈

�
2

3
, 1

�
and y1 ∈

�
2

3
, 1

�
.

x+ y = s
s

Thus, there exists x1, y1 ∈ C1 such that x1 + y1 = s.

For n = 2, each square is further subdivided into 4 square regions.

In general, for n = k, there are 4k squares. By symmetry, the line x + y = s is
bound to pass through atleast one of the 4k squares. Thus, there exists xn, yn ∈

86



Cn such that xn + yn = s for all k ∈ N.

(b) Keeping in mind that the sequences (xn) and (yn) do not necessarily con-
verge, show how they can nevertheless be used to produce the desired x and y
in C satisfying x+ y = s.

Since (xn) ⊆ [0, 1], it is a bounded sequence. By the Bolzanno Weierstrass The-
orem, the sequence (xn) has atleast one convergent subsequence (xnk

). Let
limxnk

= x.

Since

ynk
= (xnk

+ ynk
)− xnk

we have that:

lim(ynk
) = lim(xnk

+ ynk
)− limxnk

= s− x = y

Thus, (ynk
) is a convergent sequence.

Since (xnk
) ⊆ Cn and (ynk

) ⊆ Cn for all n ≥ n1, it follows that these subse-

quences lie in the infinite intersection
∞⋂

n=n1

Cn and thus in
∞⋂

n=1

Cn. Since, this is

a closed and bounded set, their limit points x, y ∈
∞⋂

n=1

Cn = C.

[Abbott 3.3.8] Let K and L be non-empty compact sets, and define

d = inf{|x− y| : x ∈ K, y ∈ L}

This turns out to be a reasonable definition for the distance between K and L.

(a) If K and L are disjoint show that d > 0 and that d = |x0 − y0| for some x0

inK and y0 ∈ L.

Proof.

Let

A = {|x− y| : x ∈ K, y ∈ L}
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Since |x − y| ≥ 0, A is bounded below. Thus, inf A exists. We are interested to
prove thatA is compact and therefore d = inf A exists and further belongs toA.

Let a be an arbitrary limit point of A. Thus, there exists a sequence (an) =
|xn − yn| ⊆ A, such that (an) = |xn − yn| → a. Since K is bounded, by the
Bolzanno Weierstrass theorem, there exists a convergent sequence (xnk

) ⊆ K,
whose limit point also belongs to K.

We now define the sequence ynk
such that |xnk

−ynk
| = ank

. Since, ynk
satisfies

this equation, it must be a subsequence of (yn). Since both (ank
) and (xnk

) are
convergent, (ynk

) is convergent. Since, limxnk
∈ K and lim ynk

∈ L, we must
have that a ∈ A. Consequently, inf A ∈ A.

So, there exists x0 ∈ K and y0 ∈ L such that d = |x0 − y0|.

(b) Show that it’s possible to have d = 0 if we assume only that the disjoint sets
K and L are closed.

[Abbott 3.4.1] If P is a perfect set and K is compact, is the intersection P ∩K
always compact? Always perfect?

Proof.

Since P is closed and K is closed and bounded, and the intersection of closed
sets is closed, P∩K is closed. FurtherP∩K ⊆ K, so it is bounded and therefore
always compact.

This is false. Consider P = [0, 1] and K = {1}. P ∩ K = {1} which is not a
perfect set.

[Abbott 3.4.2]Does there exist a perfect set consisting of only rational numbers?

No, the rational numbers Q or any subset of it is not perfect. Q is not closed
and hence it is not perfect.

[Abbott 3.4.3] Review the portion of the proof given in example 3.4.2. and
follow these steps to complete the argument.

(a) Because x ∈ C1, argue that there exists an x1 ∈ C∩C1 with x1 ̸= x satisfying
|x− x1| ≤ 1/3.

Solution.

Let x ∈ C be arbitrary. Since C =

∞⋂
n=1

Cn, x ∈ Cn for all n ∈ N.

We have established that x ∈ C1. Suppose that x ∈ [a1, b1] ⊆ C1. We choose
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x1 =

¨
a1 if x ≤ (a1 + b1)/2

b1 otherwise

That is, we let x1 to be the left-hand enpoint of the closed interval, if x is smaller
than than the mid-point, otherwise we let x1 be the right-hand endpoint. Since
the length of the interval l(I1) =

1

3
, we have that |x− x1| ≤

1

3
.

Since, endpoints of intervals are never excluded in the construction of the Can-
tor set, x1 ∈ C ∩ C1.

(b) Finish the proof

Similarly, we know that x ∈ C2. Suppose that x ∈ [a2, b2] ⊆ C2. Then, we
choose

x2 =

¨
a2 if x ≤ (a2 + b2)/2

b2 otherwise

In general, if x ∈ [an, bn] ⊆ Cn, then we choose

xn =

¨
an if x ≤ (an + bn)/2

bn otherwise

Since l(In) =
1

3n
, |xn − x| ≤ 1

3n
. Pick an arbitrary ϵ > 0. Pick N , such that

1

3N
< ϵ

or

N >
log(1/ϵ)

log 3

Then, for all n ≥ N ,

|xn − x| < ϵ

Consequently, (xn)→ x.

Thus, all points in the Cantor Set C are limit points.
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[Abbott 3.4.4] Repeat the Cantor construction from section 3.1 starting with
the interval [0, 1]. This time, however, remove the open middle fourth from
each component.

(a) Is the resulting set compact? Perfect?

Proof.

We have:

C ′
1 =

[
0, 3

8

]
∪
[
5
8 , 1
]

C ′
2 =

[
0, 9

64

]
∪
[
15
64 ,

24
64

]
∪
[
40
64 ,

49
64

]
∪
[
55
64 , 1

]
...

Since
∞⋂

n=1

C ′
n is closed and bounded, it is a compact set.

Let x ∈ C ′ be an arbitrary point. Since x ∈
∞⋂

n=1

C ′
n, x ∈ C ′

n for all n ∈ N. Again,

we can construct a sequence (xn) ⊆ C ′ such that (xn)→ x.

Pick an arbitrary ϵ > 0.

We can choose N such that

�
3

8

�N

< ϵ

Then, for all n ≥ N , |xn − x| < ϵ.

Thus, every point is a limit point of C ′. Consequently, C ′ is closed and has no
isolated points. Therefore, C ′ is perfect.

(b) Using the algorithms from section 3.1, compute the length and dimension
of this Cantor-like set.

Proof.

The length of the middle 1/4th Cantor set is given as follows:

l
(
C(1/4)

)
= 1−

�∑∞
n=1 2

n−1 1
4 ·
(
3
8

)n−1
�

= 1− 1
4

∑∞
n=1

(
3
4

)n−1

= 1− 1
4 ·

1
1− 3

4

= 0
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If we magnify the Cantor set C(1/4) by a factor of 8/3, this results in [0, 8/3].
Removing the open middle 1/4th results in two intervals [0, 1] and [5/3, 8/3]
which iswherewe started in the original construction, except thatwe now stand
to produce an additional copy of C(1/4) in the interval [5/3, 8/3]. Magnifying
the Cantor set C(1/4) by a factor of 8/3 yields two copies of the original set.

Thus,

(8/3)x = 2

Or,

x =
log(8/3)

log 2

[Abbott 3.4.5] LetA andB be non-empty subsets ofR. Show that if there exists
disjoint open setsU and V withA ⊆ U andB ⊆ V , thenA andB are separated.

Solution.

We are given that U and V are disjoint open sets. We proceed by conradiction.

Let a be an arbitrary limit point of A. Assume that a ∈ B.

Since, B ⊆ V , a is an interior point of V . Consequently, there exists ϵ0 > 0,
such that Vϵ0(a) = (a − ϵ0, a + ϵ0) ⊆ V . Since U and V are disjoint open sets,
Vϵ0(a) ∩A = ∅ and therefore (Vϵ0(a)− {a}) ∩A = ∅.

But, a is the limit point of a. For all ϵ > 0, it follows that (Vϵ(a)− {a}) ∩A ̸= ∅.
This is a contradiction. Hence, our initial assumption is false. a /∈ B.

Since awas arbitrary, this holds true for all limit points of A. So, cl(A)∩B = ∅.
We can similarly argue that A ∩ cl(B) = ∅.

Therefore, A and B are separated.

[Abbott 3.4.6] Prove theorem 3.4.6.

Theorem 3.4.6. A set E ⊆ R is connected, if and only if, for all nonempty
disjoint sets A and B satisfying E = A ∪ B, there always exists a convergent
sequence (xn) → x with (xn) contained in one of A or B, and x an element of
the other.

Proof.

=⇒direction.
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We are given that E is connected. We proceed by contradiction.

Assume that there exist non-empty disjoint sets A,B satisfying E = A ∪ B,
such that for all convergent sequences (xn)→ x, both ((xn) ⊆ A)∧ (x ∈ B) and
((xn) ⊆ B) ∧ (x ∈ A) are false.

Let a be a limit point of A. Then, ∃(an) ⊆ A, such that (an) → a. From above,
it follows that a /∈ B. Since, a is a limit point of A, we have: a ∈ cl(A), a /∈ B.
Since a was arbitrary, we must have: cl(A) ∩B = ∅.

We can similarly argue that A ∩ cl(B) = ∅.

Since E is connected, by definition, for all non-empty disjoint pairs of sets C,D
satisfying E = C ∪D, atleast one of cl(C) ∩D or C ∩ cl(D) is non-empty.

This is a contradiction. Hence, our initial assumption is false.

⇐= direction.

We are given that, for all non-empty disjoint pairs A,B satisfying E = A ∪ B,
there always exists a convergent sequence (xn)→ x, such that atleast one of the
following holds

(i) ((xn) ⊆ A) ∧ (x ∈ B)

(ii) ((xn) ⊆ B) ∧ (x ∈ A)

It follows, that atleast one of the following holds:

(i) there exists a limit point a ofA, such that a ∈ B. Since, a ∈ cl(A), cl(A)∩B ̸=
∅

(ii) there exists a limit point b ofB, such that b ∈ A. Since b ∈ cl(B),A∩cl(B) ̸=
∅

Thus, by definition E is connected.

[Abbott 4.2.1] (a) Supply details for how corollary 4.2.4 part (ii) follows from
the Sequential criterion for functional limits in theorem 4.2.3 and the Algebraic
Limit Theorem for sequences proved in chapter 2.

Proof.

We are interested to prove that, given lim
x→c

f(x) = L and lim
x→c

g(x) = M ,

lim
x→c

[f(x) + g(x)] = L+M

Let (xn) be an arbitrary sequence, satisfying xn ̸= c, with (xn)→ c.
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By the sequential criterion for functional limits, it follows that lim f(xn) = L
and lim g(xn) = M .

Therefore,

lim[f(xn) + g(xn)] = lim f(xn) + lim g(xn) {Algebraic limit theorem for sequences}
= L+M

Since, (xn) was arbitrary, this is true for all sequences (xn) ⊆ A, with xn ̸= c
and (xn)→ c.

Thus, by the Sequential Criterion for functional limits,

lim
x→c

[f(x) + g(x)] = L+M

(b) Now, write another proof of corollary 4.2.4 part (ii) directly from the defi-
nition 4.2.1 without using the sequential criterion in theorem 4.2.3.

Proof.

We are given that lim
x→c

f(x) = L and lim
x→c

g(x) = M . Since:

Pick an arbitrary ϵ > 0.

There exists δ1 > 0, such that for all x ∈ (c−δ1, c+δ1), we have |f(x)−L| < ϵ/2.

There exists δ2 > 0, such that for all x ∈ (c−δ2, c+δ2), we have |g(x)−M | < ϵ/2.

Pick δ = min{δ1, δ2}. Then, for all x ∈ (c− δ, c+ δ), we have:

|f(x) + g(x)− (L+M)| = |f(x)− L+ g(x)−M |
≤ |f(x)− L|+ |g(x)−M |
< ϵ

2 + ϵ
2 = ϵ

Consequently, lim
x→c

f(x) + g(x) = L+M .

(c) Repeat (a) and (b) for corollary 4.2.4 part (iii).

Proof.

(i) We are given that lim
x→c

f(x) = L and lim
x→c

g(x) = M .

Let (xn) be an arbitrary sequence, satisfying xn ̸= c, such that (xn)→ c.
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By the Sequential criterion for Functional Limits, lim f(xn)→ L and lim g(xn)→
M .

We have:

lim f(xn) · g(xn) = lim f(xn) · lim g(xn) {Algebraic limit theorem for sequences}
= L ·M

Since (xn) was an arbitrary sequence, this is true for all sequences (xn) → c,
with xn ̸= c. By the sequential criterion for functional limits, lim

x→c
f(x)g(x) =

LM .

(ii) We are interested to make the distance |f(x)g(x) − LM | as small as we
please. Pick an arbitrary ϵ > 0.

Let us explore the expression |f(x)g(x)− LM |. We have:

|f(x)g(x)− LM | = |f(x)g(x)− Lg(x) + Lg(x)− LM |
≤ |g(x)||f(x)− L|+ |L||g(x)−M |

If we replace |g(x)| by its upper bound, we will strengthen the condition the we
wish to prove.

Pick ϵ = 1. There exists δ1 > 0, such that for all |x− c| < δ1, we have :

|g(x)−M | < 1

or

|g(x)| < |M |+ 1

There exists δ2 > 0, such that for all |x− c| < δ2, we have:

|f(x)− L| < ϵ

2(|M |+ 1)

There exists δ3 > 0 such that for all |x− c| < δ3, we have:

|g(x)−M | < ϵ

2|L|
Let δ = min{δ1, δ2, δ3}. Then, for all |x− c| < δ, it follows that:
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|f(x)g(x)− LM | ≤ |g(x)||f(x)− L|+ |L||g(x)−M |
< (|M |+ 1) ϵ

2(|M |+1) + |L|
ϵ

2|L|
= ϵ

Consequently, lim
x→c

f(x)g(x) = LM .

[Abbott 4.2.2] For each stated limit, find the largest possible δ-neighbourhood
that is a proper response to the given ϵ-challenge.

(a) lim
x→3

(5x− 6) = 9where ϵ = 1.

Proof.

We are interested to make the distance |(5x− 6)− 9| < 1. We have:

|(5x− 6)− 9| < 1
|5x− 15| < 1
|x− 3| < 1

5

Thus, the largest δ−neighbourhood that is a proper response to the given ϵ-

challenge is
�
3− 1

5
, 3 +

1

5

�
.

(b) lim
x→4

√
x = 2, where ϵ = 1.

Proof.

We are interested to make the distance |
√
x− 2| < ϵ. We have:

|
√
x− 2| < ϵ

| (
√
x− 2) | × |

√
x+2|

|
√
x+2| < ϵ∣∣∣ x−4√
x+2

∣∣∣ < ϵ

Since ϵ = 1, we would like to have, |x− 4| < |
√
x+ 2|.

If we replace |
√
x + 2| by its lower bound, we can strengthen the condition we

wish to prove.

If ϵ = 1, there exists δ > 0, such that for all |x − 4| < δ, we have 1 <
√
x < 3.

Consequently, 3 <
√
x+ 2 < 5. Thus, 3 is a lower bound for

√
x+ 2.

Therefore, let x be such that |x− 4| < 3. Then, x ∈ (1, 7).

(c) lim
x→π

[[x]] = 3, where ϵ = 1.
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Proof.

We are interested to make the distance |[[x]]− 3| < 1.

We have:

−1 < [[x]]− 3 < 1
⇐⇒ 2 < [[x]] < 4
⇐⇒ [[x]] = 3

Ifwe pick δ = π−3, then for all x ∈ Vδ(π), it follows that [[x]] = 3 or |[[x]]−3| < 1.

(d) lim
x→π

[[x]] = 3, where ϵ = 0.01.

We are interested to make the distance |[[x]]− 3| < 0.01.

We have:

−0.01 < [[x]]− 3 < 0.01
⇐⇒ 2.99 < [[x]] < 3.01
⇐⇒ [[x]] = 3

Again if we pick δ = π − 3, then for all x ∈ Vδ(π), it follows that [[x] = 3 or
|[[x]]− 3| < 0.01.

[Abbott 4.2.3]Review the definition of Thomae’s function t(x) from section 4.1.

(a) Construct three different sequences (xn), (yn) and (zn), each of which con-
verges to 1 without using the number 1 as a term in the sequence.

Proof.

The Thomae’s function is given by:

t(x) =


1 if x = 0

1/n if x = m/n ∈ Q \ {0}
0 if x /∈ Q

Let xn = 1− 1

n
, yn = 1−

√
2

n
, n ≥ 2, and zn be the sequence defined as:

zn =

¨
1− 1

n if n = 2m, m ∈ N

1−
√
2

n if n = 2m+ 1,m ∈ N,m ≥ 1

(b) Now, compute lim t(xn), lim t(yn) and lim t(zn).
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Proof.

Since xn =
n− 1

n
, t(xn) =

1

n
. Thus, t(xn)→ 0.

Since yn is irrational, t(yn) = 0. Thus, t(yn) is the constant zero sequence and
approaches 0.

Since t(zn) is the shuffle sequence consisting of the terms of t(xn) and t(yn)
juxtaposed next to each other, t(zn)→ 0.

(c) Make an educated conjecture for the limit lim
x→1

t(x) and use the definition
4.2.1B to verify the claim.

Our claim is that lim
x→1

t(x) = 0.

We proceed by contradiction. Assume that there exists ϵ0 > 0 for all δ > 0 such
that for atleast some x ∈ (1− δ, 1 + δ) different from 1, we have |t(x)| ≥ ϵ0.

By the Archimedean property, there exists N ∈ N, such that 1

N
< ϵ0.

Consider δ =
1

2N
. There exists x ∈

�
1− 1

2N
, 1 +

1

2N

�
different from 1 such

that t(x) /∈ (−ϵ0, ϵ0).

Such an x must necessarily have a denominator greater than 2N . But then,

t(x) ∈
�
0,

1

2N

�
and so, t(x) ∈ (−ϵ0, ϵ0). This is a contradiction. Hence, our

initial assumption is false.

[Abbott 4.2.4] Consider the reasonable but erroneous claim that:

lim
x→10

1/[[x]] = 1/10

Solution.

(a) Find the largest δ that represents a proper response to the challenge of ϵ =
1/2.

Proof.

Suppose that:

∣∣∣∣ 1

[[x]]
− 1

10

∣∣∣∣ < 1

2
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Then,

1

10
− 1

2
<

1

[[x]]
<

1

10
+

1

2
or,

−2

5
<

1

[[x]]
<

3

5

Consider −2

5
<

1

[[x]]
. If [[x]] < 0, then −5

2
> [[x]]. If [[x]] > 0, then −2

5
< [[x]].

Consider 1

[[x]]
<

3

5
. If [[x]] < 0, then [[x]] <

5

3
. If [[x]] > 0, then [[x]] >

5

3
.

Consequently, it follows that [[x]] < −5

2
or [[x]] > 5

3
.

Therefore, x < −2 or x ≥ 2. That is x− 10 < −12 or x− 10 ≥ −8.

Thus, if |x− 10| ≤ 8, the inequality is satisfied. Hence, δϵ=1/2 = 8 is the largest
δ response to the given ϵ-challenge.

(b) Find the largest δ that represents a proper response to ϵ = 1/50.

Suppose that:

1

10
− 1

50
<

1

[[x]]
<

1

10
+

1

50

Thus,

2

25
<

1

[[x]]
<

3

25

So, [[x]] > 0. Thus,

0 < [[x]] <
25

2

and

[[x]] >
25

3
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Consequently,
1 ≤ x < 13

and

x ≥ 7

For both these conditions to be true simultaneously, we must have:

7 ≤ x < 13

or

−3 ≤ x− 10 < 3

Thus, the inequality is satisfied for all x such that:

|x− 10| < 3

So, the largest δϵ=1/50 response to the given ϵ-challenge is 3.

(c) Find the largest ϵ-challenge for which there is no suitable δ response possi-
ble.

Proof.

I think this is ϵ0 =
1

90
.

[Abott 4.2.5.] Use definition 4.2.1 to supply a proper proof for the following
limit statements.

(a) lim
x→2

(3x+ 4) = 10.

Proof.

We are interested to make the distance |(3x+ 4)− 10| as small as we please.

Pick an arbitrary ϵ > 0. Let’s explore the inequality:

|(3x+ 4)− 10| < ϵ
|3x− 6| < ϵ
|x− 2| < ϵ

3

Ifwe choose δ =
ϵ

3
, then |x−2| < δ implies that |(3x+4)−10| < ϵ. Consequently,

lim
x→2

(3x+ 4) = 10.
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(b) lim
x→0

x3 = 0.

We are interested to make the distance |x3| as small as we please.

Pick an arbitrary ϵ > 0. Let’s explore the inequality:

|x3| < ϵ
∴ −ϵ < x3 < ϵ

∴ − 3
√
ϵ < x < 3

√
ϵ

|x| < 3
√
ϵ

Pick δ = ϵ1/3. Then, |x| < δ implies that |x3| < ϵ.

Since ϵ was arbitrary, this is true for all ϵ > 0. Consequently, lim
x→0

x3 = 0.

(c) lim
x→2

(
x2 + x− 1

)
= 5.

We are interested to make the distance |
(
x2 + x− 1

)
− 5| as small as we please.

Pick an arbitrary ϵ > 0. Let’s explore the inequality:

|
(
x2 + x− 1

)
− 5| < ϵ

|x2 + x− 6| < ϵ
|x2 + 3x− 2x− 6| < ϵ

|x(x+ 3)− 2(x+ 3)| < ϵ
|(x− 2)(x+ 3)| < ϵ

Assume that δ < 1. Then |x − 2| < δ implies that x ∈ (1, 3). Consequently,
4 < x + 3 < 6. So, |x + 3| < 6. If in the above inequality, we replace |x + 3| by
its upper bound, we are strengthening the condition we wish to prove.

So, we would like to therefore prove:

|x− 2| < ϵ

6

If we choose δ = min{1, ϵ/6}, then |x−2| < δ implies that |
(
x2 + x− 1

)
−5| < ϵ.

Consequently, lim
x→2

(
x2 + x− 1

)
= 6.

(d) lim
x→3

1/x = 1/3.

We are interested to make the distance
∣∣∣∣ 1x − 1

3

∣∣∣∣ as small as we please.

Pick an arbitrary ϵ > 0. Let’s explore the inequality
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∣∣ 1
x −

1
3

∣∣ < ϵ
|x−3|
3|x| < ϵ

Assume that δ <
8

3
. Then 1

3
< x <

17

3
. So, |x| > 1

3
. If we replace |x| by it’s

lower bound in the above inequality, we strengthen the condition, we wish to
prove. Thus, our claim is:

|x− 3| < ϵ

If we choose δ = min

§
8

3
, ϵ

ª
, then |x− 3| < δ implies

∣∣∣∣ 1x − 1

3

∣∣∣∣ < ϵ.

Since ϵ was arbitrary, this holds true for all ϵ > 0. Consequently, lim
x→3

1

x
=

1

3
.

[Abbott 4.2.6] Decide if the following claims are true or false and give short
justifications for each conclusion.

(a) If a particular δ has been constructed as a suitable response to a particular
ϵ-challenge, then any small positive δ will also suffice.

Proof.

This proposition is true.

Suppose a particular δ-neighbourhood has been constructed in response to a
particular ϵ-challenge. Then, for all x ∈ (c−δ, c+δ), we have f(x) ∈ (L−ϵ, L+ϵ).

If 0 < ξ < δ, then Vξ(c) ⊆ Vδ(c). Consequently, for all x ∈ (c−ξ, c+ξ), it follows
that f(x) ∈ (L− ϵ, L+ ϵ).

(b) If lim
x→a

f(x) = L and a happens to be in the domain of f , then L = f(a).

This proposition is false.

Consider f(x) defined piecewise as:

f(x) =

¨
x if x > 0

1 if x = 0

lim
x→0

f(x) = lim
x→0

(x) = 0. But, f(0) = 1.

(c) lim
x→a

f(x) = L, then lim
x→a

3[f(x)− 2]2 = 3(L− 2)2.

This proposition is true.
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limx→a 3[f(x)− 2]2 = 3 · limx→a[f(x)− 2] · limx→a[f(x)− 2] {Algebraic Limit theorem
for functional limits}

= 3 · (L− 2) · (L− 2)
= 3(L− 2)2

(d) lim
x→a

f(x) = 0, then lim
x→a

f(x)g(x) = 0 for any function g (with domain equal
to the domain of f)

This proposition is false.

Let f(x) = x−a be a function defined for allR−{a}. Then, lim
x→a

f(x) = 0. And

let g(x) = 1

x− a
, x ̸= a. We have:

lim
x→a

f(x) · g(x) = lim
x→a

(x− a) · 1

(x− a)
= lim

x→a
(1) = 1

[Abbott 4.2.7] Let g : A→ R and assume that f is a bounded function on A in
the sense that there existsM > 0 satisfying |f(x)| ≤M for all x ∈ A. Show that
if lim

x→c
g(x) = 0, then lim

x→c
g(x)f(x) = 0 as well.

Proof.

We are interested to make the distance |g(x)f(x)| as small as we please.

Pick an arbitrary ϵ > 0.

There exists δ > 0, such that for all x ∈ (c− δ, c+ δ), it follows that:

|g(x)| < ϵ

M

Since, f(x) is bounded, there exists M > 0, for all x ∈ A, such that

|f(x)| ≤M

Consequently, for all x ∈ (c− δ, c+ δ), we have:

|g(x)f(x)| = |g(x)||f(x)| < ϵ

M
·M = ϵ

Thus, lim
x→c

g(x)f(x) = 0.

[Abbott 4.2.8] Compute each limit or state that it does not exist. Use the tools
developed in this section to justify each conclusion.
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(a) lim
x→2

|x− 2|
(x− 2)

.

Proof.

This limit does not exist.

Consider the sequence (xn) defined by xn = 2 +
1

n
. Now, limxn = 2. We have:

lim f(xn) = limn→∞
|xn−2|
(xn−2)

= lim (xn−2)
(xn−2) {since xn ≥ 2}

= lim1
= 1

Consider the sequence (yn) defined by yn = 2− 1

n
. Now, lim yn = 2. We have:

lim f(yn) = limn→∞
|yn−2|
(yn−2)

= lim −(yn−2)
(yn−2) {since yn ≤ 2}

= lim(−1)
= −1

Therefore, there exists two sequences (xn) and (yn) such that limxn = lim yn,

but lim f(xn) ̸= lim f(yn). Consequently, lim
x→2

|x− 2|
(x− 2)

does not exist.

(b) lim
x→7/4

|x− 2|
(x− 2)

Proof.

Our claim is lim
x→7/4

f(x) = −1.

We are interested to make the distance |f(x)− (−1)| as small as we please.

Pick an arbitrary ϵ > 0.

Let’s explore the inequality:

∣∣∣∣ |(x− 2)|
(x− 2)

− (−1)
∣∣∣∣ < ϵ

In other words:

∣∣∣∣ |x− 2|+ (x− 2)

(x− 2)

∣∣∣∣ < ϵ

103



Assume that δ <
1

4
. Then,

∣∣∣∣x− 7

4

∣∣∣∣ < 1

4
implies that x ∈

�
3

2
, 2

�
. Consequently,

x < 2 and so |x− 2| = −(x− 2). Thus, we have:

∣∣∣∣ 0

(x− 2)

∣∣∣∣ < ϵ, {x ̸= 2}

Since ϵ > 0, this is vacuously true.

Thus, a δ <
1

4
is a suitable response to any given ϵ-challenge.

Therefore, lim
x→7/4

|x− 2|
(x− 2)

= −1.

(c) lim
x→0

(−1)[[1/x]].

Proof.

This limit does not exist.

Let (xn) be a sequence defined by xn =
1

2n
, n ∈ N. We have, (xn) → 0. Now,

1

xn
= 2n and

f(xn) = (−1)[[1/xn]] = (−1)2n = 1

So, lim f(xn) = 1.

Let (yn) be a sequence defined by yn =
1

2n+ 1
, n ∈ N. We have, (yn)→ 0. And

f(yn) = (−1)[[1/yn]] = (−1)2n+1 = (−1)

So, lim f(yn) = −1.

Thus, ∃(xn), (yn) such that limxn = lim yn = 0, but lim f(xn) ̸= lim f(yn).

(d) lim
x→0

3
√
x(−1)[[1/x]].

Our claim is lim
x→0

3
√
x(−1)[[1/x]] = 0.

Since, |(−1)[[1/x]]| ≤ 1, given an arbitrary ϵ > 0, we can pick δ = ϵ3. Then, for
all |x| < δ, it follows that | 3

√
x||(−1)[[1/x]]| < 3

√
ϵ
3 · 1 = ϵ, since h(t) =

3
√
t is a

monotonically increasing function.

[Abbott 4.2.9] (Infinite Limits.) The statement lim
x→0

1/x2 =∞ certainly makes
intuitive sense. To construct a rigorous definition in the challenge response style
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of the definition 4.2.1., for an infinite limit statement of this form, we replace the
arbitrarily small ϵ > 0 challenge with an (arbitrarily large) M > 0 challenge:

Definition: lim
x→c

f(x) =∞means that for allM > 0we can find a δ > 0 such that
whenever 0 < |x− c| < δ, it follows that f(x) > M .

(a) Show that lim
x→0

1/x2 =∞ in the sense described in the previous definition.

Proof.

Pick an arbitraryM > 0. We are interested to make 1

x2
> M . Let’s explore this

inequality.

1
x2 > M
x2 < 1

M
|x| < 1√

M

Pick δ =
1√
M

, then |x| < δ implies that 1

x2
> M . Since M > 0 was arbitrary,

this is true for all M > 0. Consequently,

lim
x→0

1

x2
=∞

(b) Now construct a definition for the statement lim
x→∞

f(x) = L. Show that
lim
x→∞

1/x = 0.

Proof.

Definition. lim
x→∞

f(x) = Lmeans that for all ϵ > 0, there existsM > 0, such that
for all |x| > M , it follows that |f(x)− L| < ϵ.

We are interested to make the distance
∣∣∣∣ 1x
∣∣∣∣ < ϵ. Assume that M > 1, then

|x| > M implies that |x| > 1. Therefore,

|x| > 1

ϵ

If we pick M > max

§
1,

1

ϵ

ª
, then |x| > M implies that

∣∣∣∣ 1x
∣∣∣∣ < ϵ. Consequently,

lim
x→∞

1

x
= 0.

(c) What would a rigorous definition for lim
x→∞

f(x) = ∞ look like? Give an
example of such a limit.
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Solution.

Definition. For all M > 0, there exists N > 0, such that for all x > N , it follows
that f(x) > M .

[Abbott 4.2.10] Right and left limits. Introductory calculus courses typically
refer to the right-hand limit of a function as the limit obtained by letting x ap-
proach a from the right-hand side

(a) Give a proper definition in the style of the definition 4.2.1 for the right-hand
and left-hand limit statements:

lim
x→a+

f(x) = L and lim
x→a−

f(x) = M

Proof.

lim
x→a+

f(x) = L means that for all ϵ > 0, there exists δ > 0, such that for all
x ∈ (a, a+ δ), it follows that f(x) ∈ (L− ϵ, L+ ϵ).

lim
x→a−

f(x) = M means that for all ϵ > 0, there exists δ > 0, such that for all
x ∈ (a− δ, a), it follows that f(x) ∈ (L− ϵ, L+ ϵ).

(b) Prove that lim
x→a

f(x) = L if and only if both the right and the left-handside
limits equal L.

=⇒ direction.

We are given lim
x→a

f(x) = L.

Pick an arbitrary ϵ > 0.

There exists δ > 0, such that for all x ∈ (a− δ, a+ δ), f(x) ∈ (L− ϵ, L+ ϵ).

Let t be an arbitrary point in (a− δ, a). Since |t− a| < δ, f(t) ∈ (L− ϵ, L+ ϵ).

As t is arbitrary, this is true for all t ∈ (aδ, a). Since ϵ was arbitrary, this is true
for all ϵ > 0.

Consequently, lim
x→a−

f(x) = L.

Let s be an arbitrary point (a, a+ δ). Since |s− a| < δ, f(s) ∈ (L− ϵ, L+ ϵ).

As s is arbitrary, this is true for all s ∈ (a, a + δ). Since ϵ was arbitrary, this is
true for all ϵ > 0.

Consequently, lim
x→a+

f(x) = L
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⇐=direction.

We are given that lim
x→a−

f(x) = lim
x→a+

f(x) = L.

Pick an arbitrary ϵ > 0.

There exists δ1 > 0, such that for all x ∈ (a− δ1, a), f(x) ∈ (L− ϵ, L+ ϵ).

There exists δ2 > 0, such that for all x ∈ (a, a+ δ2), f(x) ∈ (L− ϵ, L+ ϵ).

Pick δ = min{δ1, δ2}. Then, for all x ∈ (a− δ, a+ δ), f(x) ∈ (L− ϵ, L+ ϵ).

Since ϵ was arbitrary, this is true for all ϵ > 0.

Consequently, lim
x→a

f(x) = L.

[Abbott 4.2.11] (Squeeze Theorem.) Let f, g and h satisfy f(x) ≤ g(x) ≤ h(x)
for all x in some common domain A. If lim

x→c
f(x) = L and lim

x→c
h(x) = L at some

point c of A, show that lim
x→c

g(x) = L as well.

Proof.

Pick an arbitrary ϵ > 0.

There exists δ1 > 0, such that for all x ∈ (c− δ1, c+ δ1), f(x) ∈ (L− ϵ, L+ ϵ).

There exists δ2 > 0, such that for all x ∈ (c− δ2, c+ δ2), h(x) ∈ (L− ϵ, L+ ϵ).

Let δ = min{δ1, δ2}.

But since f(x) ≤ g(x) ≤ h(x), for all x ∈ (c − δ, c + δ), we have that L − ϵ <
f(x) ≤ g(x) ≤ h(x) < L+ ϵ.

Since ϵ was arbitrary, this holds true for all ϵ > 0. Consequently, lim
x→c

g(x) = L.

[Abbott 4.3.1] Let g(x) = 3
√
x.

(a) Prove that g is continuous at c = 0.

Proof.

We are interested to make the distance |g(x)− g(0)| as small as we please.

Pick an arbitrary ϵ > 0.

Let’s explore the inequality |g(x)| < ϵ.
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|g(x)| < ϵ
| 3
√
x| < ϵ
|x| < ϵ3

Pick δ = ϵ3. Then, for all |x| < δ, it follows that |g(x)| < ϵ. Since ϵwas arbitrary,
this is true for all ϵ > 0. Consequently, g(x) is continuous at c = 0.

(b) Prove that g is continuous at a point c ̸= 0. (The identity a3 − b3 = (a −
b)
(
a2 + ab+ b2

)
will be helpful).

Proof.

We are interested to make the distance |g(x)− g(c)| as small as we please.

Consider the inequality |g(x)− g(c)| < ϵ.

|g(x)− g(c)| < ϵ
| 3
√
x− 3
√
c| < ϵ

| 3
√
x− 3
√
c| × |x2/3+x1/3c1/3+c2/3|

|x2/3+x1/3c1/3+c2/3| < ϵ
|x−c|

|x2/3+x1/3c1/3+c2/3| < ϵ

Now, if we complete the square in the denominator, we have:

x2/3+x1/3c1/3+c2/3 = x2/3+2·x1/3·c
1/3

2
+
c2/3

4
+
3c2/3

4
=

�
x1/3 +

c1/3

2

�2

+

�√
3c1/3

2

�2

Since the sum of squares is always positive, we can write:

|x−c|(
x1/3+ c1/3

2

)2
+
(√

3c1/3

2

)2 < ϵ

Moreover, since
�
x1/3 + c1/3/2

�2
≥ 0, we can prove the stronger condition:

|x− c|
3
4c

2/3
< ϵ, {c ̸= 0}

Pick δ =
3

4
c2/3ϵ. Then, |x− c| < δ implies that |g(x)− g(c)| < ϵ.

Consequently, g(x) is continuous at c ̸= 0.

[Abbott 4.3.2.] To gain a deeper understanding of the relationship between ϵ
and δ in the definition of continuity, let’s explore some modest variations of
Definition 4.3.1. In all of these, let f be a function defined on all of R.
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(a) Let’s say that f is onetinuous at c if for all ϵ > 0 we can choose δ = 1 and
it follows that |f(x) − f(c)| < ϵ whenever |x − c| < δ. Find an example of a
function that is onetinuous on all of R. Find an example of a function that is
onetinuous on all of R.

Proof.

Consider the constant function f(x) = k.

Pick an arbitrary ϵ > 0. Consider |f(x)− f(c)| < ϵ. We have:

|k − k| < ϵ

But, this is vacuously true, irrespective of the ϵ-challenge. Hence, we can pick
δ = 1 response.

Consequently, f(x) = k is onetinuous.

(b)Let’s say that f is equaltinuous at c, if for all ϵ > 0 we can choose δ = ϵ
and it follows that |f(x) − f(c)| < ϵ whenever |x − c| < δ. Find an example of
a function that is equaltinuous on R, that is no where onetinuous, or explain
why there is no such function.

Proof.

Consider the linear function f(x) = x. Let c be an arbitrary point.

Claim. f(x) is equaltinuous.

Pick an arbitrary ϵ > 0. Consider |f(x)− f(c)| < ϵ. We have:

|f(x)− f(c)| < ϵ
|x− c| < ϵ

Pick δ = ϵ. Then for all |x− c| < δ, it follows that |f(x)− f(c)| < ϵ.

Claim. f(x) is nowhere ontinuous.

Let ϵ0 =
1

2
. Let’s explore the inequality |f(x)− f(c)| ≥ ϵ0. We have:

|x− c| ≥ 1

2

Since Q is dense inR, we can pick x ∈ Q satisfying:

c− 1 < x ≤ c− 1

2
or c+

1

2
≤ x < c+ 1
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Thus, |x− c| < 1.

So, there exists Vϵ0(f(c)) for V1(c), such that for atleast some x ∈ V1(c), it follows
that f(x) /∈ Vϵ0(f(c)).

There exists an ϵ-challenge for which a δ-response with δ = 1 is not suitable.

Since c was arbitrary, f is nowhere onetinuous.

(c) Let’s say f is lesstinuous at c if for all ϵ > 0, we can choose 0 < δ < ϵ and
it follows that |f(x) − f(c)| < ϵ whenever |x − c| < δ. Find an example of
a function that is lesstinuous on R, that is no where equaltinuous, or explain
why there is no such function.

Proof.

Consider f(x) = 2x.

Claim. f(x) is lesstinuous.

Let’s explore the inequality f(x) = 2x. We have:

|f(x)− f(c)| < ϵ
|2x− 2c| < ϵ
|x− c| < ϵ

2

If we pick δ = ϵ/2, then for all x satisfying |x − c| < δ, it follows that |f(x) −
f(c)| < ϵ.

Claim. f(x) is nowhere equaltinuous.

Let ϵ0 =
1

2
. Now, δ = ϵ0.

We can pick x belonging to the set:

(c− δ, c− ϵ0/2) ∪ (c+ ϵ0/2, c+ δ)

Clearly, |f(x) − f(c)| ≥ ϵ0. So, there exists ϵ0 for δ = ϵ0, such that there for
atleast some x ∈ Vδ(c), it follows that |f(x)− f(c)| ≥ ϵ0.

There exists an ϵ-challenge for which a δ-response with δ = ϵ0 is not suitable.

(d) Is every lesstinuous function continuous? Is every continuous function
lesstinuous? Explain.

Proof.
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Every lesstinuous function is function, this follows from thedefinition of lesstin-
uous functions.

All continuous functions are not lesstinuous.

Consider f(x) = x/2. Pick an arbitrary ϵ > 0. Let’s explore the inequality
|f(x)− f(c)| < ϵ.

|f(x)− f(c)| < ϵ
|x/2− c/2| < ϵ

|x− c| < 2ϵ

If we choose δ = 2ϵ, then for all x ∈ (c− δ, c+ δ), it follows that f(x) ∈ (f(c)−
ϵ, f(c) + ϵ).

Consequently, f is continuous but not lesstinuous.

[Abbott 4.3.3.] (a) Supply a proof for the theorem 4.3.9. using the ϵ − δ char-
acterization of continuity.

Proof.

We are given that f is continuous at c ∈ A and g is continuous at f(c) ∈ B.

We are interested to make the distance |g(f(x))−g(f(c))| as small as we please.

Pick an arbitrary ϵ > 0. Let’s explore the inequality |g(f(x))− g(f(c))| < ϵ.

Since g is continuous at f(c) ∈ f(A), there exists ξ > 0, such that for all f(x) ∈
f(A) satisfying |f(x)− f(c)| < ξ, it follows that |g(f(x)− g(f(c))| < ϵ.

Since f is continuous at c, there exists δ > 0, such that for all x ∈ A, satisfying
|x− c| < δ, it follows that |f(x)− f(c)| < ξ.

Since ϵ was arbitrary, this is true for all ϵ > 0.

Consequently, for all ϵ > 0, there exists δ > 0, such that for all x ∈ Vδ(c), it
follows that g(f(x)) ∈ Vϵ(g(f(c)). Consequently, g(f(x)) is continuous at c.

(b) Give another proof of this theorem usng the sequential characterization of
continuity.

Let (xn) be an arbitrary sequence, with (xn) ⊆ A, such that (xn)→ c.

Since f is continuous at c, it follows that the image sequence f(xn)→ f(c).

Now, f(xn) ⊆ f(A). Since, g is continuous at f(c), the image sequence under g
of f(xn), g(f(xn)) approaches g(f(c)).
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Since (xn) was an arbitrary sequence in A, this must be true for all sequences
(xn) ⊆ A, with (xn)→ c.

Consequently, g(f(x)) is continuous at c.

[Abbott 4.3.4] Assume f and g are defined on all of R and that lim
x→p

f(x) = q

and lim
x→q

g(x) = r.

(a) Give an example to show that it may not be true that

lim
x→p

g(f(x)) = r

Proof.

Define:

f(x) = 0

and

g(x) =

¨
x if x ̸= 0

1 if x = 0

We have lim
x→0

f(x) = 0 and lim
x→0

g(x) = 0. But, lim
x→0

g(f(x)) = lim
x→0

g(0) =

lim
x→0

(1) = 1.

(b) Show that the results in (a) does follow if we assume that f and g are con-
tinuous.

Proof.

For all sequences (tn), such that (tn)→ p, since f is continuous at p, the image
sequence f(tn)→ f(p). Consequently, q = f(p).

For all sequences (yn), such that (yn) → q, since g is continuous at q, g(yn) →
g(q). Consequently, r = g(q).

Let (xn) be an arbitrary sequence such that (xn)→ p.

Since f is continuous at p, the image sequence f(xn)→ f(p).

Since g is continuous at f(p), the image sequence g(f(xn))→ g(f(p)) = g(q) =
r.
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As (xn) is arbitrary, this is true for all sequences (xn)→ p.

Consequently, lim
x→p

g(f(x)) = r.

(c) Does the result in (a) hold if we only assume f is continuous? How about
if we only assume that g is continuous?

Proof.

No, the result in (a) does not hold if we only assume f is continuous.

[Abbott 4.3.5] ShowusingDefinition 4.3.1 that is c is an isolated point ofA ⊆ R,
then f : A→ R, then f : A→ R is continuous at c.

Proof.

Since c is an isolated point, there exists δ0 > 0, such that Vδ0(c) ∩A = {c}.

Pick an arbitrary ϵ > 0. For any given ϵ-challenge, we always choose the above
δ0 as the response.

For all x ∈ Vδ0(c) (and x ∈ A), we must necessarily have x = c. Consequently,
the distance |f(x)− f(c)| = |f(c)− f(c)| = 0 < ϵ.

By definition 4.3.1, f is continuous at c.

[Abbott 4.3.6] Provide an example of each or explain why the request is impos-
sible.

(a) Two functions f and g, neither of which is continuous at 0 but such that
f(x)g(x) and f(x) + g(x) are continuous at 0.

Consider

f(x) =

¨
x if x ̸= 0

1 if x = 0

and

g(x) =

¨
1
x if x ̸= 0

1 if x = 0

We have:

f(x)g(x) = 1
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Both f(x) and g(x) are not continuous at x = 0. But the product f(x)g(x) is the
constant function that maps all x→ 1. So, f(x)g(x) is continuous at x = 0.

Further, consider

f(x) =

¨
1
x if x ̸= 0

0 if x = 0

g(x) =

¨
− 1

x if x ̸= 0

0 if x = 0

Again both f(x) and g(x) are not continuous at x = 0. But, the sum f(x)+ g(x)
is the constant function that maps all x → 0. So, f(x) + g(x) is continuous at
x = 0.

(b)A function f(x) continuous at 0 and g(x)not continuous at 0 such that f(x)+
g(x) is continuous at 0.

Proof.

This request is impossible.

Since g(x) = [f(x)+g(x)]−f(x), and f(x)+g(x) as well as f(x) are continuous,
by the Algebraic continuity theorem, g(x)must be continuous at 0.

(c)A function f(x) continuous at 0 and g(x)not continous at 0 such that f(x)g(x)
is continuous at 0.

Proof.

Consider f(x) = x and g(x) =
1

x
. f(x) is continuous at c = 0, whilst g(x) is not

continuous at c = 0. The product f(x)g(x) = 1 is continuous at c = 0.

(d) A function f(x) not continuous at 0 such that f(x) + 1

f(x)
is continuous at

0.

Proof.

(e) A function f(x) not continuous at 0 such that [f(x)]3 is continuous at 0.

This request is impossible.

Let g(x) = 3
√
x. [f(x)]3 is continuous at x = 0. g(x) is continuous everywhere

and therefore, it is continuous at [f(0)]3.

The theorem 4.3.9 says that if f is continuous at c ∈ A and g is continuous at
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f(c) ∈ f(A), then g(f(x)) is continuous at c.

So, g(f(x)) = 3

È
[f(x)]3 = f(x)must be continuous at 0.

[Abbott 4.3.7] (a) Referring to the proper theorems, give a formal argument
that Dirichlet’s function from section 4.1 is nowhere-continuous on R.

Proof.

The Dirichlet’s function is defined as:

f(x) =

¨
1 if x ∈ Q

0 if x /∈ Q

Let c ∈ Q be an arbitrary rational point.

Define (xn) = c +
1

n
. We have, (xn) ⊆ Q, with (xn) → c. The image sequence

f(xn) is the constant sequence (1, 1, . . . ). Thus, f(xn)→ 1.

Define (yn) = c +

√
2

n
. We have (yn) ⊆ I , with (yn) → c. The image sequence

f(yn) is the constant sequence (0, 0, 0, . . . ). Thus, f(yn)→ 0.

Consequently, lim f(xn) ̸= lim f(yn). So, f is not continuous at any rational
point.

Let d ∈ I be an arbitrary irrational point.

Since Q is dense in R :

We can pick a rational number x1, satisfying d − 1 < x1 < d + 1. We can pick
the rational number x2 satisfying d − 1

2
< x2 < d +

1

2
. In general, let xn ∈ Q,

be such that, d− 1

n
< xn < d+

1

n
.

Pick an arbitrary ϵ > 0. If we pickN >
1

ϵ
, then for all n ≥ N , xn ∈ (d− ϵ, d+ ϵ).

Thus, (xn) ⊆ Qwith (xn)→ d.

The image sequence f(xn) is the constant sequence (1, 1, 1, . . . ). So, f(xn)→ 1.

Define yn = d +

√
2

n
. Since the irrationals are closed under addition, (yn) ⊆ I

and (yn)→ d. The image sequence f(yn) = (0, 0, 0, 0, . . . ). Thus, f(yn)→ 0.

Consequently, lim f(xn) ̸= lim f(yn). So, f is not continuous at any irrational
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point.

(b) Review the definition of Thomae’s function in section 4.1 and demonstrate
that it fails to be continuous at every rational point.

Proof.

The Thomae’s function t(x) is defined as:

t(x) =


1 if x = 0
1
n if x = m

n ∈ Q− {0} is in the lowest terms with n > 0

0 if x /∈ Q

Let c ∈ Q be an arbitrary rational point. Consider the sequence xn = c +√
2

n
. The image sequence t(xn) is the constant zero sequence (0, 0, 0, . . . ). So,

t(xn)→ 0. But, t(c) ̸= 0.

(c) Use the characterization of continuity in Theorem 4.3.2 (iii) to show that
Thomae’s function is continuous at every irrational point in R.

Proof.

Since the Thomae’s function t(x) is periodic with a frequency 1, and repeats
itself between any two integers, it suffices to show that it is continuous at an
irrational point c, c /∈ Q, 0 < c < 1.

We proceed by contradiction.

Assume that t(x) is discontinous at c. Now, t(c) = 0.

Carefully negating the definition of the continuity of a function, we find that,
there exists an ϵ0 > 0, for all δ > 0, such that for atleast some x satisying |x−c| <
δ, it follows that t(x) ≥ ϵ0.

By the Archimedean property, there exists N ∈ N, such that 1

N
< ϵ0.

Since t(x) is a rational number of the form 1

n
, n ∈ N, t(x) must belong to the

set of finite numbers:

t(x) ∈
§

1

N − 1
,

1

N − 2
, . . . ,

1

2
, 1

ª

Thus, xmust belong to the finite set S:
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S =

§
k

l
: k, l ∈ N, 1 ≤ l ≤ N − 1, k < l

ª

But, we assumed that, for all δ > 0, there exists x satisfying |x − c| < δ, such
that t(x) ≥ ϵ0. If we choose δn =

1

n
, we can construct a sequence (xn)→ c.

However, x belongs to the finite setS. A sequencewhose terms are the elements
of a finite set is either divergent or converges to an element from the set. Therein,
lies our contradiction.

[Abbott 4.3.8] Decide if the following claims are true or false, providing either
a short proof or counterexample to justify each conclusion. Assume throughout
that g is defined and continuous on all ofR.

(a) If g(x) ≥ 0 for all x < 1, then g(1) ≥ 0 as well.

Proof.

Since g is continuous, by the sequential characterization of continuity, for all
sequences (xn)→ 1, g(xn)→ g(1).

Consider the sequence (an) defined by:

an = 1− 1

n

Since an < 1, g(an) ≥ 0.

We know that, g(an) → g(1). By the order limit theorem, lim g(an) ≥ 0, so
g(1) ≥ 0.

(b) If g(r) = 0 for all r ∈ Q, then g(x) = 0 for all x ∈ R.

Proof.

Let c be any arbitrary rational point. For all sequences (xn)→ c, g(xn)→ g(c).

Define an = c+
1

n
. Since g(an) is the constant zero sequence, g(an)→ 0. Thus,

g(c) = 0.

Let d be an arbitrary irrational point. SinceQ is dense inR, we can construct a
rational sequence (bn) → d. Since g(bn) is the constant zero sequence, g(bn) →
0. Thus, g(d) = 0.

So, g(x) = 0 for all x ∈ R.

(c) If g(x0) > 0 for a single point x0 ∈ R, then g(x) is in fact strictly positive for
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uncountably many points.

Since g(x) is continuous at x0, for all ϵ > 0, there exists δ > 0, such that for all x
satisfying|x− x0| < δ, it follows that |g(x)− g(x0)| < ϵ.

Pick ϵ =
g(x0)

2
> 0. Then, there exists δϵ, such that for all x satisfying |x−x0| <

δϵ, it follows that g(x0)

2
< g(x) <

3g(x0)

2
. Thus, g(x) is strictly positive.

Since, the interval (x0−δϵ, x0+δϵ) consists of uncountablymanypoints, and g(x)
is defined and everywhere continuous, g(x) is strictly positive for uncountably
many points.

[Abbott 4.3.9] Assume that h : R → R is continuous on R and let K = {x :
h(x) = 0}. Show that K is a closed set.

Proof.

Let a be a limit point ofK. We are interested to prove that a ∈ K. By definition,
there exists (an) ⊆ K, such that an ̸= a, with (an)→ a.

Since h is a continuous function, h(an) → h(a). But, h(an) = 0 for all n ∈ N.
Consequently, h(an)→ 0. Thus, h(a) = 0. Consequently, a ∈ K.

Since awas arbitrary, this is true of all the limit points of K.

So,K is closed.

[Abbott 4.3.10] Observe that if a and b are real numbers, then

max{a, b} = 1

2
[(a+ b) + |a− b|]

(a) Show that if f1, f2, . . . , fn are continuous functions, then

g(x) = max{f1(x), f2(x), . . . , fn(x)}

is a continuous function.

Proof.

Weproceed bymathematical induction. First let’s prove that g2(x) = max{f1(x), f2(x)}
is continuous for the case n = 2. We have:

g2(x) =
1

2
[f1(x) + f2(x) + |f1(x)− f2(x)|]
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By the Algebraic continuity theorem, if f1(x) and f2(x) are continuous func-
tions, f1(x) + f2(x) is also continuous.

Let’s prove that h(x) = |f1(x)−f2(x)| is also continuous. I use a direct argument
to prove this. However, notice that h(x) = l(f1(x) − f2(x)) where l(x) = |x|,
and since |x| is continuous, and the composition of continuous functions is con-
tinuous, it follows that |f1(x)− f2(x)| is continuous.

Nevertheless, suppose we are interested to make the distance ||f1(x)− f2(x)| −
|f1(c)− f2(c)| as small as we please.

Let’s explore the inequality:

||f1(x)− f2(x)| − |f1(c)− f2(c)| < ϵ

Replacing ||f1(x) − f2(x)| − |f1(c) − f2(c)| by its upper bound will strengthen
the condition we wish to prove.

Note that:

||a| − |b|| ≤ |a− b|

Short proof.

|a| = |a− b+ b|
≤ |a− b|+ |b|

|a| − |b| ≤ |a− b|

And

|b| = |b− a+ a|
≤ |a− b|+ |a|

|b| − |a| ≤ |a− b|

Consequently,

−|a− b| ≤ |a| − |b| ≤ |a− b|

Thus, the distance ||a| − |b|| ≤ |a− b|.

Consequently,

||f1(x)− f2(x)| − |f1(c)− f2(c)| ≤ |f1(x)− f2(x)− (f1(c)− f2(c))|
= |f1(x)− f1(c)− (f2(x)− f2(c))|
≤ |f1(x)− f1(c)|+ |f2(x)− f2(c)|
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Thus, our claim is :

|f1(x)− f1(c)|+ |f2(x)− f2(c)| < ϵ

There exists δ1 > 0, such that for all x satisfying |x − c| < δ1, it follows that
|f1(x)− f1(c)| < ϵ/2.

There exists δ2 > 0, such that for all x satisfying |x − c| < δ2, it follows that
|f2(x)− f2(c)| < ϵ/2.

Pick δ = min{δ1, δ2}. Then, for all x satisfying |x− c| < δ, it follows that:

||f1(x)− f2(x)| − |f1(c)− f2(c)| ≤ |f1(x)− f1(c)|+ |f2(x)− f2(c)|
< ϵ

2 + ϵ
2 = ϵ

So, |f1(x) − f2(x)| is continuous at c. Since c was arbitrary, |f1(x) − f2(x)| is
continuous on R.

Thus, g2(x) is continuous.

Assume that gn−1(x) = max{f1(x), . . . , fn−1(x)} is continuous.

We are interested to prove that gn(x) is continuous. Because,

gn(x) = max{gn−1(x), fn(x)}

and both gn−1 and fn are continuous, we can argue as above that, gn is contin-
uous. By the principle of mathematical induction, this is true for all n ∈ N.

(b) Let’s explore whether the result in (a) extends to the infinite case. For each
n ∈ N, define fn on R by:

fn(x) =

¨
1 if |x| ≥ 1/n

n|x| if |x| < 1/n

Now explicitly compute h(x) = sup{f1(x), f2(x), f3(x), . . . }.

Proof.

Note that, all fn(x) are continuous on R.

We are only interested in the behavior of these functions and h(x) in [−1, 1],
since fn(x) = 1 for all |x| ≥ 1.

Let (xn) ⊆ (0, 1] be an arbitrary sequence such that (xn)→ 0.
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Since 0 < xn < 1, by the Archimedean property, for all n ∈ N, there exists
M ∈ N, such that 1

M
< xn. By definition, fM+1(xn) = 1 and in fact, fm(xn) = 1

for all m ≥ M . So, h(xn) = 1. Consequently, h(xn) is the constant sequence
(1, 1, 1, . . . ). Thus, h(xn)→ 1.

Since (xn)was arbitrary, this is true for all sequences (xn)→ 0. Thus, the func-
tional limit lim

x→0
h(x) = 1. But, h(0) = 0. Therefore, h has a jump discontinuity

at c = 0.

Hence, the result in (a) does not extend to the infinite case.

[Abbott 4.3.11] (Contraction Mapping Theorem.) Let f be a function defined
on all of R, and assume that there is a constant c such that 0 < c < 1 and

|f(x)− f(y)| ≤ c|x− y|

for all x, y ∈ R.

(a) Show that: f is continuous on R.

Proof.

Let x0 be an arbitrary but fixed point. Our claim is that f is continuous at x0.
We would like to make the distance |f(x)− f(x0)| as small as we please.

Pick an arbitrary ϵ > 0.

We would like to prove that:

|f(x)− f(x0)| < ϵ

But, |f(x) − f(x0)| ≤ c|x − x0|. Replacing |f(x) − f(x0)| by its upper bound
strengthens the inequality we wish to prove.

Our claim therefore is:

|x− x0| <
ϵ

c
, {0 < c < 1}

Pick δ =
ϵ

c
. Then for all x satisfying |x− x0| < δ, it follows that

|f(x)− f(x0)| ≤ c|x− x0| < c · (ϵ/c) = ϵ

Since x0 was arbitrary, this must be true of all x ∈ R. So, f is continuous onR.
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(b) Pick some point y1 ∈ R and construct the sequence

(y1, f(y1), f(f(y1), . . . )

In general, if yn+1 = f(yn), show that the resulting sequence (yn) is a Cauchy
sequence. Hence, we may let y = lim yn.

Proof.

Consider the distance |yn−ym|. We are interested tomake this distance as small
as possible.

Let’s explore the expresson |yn − ym|. We have:

|yn − ym| = |yn − yn−1 + yn−1 − yn−2 + . . .+ ym+1 − ym|
≤ |yn − yn−1|+ |yn−1 − yn−2|+ . . .+ |ym+1 − ym|
= |f(yn−1)− f(yn−2)|+ |f(yn−2)− f(yn−3)|+ . . .+ |f(ym)− f(ym−1)|
≤ c|yn−1 − yn−2|+ c|yn−2 − yn−3|+ . . .+ c|ym − ym−1|
≤ cn−2|y2 − y1|+ cn−3|y2 − y1|+ . . .+ cm−1|y2 − y1|
= cm−1|y2 − y1|

(
1 + c+ c2 + . . .+ c(n−m+1)

)
≤ cm−1

1−c |y2 − y1| since {|c| < 1}

Pick an arbitrary ϵ > 0. We are interested to prove that |yn−ym| < ϵ. Replacing
|yn − ym| by its upper bound strengthens the condition we wish to prove.

Hence our claim is:

cm−1

1− c
· |y2 − y1| < ϵ

or

cm−1 <
ϵ(1− c)

|y2 − y1|
Taking log on both sides:

(m− 1) log c <
ϵ(1− c)

|y2 − y1|

that is,

(m− 1) >
ϵ(1− c)

|y2 − y1| log c
, {since log c < 0}
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If we pick M > 1 +
ϵ(1− c)

|y2 − y1| log c
, then for all n > m ≥ M , it follows that

|yn − ym| < ϵ. Consequently, (yn) is a Cauchy sequence.

(c) Prove that y is a fixed point of f (that is f(y) = y) and that it is unique in
this regard.

Proof.

We have: y = lim yn. Since f is a continuous function, f(yn) → f(y). But,
f(yn) = yn+1. So, f(yn)→ y. Consequently, f(y) = y.

(d) Finally, prove that ifx is any arbitrary point inR, then the sequence (x, f(x), f(f(x)), . . . )
converges to y defined in (b).

Proof.

Let x be an arbitrary point in R. Let (xn) be the sequence given by:

(xn) = (x, f(x), f(f(x)), . . . )

Consider the distance |xn − y|. We would like to make this distance as small as
we please. We have:

|xn − y| = |f(xn−1)− f(y)|
≤ c|xn−1 − y|
= c|f(xn−2)− f(y)|
≤ c2|xn−2 − y|
≤ cn−1|x− y|

Given any arbitrary ϵ-challenge, we can pick N such that,

cN−1|x− y| < ϵ
that is, cN−1 < ϵ

|x−y|
or N − 1 > ϵ

|x−y| log c

It follows that |xn − y| < ϵ. Consequently, limxn = y.

[Abbott 4.3.12] Let F ⊆ R be a nonempty closed set and define g(x) = inf{|x−
a| : a ∈ F}. Show that g is continuous on all of R and g(x) ̸= 0 for all x /∈ F .

Proof.

[Abbott 4.4.1] (a) Show that f(x) = x3 is continuous on all of R.

Proof.
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Let c be an arbitrary point inR. We are interested to make the distance |f(x)−
f(c)| as small as we please.

Pick an arbitrary ϵ > 0.

Case I. c = 0.

Since f(c) = 0, if we pick δ = 3
√
ϵ, then for all |x| < δ, we have |f(x)| < ϵ.

Case II. c ̸= 0.

We have:

|f(x)− f(c)| = |x3 − c3|
= |x− c||x2 + cx+ c2|

= |x− c|
∣∣∣∣(x+ c

2

)2
+
�√

3
2 c
�2∣∣∣∣

= |x− c|
[(
x+ c

2

)2
+
�√

3c
2

�2]
If we assume that δ < 1, then x ∈ (c− 1, c+ 1). So, x ≤ c+ 1. Therefore,

(
x+

c

2

)2
+

�√
3c

2

�2

≤
�
3c+ 2

2

�2

+

�√
3c

2

�2

Hence, we try to prove the stronger condition:

|x− c|

[�
3c+ 2

2

�2

+

�√
3c

2

�2
]
≤ ϵ

Since c ̸= 0, the expression {(3c+2)/2)2+
�√

3c/2
�2
} is strictly positive. Hence,

we can pick

δ = min

1,
ϵ(

3c+2
2

)2
+
�√

3c
2

�2


Then, for all x satisfying |x− c| < δ, it follows that |f(x)− f(c)| < ϵ.

Since cwas arbitrary, f is continuous on all of R.

(b) Argue, using theorem 4.4.5, that f is not uniformly continuous on R.
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Proof.

Consider the sequence xn = n+
1

n
and yn = n. Let ϵ0 = 1. Then, (xn−yn) =

1

n
and (xn − yn) = 0. But,

|f(xn)− f(yn)| =
∣∣∣(n+ 1

n

)3 − n3
∣∣∣

=
∣∣n3 + 3n2 · 1n + 3n · 1

n2 + 1
n3 − n3

∣∣
=
∣∣3n+ 3

n + 1
n3

∣∣
= 3n+ 3

n + 1
n3

≥ 3n
≥ ϵ0

Consequently, by the sequential criterion for the absence of uniform continuity,
f is not uniformly continuous.

(c) Show that f is uniformly continuous on any bounded subset of R.

Proof.

Let S ⊆ R be any bounded subset ofR. Since S is bounded, there existsM > 0
for all x ∈ S, such that |x| ≤M .

We are interested to make the distance |f(x)− f(y)| as small as we please. Pick
an arbitrary ϵ > 0.

|f(x)− f(y)| = |x3 − y3|
≤ |x− y||x2 + xy + y2|
≤ |x− y||x2|+ |x||y|+ |y2|
≤ |x− y|

(
M2 +M2 +M2

)
= |x− y| · 3M2

Pick δ =
ϵ

3M2
. Then, for all x, y ∈ S satisfying |x − y| < δ, it follows that

|f(x)− f(y)| < ϵ.

[Abbott 4.4.2] (a) Is f(x) = 1/x uniformly continuous on (0, 1)?

Proof.

Let xn =
1

n2
and yn =

1

n2 + n
, with n ≥ 2. Both (xn) and (yn) are contained in

(0, 1). Let ϵ0 = 1. Then (xn − yn) → 0. Let’s explore the expression |f(xn) −
f(yn)|.

|f(xn)− f(yn)| = n2 + n− n2

= n
≥ 1 = ϵ0
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Consequently, by the sequential criterion for the absence of uniform continuity,
f is not uniformly continuous on (0, 1).

(b) Is g(x) =
√
x2 + 1 uniformly continuous on (0, 1)?

We are interested to make the distance |g(x)− g(y)| as small as we please. Pick
an arbitrary ϵ > 0.

|g(x)− g(y)| = |
√
x2 + 1−

√
y2 + 1|

=
∣∣∣√x2 + 1−

√
y2 + 1

∣∣∣× ∣∣∣√x2+1+
√

y2+1
∣∣∣∣∣∣√x2+1+

√
y2+1

∣∣∣
=

|(x2+1)−(y2+1)|
√
x2+1+

√
y2+1

=
|x2−y2|

√
x2+1+

√
y2+1

= |x−y||x+y|
√
x2+1+

√
y2+1

< |x−y|·2
1+1

{0 < x < 1}
{0 < y < 1}

= |x− y|

Therefore, we can try to prove the stronger condition |x − y| < ϵ. Pick δ = ϵ.
Then, for all x, y ∈ (0, 1) satisfying |x− y| < δ, it follows that |f(x)− f(y)| < ϵ.

(c) Is h(x) = x sin(1/x) uniformly continuous on (0, 1)?

Proof.

f(x) = x is continuous on (0, 1).Wecan show that g(x) = sin(1/x) is continuous
on (0, 1).

Claim. sinx is continuous on (0, 1]

We can write:

| sinx− sin c| ≤ 2
∣∣cos (x+c

2

)
sin
(
x−c
2

)∣∣
≤ 2

∣∣sin (x−c
2

)∣∣ since | cosx| ≤ 1

= 2
∣∣∣(x−c

2

)
− 1

3!

(
x−c
2

)3
+ 1

5!

(
x−c
2

)5 − . . .
∣∣∣ {expansion}

Pick δ <
1

2
. Then |x− c| < 1

2
implies that
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(x− c

2

)4
<
(x− c

2

)2
(x− c

2

)8
<
(x− c

2

)6
Thus, the term inside the curly brackets is strictly non-negative and has a lower
bound 0. Also Therefore, we can try to prove the stronger condition

| sinx− sin c| ≤ 2
∣∣x−c

2

∣∣
= |x− c|

Pick δ = min

§
1

2
, ϵ

ª
. Then, for all x satisfying |x− c| < δ, it follows that | sinx−

sin c| < ϵ. Consequently, sinx is continuous on (0, 1].

Since 1

x
is continuous on (0, 1] and the composition of continuous functions is

continuous, provided they are well-defined, sin(1/x) is continuous on (0, 1].

By Algebraic continuity theorem, x sin(1/x) is continuous on (0, 1].

We define a new function:

h(x) =

¨
x sin 1

x if x ̸= 0

0 if x = 0

Claim. h(x) is continuous on [0, 1].

We already know that h(x) is continuous on (0, 1]. Since, |x sin(1/x)| ≤ |x|, if
we choose δ = ϵ, for all |x| < δ, it follows that |h(x)| < ϵ. Consequently, h(x) is
continuous at 0.

So, h(x) is continuous on [0, 1].

By the theorem 4.4.7, a function that is continuous on a compact set K is uni-
formly continuous on K. Consequently, h is uniformly continuous on [0, 1].
Thus, h is uniformly continuous on (0, 1).

[Abbott 4.4.3] Show that f(x) = 1/x2 is uniformly continuous on the set [1,∞)
but not on the set (0, 1].

Proof.

We are interested to make the distance |f(x)− f(y)| as small as we please.

We have:
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|f(x)− f(y)| =
∣∣∣ 1
x2 − 1

y2

∣∣∣
=
|x2−y2|
x2y2

= |x−y||x+y|
x2y2

= |x−y|
xy ·

|x+y|
xy

≤ |x− y|x+y
xy {x, y ≥ 1}

= |x− y|
�
1
x + 1

y

�
≤ |x− y|

(
1
1 + 1

1

)
{x, y ≥ 1}

= 2|x− y|

Let ϵ > 0 be arbitrary. If we pick δ =
ϵ

2
, then for all x, y ∈ [1,∞) satisfying

|x− y| < δ, it follows that

|f(x)− f(y)| ≤ 2|x− y| < 2 · ϵ
2
= ϵ

Consequently, f is uniformly continuous on [1,∞).

Moreover, let xn =
1

n2
and yn =

1

n2 + n
. Then, (xn) and (yn) are contained in

(0, 1] Let ϵ0 = 1. Then, (xn − yn)→ 0, but

|f(xn)− f(yn)| =
(
n2 + n

)2 − n4

= n4 + 2n3 + n2 − n4

= 2n3 + n2

≥ ϵ0

Consequently, f is not uniformly continuous on (0, 1].

[Abbott 4.4.4]Decide whether each of the following statements is true or false,
justifying each conclusion.

(a) If f is continuous on [a, b] with f(x) > 0 for all a ≤ x ≤ b, then 1/f is
bounded on [a, b] (meaning 1/f has bounded range).

Since K = [a, b] is a compact set, by the extreme value theorem, there exists
x0, x1 ∈ [a, b] such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ [a, b]. Further, since
f(x0) and f(x1) belong to f([a, b]), we must have f(x0) ̸= 0 and f(x1) ̸= 0.
Consequently, it follows that:

1

f(x1)
≤ 1

f(x)
≤ 1

f(x0)

for all x ∈ [a, b].

Thus, 1/f is bounded.
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(b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.

Proof.

We are given that f is uniformly continuous on a bounded set A.

We proceed by contradiction. Assume that f(A) is unbounded. So, for allM ∈
N, there exists f(x) ∈ f(A), such that |f(x)| > N . Pick N = 1, 2, 3, . . . . Then,
there exists N ∈ N such that (f(xn))→∞.

Since (xn) ⊆ A and A is bounded, by the Bolzanno Weierstrass Theorem, there
exists a convergent subsequence (xnk

) ⊆ (xn). Let limxnk
= x. Since, f is

uniformly continuous on A, it implies that f is continuous on A. Therefore, for
all sequences (an)→ a contained in A, f(an)→ f(a).

Thus, f(xnk
)→ f(x). Pick ϵ = 1. Then, there existsK > 0, such

Alternative proof.

Consider the function h(x) defined on the closure of A, cl(A) as :

h(x) =

¨
lim x→af(x) where if a is a limit point of A
f(x) if x ∈ A

We would like prove that (i) h is well-defined on cl(A) (ii) h is continuous on
cl(A).

Claim. h is well-defined on any limit point of A.

Let a be an arbitrary limit point of A. Let (xn) be any arbitrary sequence that
converges to a. (We know that there is atleast one such sequence.)

Pick an arbitrary ϵ > 0.

Since f is uniformly continuous on A, there exists δ(ϵ) > 0, such that for all
x, y ∈ A satisfying |x− y| < δ, it follows that |f(x)− f(y)| < ϵ.

Since (xn) is a Cauchy sequence, there exists N ∈ N, such that for all n > m ≥
N , it follows that |xn − xm| < δ.

Consequently, for all n > m ≥ N , it follows |f(xn)− f(xm)| < ϵ.

Since ϵ is arbitrary, this is true for all ϵ > 0. Consequently, (f(xn)) is a Cauchy
sequence and therefore it is convergent. Thus, lim f(xn) exists.

Since (xn) was arbitrary, this must be true of all sequences (xn) → a. So,
lim
x→a

f(x) exists.
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Hence, h is well-defined at all limit points.

Claim. h is continuous on cl(A).

Let c be an arbitrary limit point of A. We proceed by contradiction. Assume
that h is not continuous at c. Then, there exists a sequence (xn) ⊆ cl(A) such
that (xn)→ c but limh(xn) ̸= h(c).

If (xn) ⊆ A, then since h is continuous on A, h(xn) → h(c) and we have the
desired contradiction.

(c) If f is defined onR and f(K) is compact wheneverK is compact, then f is
continuous on R.

Proof.

This proposition is false. Consider the function f defined as:

f(x) =


3/2x if 0 ≤ x ≤ 1/3

0 if 1/3 < x < 2/3 or x /∈ [0, 1]

3/2(x− 2/3) if 2/3 ≤ x ≤ 1

Since f is continuous on [0, 1/3] and [1/3, 2/3]weknow that f([0, 1/3] and f [2/3, 1])
is compact. The same logic applies if you take any compact subset of the union
of these sets. Moreover, f maps (1/3, 2/3) to 0. Thus, whenever K is compact
f(K) is compact, but f is not continuous.

[Abbott 4.4.5] Assume that g is defined on an open interval (a, c) and it is
known to be uniformly continuous on (a, b] and [b, c) where a < b < c. Prove
that g is uniformly continuous on (a, c).

Direct Proof.

Pick an arbitrary ϵ > 0.

1. There exists δ1(ϵ) > 0, such that for all x, y ∈ (a, b] satisfying |x − y| < δ1, it
follows that |g(x)− g(y)| < ϵ/2.

2. There exists δ2(ϵ) > 0, such that for all x, y ∈ (a, b] satisfying |x − y| < δ2, it
follows that |g(x)− g(y)| < ϵ/2.

Let δ = min{δ1, δ2}.

Let x, y ∈ (a, c) be any two arbitrary points satisfying |x− y| < δ.

If x, y ∈ (a, b], then (1) applies and we are done.
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If x, y ∈ [b, c), then (2) applies and we are done.

If x ∈ (a, b] and y ∈ [b, c), then |x− y| < δ implies that:

a) |x− b| < δ

b) |b− y| < δ

Consequently, it follows that |g(x)− g(b)| < ϵ/2 and |g(b)− g(y)| < ϵ/2. Now,

|g(x)− g(y)| = |g(x)− g(b) + g(b)− g(y)|
≤ |g(x)− g(b)|+ |g(b)− g(y)|
= ϵ

2 + ϵ
2 = ϵ

Since x, y were arbitrary points in (a, c), satisfying |x− y| < δ, this is true for all
of such points.

Consequently, g is uniformly continuous on (a, c).

Alternative Proof.

We extend g(x) to the points x = a and x = c. Define the function:

h(x) =


limx→a g(x) if x = a

g(x) if x ∈ (a, c)

limx→c g(x) if x = c

Let’s prove that h is well-defined and continuous on [a, c].

Let (xn) be an arbitrary sequence in (a, c) approaching a.

Pick an arbitrary ϵ > 0.

Since g is uniformly continuous on (a, c), there exists δ(ϵ), such that for all x, y ∈
(a, c) satisfying |x− y| < δ, it follows that |g(x)− g(y)| < ϵ.

Since (xn) is Cauchy, there exists N ∈ N, such that for all n > m ≥ N , we have

|xn − xm| < δ

Consequently, for all n > m ≥ N , the terms of the image sequence (g(xn))
satisfy:

|g(xn)− g(xm)| < ϵ

Thus, (g(xn)) is Cauchy and therefore lim g(xn) exists.
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Since, (xn)was an arbitrary sequence, this must be true of all sequences (xn)→
a. So, lim

x→a
g(x) exists.

Next, we prove that h is continuous at a.

Let’s proceed by contradiction. Assume that h is not continuous at a. Then,
there exists a sequence (xn) ⊆ dom(h) such that (xn) → a, but h(xn) does not
converge to h(a).

1. If (xn) is the constant sequence (a, a, a, . . . ), then h(xn) → h(a). This is a
contradiction.

2. If (xn) has an infinite number of terms equal to c, then (xn) would not con-
verge to a. So, such a possibility is ruled out.

3. The only other possibility is that (i) (xn) ⊆ (a, c) or (ii) (xn) has a subse-
quence (xnk

)→ a contained in (a, c).

But, by construction h(a) = lim
x→a

g(x). For all sequences (an) ⊆ (a, c) such that
(an)→ a, h(an) = g(an) approaches h(a).

Thus, h(xn)→ h(a) (for both cases 3(i) and 3(ii)). This is a contradiction.

Hence, our initial assumption is false. h is continuous at a.

We can similarly argue that h is well-defined and continuous at c.

Thus, h is continuous on the compact set [a, c]. So, h is uniformly continuous
on [a, c]. Consequently, g is uniformly continuous on (a, c).

[Abbott 4.4.6] Give an example of each of the following, or state that such a
request is impossible. For any that are impossible, supply a short explanation
for why this is the case.

(a) A comtinuous function f : (0, 1) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence.

Proof.

Consider the function f defined as:

f(x) =

¨
0 if x = 0

1/x if x ∈ (0, 1]

Consider the sequence xn =
1

n
, with n ≥ 2. (xn) ⊆ (0, 1). (xn) → 0 so (xn)

is a Cauchy sequence, but f(xn) = n, so f(xn) is unbounded and therefore not
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Cauchy.

(b) A uniformly continuous function f : (0, 1) → R and a Cauchy sequence
(xn) such that f(xn) is not a Cauchy sequence.

Proof.

This request is impossible.

Assume that f is uniformly continuous on (0, 1).

Pick an arbitrary ϵ > 0.

Since f is uniformly continuous over (0, 1), there exists δ(ϵ) > 0, such that for
all x, y ∈ (0, 1) satisfying |x− y| < δ, it follows that |f(x)− f(y)| < ϵ.

Let (xn) be an arbitrary Cauchy sequence in (0, 1). Since (xn) is Cauchy, there
exists n > m ≥ N , such that |xn − xm| < δ.

Thus, for all n > m ≥ N , it follows that |f(xn)− f(xm)| < ϵ.

Consequently, f(xn) is Cauchy.

(c) A continuous function f : [0,∞) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence.

This request is impossible.

Let (xn) be any arbitrary Cauchy sequence in [0,∞). Let a = limxn. Since, f is
continuous on [0,∞), f(xn)→ f(a). Consequently, f(xn) is Cauchy.

[Abbott 4.4.7] Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Proof.

The function f(x) =
√
x is continuous on [0, 1]. A continuous function on a

compact setK is uniformly continuous. So, f is uniformly continuous on [0, 1].

Also, the function
√
x is Lipschitz on [1,∞), since, for all x ̸= y ∈ [1,∞):

∣∣∣ f(x)−f(y)
x−y

∣∣∣ =
∣∣∣√x−√

y

x−y

∣∣∣
=
∣∣∣ 1√

x+
√
y

∣∣∣
≤ 1

2

Since Lipschitz continuity implies uniform continuity, f is uniformly continu-
ous on [1,∞).

By the previous exercise, f is uniformly continuous on the whole half-line from
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0.

[Abbott 4.4.8] Give an example of each of the following, or provide a short
argument for why the request is impossible.

(a) A continuous function defined on [0, 1]with the range (0, 1).

Proof.

This request is impossible.

By the property on the preservation of compact sets, if f is continuous function
on a compact set K, then f(K) is compact. So, f([0, 1])must be compact.

(b) A continuous function defined on (0, 1)with range [0, 1].

Proof.

Define

f(x) =


0 if 0 < x < 1/4

2x if 1/4 ≤ x ≤ 3/4

0 if 3/4 ≤ x < 1

(c) A continuous function defined on (0, 1]with range (0, 1).

Proof.

This request is impossible. Consider c > 0. The image of

[Abbott 4.4.9] (Lipschitz Functions) A function f : A → R is called Lipschitz
if there exists a bound M > 0 such that:

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M

for all x ̸= y ∈ A. Geometrically speaking, a function f is Lipschitz if there is a
uniform bound on the magnitude of the slopes of lines drawn through any two
points on the graph of f .

(a) Show that if f : A→ R is Lipschitz, then it is uniformly continuous on A.

Proof.

Pick an arbitrary ϵ > 0.
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|f(x)− f(y)| ≤M |x− y|

Pick δ =
ϵ

M
. Then, for all x ̸= y ∈ A satisfying |x − y| < δ, it follows that

|f(x)− f(y)| < ϵ.

Consequently, f is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions nec-
essarily Lipschitz?

Proof.

The converse statement is false.

Counterexample.

Consider f(x) =
√
x. f is uniformly continuous on [0, 1].

We are interested to make the slope of the secant lines as large as we please. Let
M > 0 be an arbitrary large number.

If we pick y = 0 and x <
1

(M + 1)2∣∣∣ f(x)−f(y)
x−y

∣∣∣ =
∣∣∣ 1√

x+
√
y

∣∣∣
> M + 1

Consequently, ∀M > 0, there exists x ̸= y ∈ A, such that

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ > M

Hence, f is not Lipschitz on [0, 1].

[Abbott 4.4.10] Assume that f and g are uniformly continuous functions de-
fined on a common domain A. Which of the following combinations are uni-
formly continuous on A:

f(x) + g(x), f(x)g(x),
f(x)

g(x)
, f(g(x))

(Assume that the quotient and the composition are properly defined and atleast
continuous)

Proof.
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(1) We are interested to make the distance |f(x)+ g(x)− (f(y)+ g(y))| as small
as we please.

Pick an arbitrary ϵ > 0.

There exists δ1(ϵ) > 0, such that for all x, y ∈ A satisfying |x−y| < δ1, it follows
that |f(x)− f(y)| < ϵ/2.

There exists δ2(ϵ) > 0, such that for all x, y ∈ A satisfying |x−y| < δ2, it follows
that |g(x)− g(y)| < ϵ/2.

Let δ = min{δ1, δ2}. Then, for all x, y ∈ A satisfying |x− y| < δ, it follows that:

|f(x) + g(x)− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
< ϵ

2 + ϵ
2 = ϵ

Consequently, f + g is uniformly continuous.

(2) Consider f(x) = x and g(x) = x and let A = [0,∞). Both f and g are
uniformly continuous on [0,∞).

Let ϵ > 0 be arbitrary. Pick δ = ϵ. Then, for all x, y ∈ A satisfying |x− y| < δ, it
follows that |f(x)− f(y)| < ϵ.

fg(x) = f(x)g(x) = x2 is not uniformly continuous on [0,∞). Let ϵ0 = 1.
Consider the two sequences xn = n and yn = n +

1

n
. |xn − yn| → 0 but

|f(xn)− f(yn)| ≥ ϵ0.

(3) Consider the constant function f(x) = 1 and g(x) = x. Both f(x) and g(x)

are uniformly continuous on (0, 1). But, f(x)
g(x)

=
1

x
is not uniformly continuous

on (0, 1).

(4) We are interested to make the distance |f(g(x)) − f(g(y))| as small as we
please.

Pick an arbitrary ϵ > 0.

There exists ξ(ϵ), such that for all s, t ∈ g(A), satisfying |s − t| < ξ, it follows
that |f(s)− f(t)| < ϵ.

There exists δ(ξ), such that for all x, y ∈ A, satisfying |x− y| < δ, it follows that
|g(x)− g(y)| < ξ.

Hence, for all x, y ∈ A, |x − y| < δ implies that |g(x) − g(y)| < ξ which in turn
implies that |f(g(x))− f(g(y))| < ϵ.
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Consequently, f(g(x)) is uniformly continuous on A.

[Abbott 4.4.11] (Topological characterization of continuity). Let g be defined
on all of R. If B is a subset ofR, define the set g−1(B) by:

g−1(B) = {x ∈ R : g(x) ∈ B}

Show that g is continuous if and only if g−1(O) is open whenever O ⊆ R is an
open set.

Proof.

=⇒ direction.

Assume that g is continuous. Let O be an arbitrary open set. We are interested
to prove that g−1(O) is open.

Let c be an arbitrary point in g−1(O). Thus, g(c) ∈ O. Since O is an open set,
∃ϵ > 0, such that Vϵ(g(c)) ⊆ O.

Since g is well-defined on R and continuous at c, ∃Vδ(c), such that for all x ∈
Vδ(c), it follows that g(x) ∈ Vϵ(g(c)) ⊆ O.

But, we know that for all g(x) ∈ O, x ∈ g−1(O). Therefore, Vδ(c) ⊆ g−1(O).

So, there exists a δ-neighbourhood around the point c, such thatVδ(c) ⊆ g−1(O).
Since, c was arbitrary point, this must be true of all points in the set. Thus,
g−1(O) is open.

⇐= direction.

We are given that, for all open sets O ⊆ R, the pre-image g−1(O) is open. We
are interested to prove that g is continuous.

Let c be an arbitrary point in dom(g). g(c) is the image of c under g.

Pick an arbitrary ϵ > 0 and consider the ϵ−neighbourhood around g(c):

Vϵ(g(c)) = (g(c)− ϵ, g(c) + ϵ)

Since Vϵ(g(c)) is an open interval, it is an open set. Let’s refer to this set as O.
We know, that if O ⊆ R is open, then g−1(O) is open. Hence,

g−1(O) = {x : g(x) ∈ Vϵ(g(c))}
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is open.

Now, c ∈ g−1(O), since g(c) ∈ Vϵ(g(c)). Thus, there exists δ(ϵ, c), such that
Vδ(c) ⊆ g−1(O).

Hence, we have found that there exists Vδ(ϵ,c)(c) such that for all x ∈ Vδ(c),
g(x) ∈ Vϵ(g(c)). Since ϵ was arbitrary, this is true for all ϵ > 0. Consequently, g
is continuous at c ∈ R.

Since cwas an arbitrary point, g is continuous on R.

[Abbott 4.4.12] Review exercise 4.4.11, and then determine which of the fol-
lowing statements is true about a continuous function defined on R:

(a) f−1(B) is finite whenever B is finite.

Proof.

This is false. Consider the constant function f(x) = 1. Let B = {1}. f−1(B) =
R.

(b) f−1(K) is compact whenever K is compact.

Proof.

This is false.

Consider f(x) = 1. Then, K = {1} which is compact, but f−1(K) = R is
unbounded and therefore not compact.

(c) f−1(A) is bounded whenever A is bounded.

This is false.

(d) f−1(F ) is closed whenever F is closed.

This is true.

Let x be arbitrary limit point of f−1(F ). There exists a sequence (xn) ⊆ f−1(F ),
such that limxn = x. By construction, it follows that f(xn) ∈ F . As f is contin-
uous at x, lim f(xn) = f(x). Since F is closed, f(x) ∈ F . Thus, x ∈ f−1(F ).

Since x was abitrary, this must be true for all limit points of f−1(F ). Thus,
f−1(F ) is closed.

[Abbott 4.4.13] (Continuous Extension Theorem.)

(a) Show that a uniformly continuous function preserves Cauchy sequences;
that is, if f : A → R is uniformly continuous and (xn) ⊆ A is a Cauchy se-
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quence, then show f(xn) is a Cauchy sequence.

Proof.

Pick an arbitrary ϵ > 0.

There exists δ > 0, such that for all x, y ∈ A satisfying |x−y| < δ, it follows that
|f(x)− f(y)| < ϵ.

Let (xn) be an arbitrary Cauchy sequence. Then, there exists N(δ), such that
for all n > m ≥ N , it follows that |xn − xm| < δ. But, this implies that |f(xn)−
f(xm)| < ϵ for all n > m ≥ N . Consequently, (f(xn)) is a Cauchy sequence.

(b) Let g be a continuous function on the open interval (a, b). Prove that g is
uniformly continous on (a, b) if and only if it is possible to define values g(a)
and g(b) at the endpoints s that the extended function g is continuous on [a, b].
(In the forward direction, first produce candidates for g(a) and g(b) and then
show the extended g is continuous.)

Proof.

We define :

h(x) =


limx→a g(x) if x = a

g(x) if x ∈ (a, b)

limx→b g(x) if x = b

as the extended version of g.

Pick an arbitrary ϵ > 0.

Since g is uniformly continuous on (a, b), there exists δ(ϵ) > 0, such that for all
x, y ∈ (a, b) satisfying |x− y| < δ, it follows that |g(x)− g(y)| < ϵ.

a is a limit point of (a, b). Consider any arbitrary sequence (an) ⊆ (a, b), such
that (an) → a. Since (an) is a Cauchy sequence, there exists N(δ) ∈ N, such
that for all n > m ≥ N , we have |xn − xm| < δ.

But, this implies that, for all n > m ≥ N , the distance |g(xn)−g(xm)| < ϵ. Since
(an)was an arbitrary sequence approaching a, thismust be true of all sequences
approaching a. Thus, lim

x→a
g(x) exists.

Claim. The extended version of g is continuous.

We proceed by contradiction.

Assume that g is not continuous. Then, there exists a sequence (an) ⊆ dom(g)
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such that, (an)→ a, but lim g(an) ̸= g(a).

If an = a for any n ≥ N , N ∈ N, it follows that the tail of the image sequence
(g(an)) is the constant sequence (g(a))which approaches g(a). This is a contra-
diction.

If (an) consists of an infinite number of terms different from a, then there exists a
subseqeuence (ank

) ⊆ (an), with ank
∈ (a, b), that is ank

̸= a such that lim ank
=

a.

Pick an arbitrary ϵ > 0. There exists δ(ϵ) > 0, such that for all x, y ∈ (a, b)
satisfying |x− y| < δ, it follows that |g(x)− g(y)| < ϵ.

Since lim ank
= a, there exists K ∈ N, such that for all nk > K, |ank

− a| < δ.
But, this implies that for all nk > K, |g(ank

)− g(a)| < ϵ.

Since ϵwas arbitrary, this must be true for all ϵ > 0. Consequently, lim g(ank
) =

g(a). This is again a contradiction.

Hence, our initial assumption is false. g is continuous on [a, b]. Since, g is contin-
uous on a compact set [a, b], g is uniformly continuous on [a, b]. Consequently,
g is uniformly continuous on (a, b).

[Abbott 4.5.1] Show how the Intemediate Value Theorem follows as a corollary
to Theorem 4.5.2.

Proof.

Let f : [a, b]→ R be a continuous function. Define E = (a, b). Since, E is a con-
nected set and f is continuous, by the preservation of connected sets property,
f(E) is connected. Thus, for all L satisfying f(a) < L < f(B), L ∈ f(E). But,
this implies that there exists c ∈ E = (a, b) such that f(c) = L.

[Abbott 4.5.2] Provide an example of each of the following, or explain why the
request is impossible.

(a) A continuous function defined on an open interval with the range equal to
the closed interval.

Proof.

Let f : (0, 1)→ Rwith range [0, 1] be the continuous function defined as:

f(x) =


0 0 < x < 1/4

2(x− 1/4) 1/4 ≤ x ≤ 3/4

1 3/4 ≤ x < 1
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(b) A continuous function defined on a closed interval with range equal to an
open interval.

Proof.

This request is impossible. Let f : [a, b] → R be a continuous function. Since
[a, b] is closed and bounded, it is compact. Since f is continuous on f , by the
property on the preservation of compact sets, the range f([a, b]) is compact -
hence it is closed and bounded.

Moreover, since f is continuous on [a, b], by the property on the preservation of
connected sets, f([a, b]) is connected and it is therefore an interval in R. Con-
sequently, f([a, b]) is a closed interval.

(c) A continuous function defined on an open interval with range equal to an
unbounded closed set different from R.

Proof.

Consider f : (0, 1)→ R defined as :

f(x) =

¨
1
x 0 < x ≤ 1

2

2 1
2 ≤ x < 1

The range of f is the unbounded closed set [2,∞). f is continuous on (0, 1).

(d) A continuous function defined on all of R with range equal toQ.

Let f be continuous on all of R. Then, by the theorem on the preservation of
connected sets, since R is connected, f(R)must be connected.

But, Q is not a connected set. For example, consider A =
�
−∞,

√
2
�
∩Q and

B =
�√

2,∞
�
∩Q. Then, A∪B = Q. And the cl(A)will have all its limit points

lesser than or equal to
√
2. Thus, cl(A) ∩B = ∅ and A ∩ cl(B) = ∅. Hence Q is

disconnected.

Consequently, f cannot be continuous.

[Abbott 4.5.3] A function f is increasing on A if f(x) ≤ f(y) for all x < y
in A. Show that if f is increasing on [a, b] and satisfies the intermediate value
property (definition 4.5.3), then f is continuous on [a, b].

Proof.

Let c be an arbitrary point in [a, b]. We are interested to prove that f is continu-
ous at c.
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Let (xn) be any arbitrary sequence approaching c.

[Abbott 4.5.5] (a) Finish the proof of the Intermediate Value Theorem using
the Axiom of Completeness started previously.

Intermediate Value Theorem. Let f be a continuous function on a closed and
bounded interval [a, b]. f : [a, b] → R. If L is a real number satisfying f(a) <
L < f(b), then there exists c ∈ (a, b), such that f(c) = L.

Proof.

To simplify matters, we first considered the special case satisfying f(a) < 0 <
f(b) and show that f(c) = 0 for some c ∈ (a, b).

We let

K = {x ∈ [a, b] : f(x) ≤ 0}

SinceK is bounded by [a, b], by the Axiom of completeness, it has a supremum.
Let c = supK.

By the trichotomy property of the reals, exactly one of the following holds:

1) f(c) < 0

2) f(c) > 0

3) f(c) = 0

(i) Assume that f(c) < 0. Then, by construction c ∈ K.

But, c = supK. So, it is an upper bound for K. Thus, f(c) ≥ 0. This is a
contradiction. Hence our assumption is false.

(ii) Assume that f(c) > 0. Then, by construction c ∈ [a, b] − K. Since the
complementation of a closed set is open, [a, b] − K is an open set. So, there
exists Vξ(c) such that Vξ(c) ⊆ [a, b]−KC .

For all c − ξ < x < c, we have x /∈ K. But, c = supK. So, there exists x0 ∈ K,
such that c− ξ < x0 < c. This is a contradiction. Hence our assumption is false.

Thus, we are left with f(c) = 0.

(b) Finish the proof of the Intermediate Value Theorem using the Nested Inter-
val Property started previously.

Proof.
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By the Nested Interval Property, there exists x ∈
∞⋂

n=1

In. Clearly, x ∈ [a, b].

Moreover, lim an = lim bn = x. Since f is continuous at x, f(an) → f(x).
Clearly, f(an) < 0 by construction, and thus by the order limit theorem f(x) ≤
0. Also, f(bn) > 0 by construction, and thus by the order limit theorem, f(x) ≥
0. Since, both of these are simultaneously true, it must be the case that f(x) = 0.

Also, x cannot be any of the end-points, for otherwise f(a) = 0 or f(b) = 0.
This contradicts the fact that f(a) < 0 < f(b).

So, there exists x ∈ (a, b) such that f(x) = 0.

[Abbott 5.2.1] Supply proofs for parts (i) and (ii) of theorem 5.2.4.

Proof.

(i) We are interested to prove that (f + g)′(c) = f ′(c) + g′(c).

By definition,

(f + g)′(c) = lim
x→c

f(x) + g(x)− (f(c) + g(c))

x− c

We can write the difference quotient as :

f(x) + g(x)− (f(c) + g(c))

x− c
=

f(x)− f(c)

x− c
+

g(x)− g(c)

x− c

Now, by the algebraic limit theorem for functional limits,

lim
x→c

�
f(x)− f(c)

x− c
+

g(x)− g(c)

x− c

�
= lim

x→c

f(x)− f(c)

x− c
+lim

x→c

g(x)− g(c)

x− c
= f ′(c)+g′(c)

Consequently,

(f + g)′(c) = f ′(c) + g′(c)

(ii) We are interested to prove that (kf(c))′ = kf ′(c).

By definition,
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(kf(c))′ = lim
x→c

kf(x)− kf(c)

x− c
= k lim

x→c

f(x)− f(c)

x− c
= kf ′(c)

[Abbott 5.2.2]Exactly one of the following requests is impossible. Decidewhich
it is, and provide examples for the other three. In each case, let’s assume the
functions are defined on all of R.

(a) Functions f and g not differentiable at zero but where fg is differentiable at
zero.

Proof.

Consider f(x) = |x| and

g(x) =

¨
x sin(1/x) if x ̸= 0

0 if x = 0

Both f and g are not differentiable at zero. Now consider:

(fg)′(0) = limx→0
f(x)g(x)−f(0)g(0)

x

= limx→0
|x|·x sin(1/x)

x
= limx→0 |x| · sin(1/x)

Both the left hand and the right hand limits exists and are equal. Hence, the
above limit exists and fg is differentiable at x = 0.

(b) A function f not differentiable at zero and a function g differentiable at zero
where fg is differentiable at zero.

Proof.

Consider f(x) = sin(1/x) and g(x) = x2. f(x)g(x) = x2 sin(1/x) is differen-
tiable at c = 0, since

(fg)′(0) = lim
x→0

x2 sin(1/x)− 0

x
= lim

x→0
x sin 1/x = 0

(c) A function f not differentiable at zero and a function g differentiable at zero
where f + g is differentiable at zero.

Proof.

This request is impossible.
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f ′(c) = ((f + g)− g)′(c)
= (f + g)′(c)− g′(c) {Algebraic Differentiability theorem}

Thus, if f + g is differentiable at zero and g is differentiable at zero, f must be
differentiable at zero.

(d) A function f differentiable at zero but not differentiable at any other point.

Proof.

Consider the function:

f(x) =

¨
x2 if x ∈ Q

0 if x /∈ Q

We have:

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

We are interested to show that this functional limit exists. Our claim is that
f ′(0) = 0.

Pick an arbitrary ϵ > 0. Let’s explore the expression:

∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ = ∣∣∣∣f(x)− f(0)

x

∣∣∣∣ = |f(x)||x|

Since f(x) ≥ 0 for all x ∈ R, we have |f(x)| = f(x) ≤ x2 = |x2|. Consequently,

|x| < ϵ

Pick δ = ϵ. For all |x| < δ, it follows that |x| < ϵ. Consequently, f ′(0) = 0.

Let’s prove that f(x) is not continuous for c ̸= 0.

Let c ∈ Q. Consider the sequences xn = c+
1

n
and yn = c+

1√
2n

with ϵ0 =
c2

2
.

|xn − yn| → 0. But,

|f(xn)− f(yn)| =
∣∣∣∣c2 + 2 · c · 1

n
+

1

n2
− 0

∣∣∣∣ = c2 +
2c

n
+

1

n2
≥ c2

2
= ϵ0

Thus, f is not continuous at any rational point c.
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Moreover, let t ∈ I be any irrational point. By the density of rationals inR, there
exists a rational sequence (xn) ∈ Q, such that xn ̸= t with (xn) → t. Also, let
(yn) = t+

1

n
be an irrational sequence converging to t. Again, we can similarly,

prove that f is not continuous at an irrational point.

Since, continuity is necessary condition for differentiability, f is not differen-
tiable at c ̸= 0.

[Abbott 5.2.3] (a) Use definition 5.2.1 to produce the proper formula for the
derivative of h(x) = 1/x.

Proof.

Let c be an arbitrary point, with c ̸= 0. We are interested to find h′(c).

By definition 5.2.1.,

h′(c) = limx→c
h(x)−h(c)

x−c = limx→c
(1/x)−(1/c)

x−c

= limx→c− (x−c)
(x−c) ·

1
cx

= − limx→c
���(x−c)

���(x−c) ·
1
cx {x ̸= c}

= − limx→c
1
cx = − 1

c2 {forfunctionallimits}

(b) Combine the result in part (a)with the Chain rule (theorem 5.2.5) to supply
a proof for part (iv) of theorem 5.2.4.

Proof.

Let w(t) = 1

t
. Then, w(v(x)) = 1

v(x)
. By the Chain Rule:

[w(v(c))]′ =

�
1

v(c)

�′

= w′(v(c)) · v′(c) = − v′(c)

(v(c))2

By the product rule:

�
u(c) · 1

v(c)

�′
= u′(c) · 1

v(c) +
�

1
v(c)

�′
· u(c)

= u′(c)
v(c) −

v′(c)u(c)
v(c)2

= v(c)u′(c)−v′(c)u(c)
v(c)2

(c) Supply a direct proof of the theorem 5.2.4 (iv) by algebraicallymanipulating
the difference quotient for (f/g) in a style similar to the proof of theorem 5.2.4
(iii).
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Proof.

By definition:

�
f(c)
g(c)

�′
= limx→c

f(x)
g(x)

− f(c)
g(c)

x−c

= limx→c
f(x)g(c)−f(c)g(x)

g(x)g(c)(x−c)

= limx→c
f(x)g(c)−f(c)g(c)+f(c)g(c)−f(c)g(x)

g(x)g(c)(x−c)

= limx→c
−[f(c)g(x)−f(c)g(c)] + [f(x)g(c)−f(c)g(c)]

(x−c) · 1
g(x)g(c)

= 1
g(c)

¦
limx→c f(c) · −[g(x)−g(c)]

(x−c) + limx→c g(c) · f(x)−f(c)
x−c

©
· limx→c

1
g(x)

By the Algebraic continuity theorem, if g is continuous at c and g(c) ̸= 0, then
1

g(x)
is continuous at c. Thus,

�
f(c)
g(c)

�′
= 1

g(c){−f(c)g
′(c) + g(c)f ′(c)} · 1

g(c)

= g(c)f ′(c)−f(c)g′(c)
(g(c))2

[Abbott 5.2.4] Follow these steps to provide a slightly modified proof of the
Chain Rule.

(a) Show that a function h : A→ R is differentiable at a ∈ A if and only if there
exists a function l : A→ Rwhich is continuous at a and satisfies:

h(x)− h(a) = l(x)(x− a) for all x ∈ A

Proof.

=⇒direction.

We are given that h is differentiable at a ∈ A. By definition,

h′(a) = lim
x→a

h(x)− h(a)

(x− a)

Since, x ̸= a, we can define a new function l(x) to be the difference quotient:

l(x) =

¨
h(x)−h(a)

x−a , if x ∈ A, x ̸= a

h′(a) if x = a

Since h(x) is defined for all x ∈ A, l(x) is defined for all A.
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Since lim
x→a

l(x) = lim
x→a

h(x)− h(a)

x− a
= h′(a) = l(a), l is continuous at a.

Hence, there exists a function l : A→ Rwhich is continuous and satisfies:

h(x)− h(a) = l(x)(x− a), ∀x ∈ a

⇐= direction.

We are given that the function l(x) satisfies:

h(x)− h(a) = l(x)(x− a), ∀x ∈ A

where h is a function from A into R.

We are interested to prove that h is differentiable at a.

Since, l is continuous at a, lim
x→a

l(x) = l(a).

If x ̸= a:

l(x) =
h(x)− h(a)

x− a

Consequently,

lim
x→a

l(x) = l(a) = lim
x→a

h(x)− h(a)

x− a

Therefore, the limit on the right hand side of the above expression exists and
h′(a) = l(a). Consequently, h is differentiable at a ∈ A.

(b) Use this criterion for differentiability (in both directions) to prove theorem
5.2.5.

Proof.

We are interested to prove that [g(f(c))]′ = g′(f(c)) · f ′(c).

Since f is differentiable at c ∈ A, there exists a function l(x) for all x ∈ A, such
that:

f(x)− f(c) = l(x)(x− c)

Notice that, if x ̸= c,
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l(x) =
f(x)− f(c)

x− c

The differentiability of f at c=⇒the continuity of l at c. So, passing to the limits,
we have:

lim
x→c

l(x) = l(c) = lim
x→c

f(x)− f(c)

x− c
= f ′(c)

Since g is differentiable at f(c) ∈ f(A) ⊆ B, there exists a function m(y) for all
y ∈ f(A), such that:

g(y)− g(f(c)) = m(y)(y − f(c))

If y ̸= f(c),

m(y) =
g(y)− g(f(c))

y − f(c)

The differentiability of g at f(c) implies the continuity ofm at f(c). So, passing
to the limits, we have:

lim
y→f(c)

m(y) = m(f(c)) = lim
y→f(c)

g(y)− g(f(c))

y − f(c)
= g′(f(c))

Since, y ∈ f(A), y must be the image of x under f .

By Theorem 4.3.9, if f is continuous at c and m is continuous at f(c), then
m(f(·)) is continuous at c. The composition of continuous functions is con-
tinuous.

Consider the product of the functions:

m(f(x)) · f(x)

By the Algebraic Continuity theorem, ifm(f(·)) is continuous at c and l is con-
tinuous at c, then the product m(f(x)) · l(x) is also continuous at c.

By the definition of continuity:
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limx→c m(f(x)) · l(x) = m(f(c)) · l(c)
= g′(f(c)) · f ′(c)

On the other hand, we can write:

limx→c m(f(x)) · l(x) = limx→c
g(f(x))−g(f(c))

f(x)−f(c) · limx→c
f(x)−f(c)

x−c

= limx→c
g(f(x))−g(f(c))

x−c

= [g(f(c))]′

This completes the proof.

[Abbott 5.2.5] Let

fa(x) =

¨
xa if x > 0

0 if x ≤ 0

(a) For which values of a, is f continuous at zero?

Proof.

Case I. Let a be any real number, where a > 0.

We are interested to make the distance |fa(x)| as small as we please. We have:

|xa| < ϵ
⇐⇒ |x|a < ϵ
⇐⇒ |x| < ϵ1/a

Pick δ = ϵ1/a. Then, for all |x− 0| < δ, it follows that |fa(x)− fa(0)| < ϵ.

So, f is continuous for all a > 0.

Let’s prove that f is not continuous for a ≤ 0.

Case II. Let a = 0. Then,

f0(x) =

¨
1 if x > 0

0 if x ≤ 0

f0 has a jump discontinuity at x = 0.

Case III. Consider f−a(x) where a > 0.
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f−a(x) =

¨
1
xa if x > 0

0 if x ≤ 0

Pick ϵ0 = 1. Let δ > 0 be arbitrary.

By the Archimedean property, there exists N ∈ N, such that 1

N
< δ.

Pick an arbitrary x ∈
�
0,

1

N

�
. Thus, |x| < δ.

Now,
1

x
> N =⇒ 1

xa
> Na, {N ≥ 1}

Therefore, there exists atleast some x satisfying |x| < δ, such that

|f−a(x)− f−a(0)| ≥ ϵ0

Since δ was arbitrary, it follows that: there exists ϵ0 > 0, for all δ > 0, such that
for atleast some x satisfying |x| < δ, we have |f−a(x)− f−a(0)| ≥ 0.

Thus, f−a(x) is discontinuous at x = 0.

(b) Forwhich values of a is f differentiable at zero? In this case, is the derivative
function continuous?

Using the definition of the derivative, we have:

f ′
a(0) = lim

x→0

fa(x)− fa(0)

x− 0

The right hand limit in the above case is:

lim
x→0+

fa(x)− fa(0)

x− 0
= lim

x→0+

xa

x
= lim

x→0+
xa−1

The left hand limit in the above case is:

lim
x→0−

fa(x)− fa(0)

x− 0
= lim

x→0−

0

x
= 0

As seen earlier, if x > 0, then lim
x→0

xa−1 = 0 if and only if a−1 > 0. Consequently,
fa(x) is differentiable for all values of a > 1.
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(c) For which values of a is f twice differentiable?

We know that,

f ′
a(x) =

¨
axa−1 if x > 0

0 if x ≤ 0

Using the definition of the derivative, we have:

f ′′
a (x) = lim

x→0

f ′
a(x)− f ′

a(0)

x− 0

The right-hand limit in the above case is:

lim
x→0+

axa−1 − 0

x
= lim

x→0+
axa−2

The left-hand limit in the above case is:

lim
x→0−

0

x
= 0

If x > 0, then lim
x→0

axa−2 = 0 if and only if a − 2 > 0. Consequently, fa(x) is
twice differentiable for all values of a > 2.

[Abbott 5.2.6] Let g be defined on an interval A, and let c ∈ A.

(a) Explain why g′(c) in the definition 5.2.1 could have been given by:

g′(c) = lim
h→0

g(c+ h)− g(c)

h

Proof.

We know that g is a function of x. Let x be a function f of the single-variable h.

x = f(h) = c+ h

Then, we can write g as:

g(x) = g(f(h))
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When x = c, h = 0. By the chain rule:

g′(c) = [g(f(0))]′ = g′(f(0)) · f ′(0)

= limc+h→c
g(f(h))−g(f(0))

f(h)−f(0) · limh→0
f(h)−f(0)

h−0

= limh→0
g(f(h))−g(f(0))

f(h)−f(0) · limh→0
f(h)−f(0)

h−0

{since limh = lim(c+ h)− lim c}
= limh→0

g(f(h)−g(f(0))
h

= limh→0
g(c+h)−g(c)

h

(b) Assume that A is open. If g is differentiable at c ∈ A, show that :

g′(c) = lim
h→0

g(c+ h)− g(c− h)

2h

Proof.

We introduce two intermediate variables t = t(h) = c+h and u = u(h) = c−h.

We may write:

g(t) = g(t(h)) = g(c+ h)

and

g(u) = g(u(h)) = g(c− h)

When t = c, h = 0. Also, when u = c, we have h = 0. Thus,

g′(c) = 1
2 [g

′(c) + g′(c)]
= 1

2 [{g(t(0)}
′ + {g(u(0)}′]

= 1
2 [g

′(t(0)) · t′(0) + g′(u(0)) · u′(0)]

= 1
2 [limt(h)→t(0)

g(t(h))−g(t(0))
t(h)−t(0) · 1

+ limu(h)→u(0)
g(u(h))−g(u(0))

u(h)−u(0) · (−1)]
= 1

2 [limh→0
g(t(h))−g(t(0))

(c+h)−c

− limh→0
g(u(h))−g(u(0))

(c−h)−c ]

= 1
2

�
limh→0

g(c+h)−g(c)
h−0 − limh→0

g(c−h)−g(c)
−h

�
= 1

2

�
limh→0

g(c+h)−g(c)
h − limh→0

g(c)−g(c−h)
h

�

[Abbott 5.2.7] Let
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ga(x) =

¨
xa sin(1/x) if x ̸= 0

0 if x = 0

Find a particular (potentially non-integer) value for a so that:

(a) ga is differentiable on R, but such that g′a is unbounded on [0, 1].

Proof.

Consider a = 3/2. We have:

At points different from zero, we can use the familiar rules of differentiation to
find:

g′3/2(x) = (3/2)x1/2 sin(1/x)− 1√
x
cos(1/x)

Let’s investigate if g3/2 is differentiable at zero. By definition:

g′3/2(0) = lim
x→0

g3/2(x)− g3/2(0)

x− 0
= lim

x→0

x3/2 sin(1/x)

x
= lim

x→0

√
x sin(1/x)

Let’s find out the above functional limit. We are interested to make the distance
|
√
x sin(1/x)| as small as we please. Our claim is that:

|
√
x sin(1/x)| < ϵ

If we replace | sin(1/x)| by its upper-bound, we strengthen the condition we
wish to prove. Since | sin(1/x)| < 1, we shall try to prove that:

|
√
x| < ϵ

Squaring on both sides:

|
√
x|2 = |

(√
x
)2 | = |x| < ϵ2

Pick δ = ϵ2. Then, for all x ∈ [0,∞) satisfying |x− 0| < δ, it follows that

|
√
x · sin(1/x)| < ϵ · 1 = ϵ

Consequently, lim
x→0

√
x · sin(1/x) = 0. Thus:
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g′3/2(x) =

¨
(3/2)x1/2 sin(1/x)− 1√

x
cos(1/x) if x ̸= 0

0 if x = 0

Moreover, g′3/2(x) is bounded on [0, 1] because of the factor 1/
√
x.

(b) ga is differentiable on R with g′a continuous but not differentiable at zero.

Consider a = 5/2. At points different from zero, we can use the familiar rules
of differentiation to find:

g′5/2(x) = (5/2)x3/2 sin(1/x)− x5/2 cos(1/x) ·
�
− 1

x2

�

= (5/2)x3/2 sin(1/x)−
√
x cos(1/x)

Consider the point c = 0. By definition:

g′5/2(0) = limx→0
g5/2(x)−g5/2(0)

x−0

= limx→0
x5/2·sin(1/x)

x = limx→0 x
3/2 sin(1/x)

Let’s find out the above functional limit.

We are interested to make the distance |x3/2 sin(1/x)| as small as we please.
Let’s explore the condition:

|x3/2 sin(1/x)| < ϵ

If we replace the the quantity | sin 1/x| by its upper bound, we strengthen the
condition we wish to prove.

|x3/2| < ϵ

That is:

|x| < ϵ2/3

Pick δ = ϵ2/3. Then, for all x ∈ [0,∞) satisfying |x| < δ, it follows that:

|x3/2 sin(1/x)| < ϵ
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Consequently, lim
x→0

x3/2 sin(1/x) = 0.

Thus, g5/2(x) is differentiable on R. Moreover:

g′5/2(x) =

¨
(5/2)x3/2 sin(1/x)−

√
x cos(1/x) if x ̸= 0

0 if x = 0

Let’s prove that g′5/2(x) is continuous at zero.

We know that, both (5/2)x3/2 sin(1/x) and
√
x cos(1/x) are continuous at zero.

By the Algebraic continuity theorem, their algebraic difference is also continu-
ous at zero.

We are interested to prove that g′5/2(x) is not differentiable at zero. By definition,
we have:

g′′5/2(0) = limx→0
g′
5/2(x)−g′

5/2(0)

x−0

= limx→0
(5/2)x3/2 sin(1/x)−x1/2 cos(1/x)

x

= limx→0(5/2)x
1/2 sin(1/x)− 1√

x
· cos(1/x)

Now, let (xn) =
1

2nπ
and (yn) =

1

(2n+ 1)π
be two sequences in [0, 1]. Clearly,

limxn = lim yn = 0, but lim f(xn) ̸= lim f(yn). Consequently, the functional
limit lim

x→0

1√
x
cos(1/x) does not exist. g′5/2(x) is not differentiable at zero.

(c) ga is differentiable onR and g′a is differentiable onR, but such that g′′a is not
continuous at zero.

Consider a = 7/2. At points different from zero, we can apply the familiar rules
of differentiation to find:

g′7/2(x) = x5/2 sin(1/x)− x3/2 cos(1/x)

Let’s find if g7/2(x) is differentiable at zero. We have:

g′7/2(0) = lim
x→0

g7/2(x)− g7/2(0)

x− 0
= lim

x→0
x3/2 sin(1/x)− x1/2 cos(1/x)

We have:

−x3/2 ≤ x3/2 sin(1/x) ≤ x3/2
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for all x ∈ R. By the Squeeze theorem, since lim
x→0

�
−x3/2

�
= lim

x→0
x3/2 = 0, it

follows that lim
x→0

x3/2 sin(1/x) = 0. Similarly, lim
x→0

x1/2 cos(1/x) = 0.

Thus, by the Algebraic Limit theorem,

g′7/2(0) = lim
x→0

x3/2 sin(1/x)− lim
x→0

x1/2 cos(1/x) = 0

Consequently, g7/2(x) is differentiable on R.

We have:

g′7/2(x) =

¨
x5/2 sin(1/x)− x3/2 cos(1/x) if x ̸= 0

0 if x = 0

From the earlier discussion in part (b), g′7/2(x) is differentiable onR, but g′′7/2(x)
is not continuous at zero.

[Abbott 5.2.8] Review the definition of uniform continuity (Definition 4.4.4).
Given a differentiable function f : A → R, let’s say that f is uniformly differ-
entiable on A, if, given ϵ > 0, there exists a δ > 0 such that:

∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ϵ whenever 0 < |x− y| < δ

(a) Is f(x) = x2 uniformly differentiable on R? How about g(x) = x3?

Proof.

Let’s explore the expression
∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣. We have:

∣∣∣ f(x)−f(y)
x−y − f ′(y)

∣∣∣ =
∣∣∣x2−y2

x−y − 2y
∣∣∣

= |x− y|

Pick δ = ϵ. Then, for all x, y ∈ A satisfying |x− y| < δ, it follows∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ϵ

Consequently, f(x) = x2 is uniformly differentiable on R.

(b) Show that if a function is uniformly differentiable on an intervalA, then the
derivative must be continuous on A.

Proof.
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Since the function f is uniformly differentiable on A, for all ϵ > 0, there exists
δ > 0, such that for all x, y ∈ A, satisfying |x− y| < δ, it follows that

∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ϵ

Let c be an arbitrary fixed point in the interval A. Therefore, for all ϵ > 0, there
exists δ > 0, such that for all x satisfying |y − c| < δ, we must have:

∣∣∣∣f(y)− f(c)

y − c
− f ′(y)

∣∣∣∣ < ϵ

By definition, it means that:

lim
y→c

�
f ′(y)− f(y)− f(c)

y − c

�
= 0

Since f ′(c) = lim
y→c

f(y)− f(c)

y − c
, the limit lim

y→c
f ′(y) exists and further:

lim
y→c

f ′(y) = f ′(c)

Consequently, f ′(y) is continuous at y = c.

(c) Is there a theorem analogous to theorem 4.4.7 for differentiation? Are func-
tions that are differentiable on a closed interval [a, b] necessarily uniformly dif-
ferentiable?

The contrapositive of part (b) is : if the derivative function f ′(x) is not continu-
ous on A, it is not uniformly differentiable. Thus, f(x) = x sin(1/x) is differen-
tiable on [0, 1] but it is not uniformly differentiable, since f ′(x) is not continuous
at 0.

[Abbott 5.2.9] Decide whether each conjecture is true or false. Provide an ar-
gument for those that are true and a counterexample for each one that is false.

(a) If f ′ exists on an interval and is not constant, then f ′ must take on some
irrational values.

Proof.

Suppose f : [a, b]→ R and f ′ is not constant. Then, f ′(a) ̸= f ′(b). There exists
an irrational number α ∈ I between any two reals. So, there exists α ∈ I, such
that f ′(a) < α < f ′(b) or f ′(a) > α > f ′(b).
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Since f is differentiable on [a, b], there exists c ∈ (a, b), such that f ′(c) = α.
Thus, f ′ must take on some irrational value.

(b) If f ′ exists on an open interval and there is some point c where f ′(c) > 0,
then there exists a δ-neighbourhood Vδ(c) in which f ′(x) > 0 for all x ∈ Vδ(c).

Proof.

This proposition is false.

Consider the function:

f(x) =

¨
x
2 + x2 sin

(
1
x

)
if x ̸= 0

0 if x = 0

The graph of f(x) is:

The derivative of this function is:

f ′(x) =

¨
1
2 + 2x sin

(
1
x

)
− cos

(
1
x

)
if x ̸= 0

1
2 if x = 0

The graph of the derivative function f ′(x) is:

Considerxn =

�
1

π
,
1

2π
,
1

3π
,
1

4π
, . . .

�
. f ′

�
1

(2n+ 1)π

�
= −1/2whilst f ′

�
1

2nπ

�
=

3

2
.

Thus, if we take any arbitrary δ-neighbourhood of the point zero, Vδ(0), we will
find both positive and negative values of f ′(x).

(c) If f is differentiable on an interval containing zero and if lim
x→0

f ′(x) = L,
then it must be that L = f ′(0).

[Abbott 5.2.10] Recall that a function f : (a.b) → R is increasing on (a, b) if
f(x) ≤ f(y) whenever x < y in (a, b). A familiar mantra from Calculus is
that a differentiable function is increasing if its derivative is positive, but this
statement requires some sharpeneing in order to be completely accurate.

Show that the function:
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g(x) =

¨
x/2 + x2 sin(1/x) if x ̸= 0

0 if x = 0

is differentiable onR and satisfies g′(0) > 0. Now prove that g is not increasing
over any open interval containing 0.

Proof.

For all other points different from zero, we can differentiate g(x) using the fa-
miliar rules of differentiation to find:

g′(x) =
1

2
+ 2x sin

�
1

x

�
− cos

�
1

x

�
, {x ̸= 0}

By definition,

g′(0) = lim
x→0

(x/2) + x2 sin(1/x)

x
= lim

x→0

1

2
+ x sin

�
1

x

�
=

1

2

Consider the sequence

1

3π/2
,

1

5π/2
,

1

7π/2
,

1

9π/2
, . . .

We find that the image sequence has the following order relation:

g

�
1

3π/2

�
< g

�
1

5π/2

�
, g

�
1

7π/2

�
< g

�
1

9π/2

�
, . . .

Since the above seqeuence approaches zero, any open interval containing zero
must contain the tail of this sequence. Hence, g is not increasing on any interval
containing 0.

[Abbott 5.2.11]Assume that g is differentiable on [a, b] and satisfies g′(a) < 0 <
g′(b).

(a) Show that there exists a point x ∈ (a, b) where g(a) > g(x), and a point
y ∈ (a, b)where g(y) < g(b).

Proof.

By definition:
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g′(a) = lim
x→a

g(x)− g(a)

x− a

Pick ϵ =
|g′(a)|

2
. Then, there exists δ > 0, such that for all x ∈ (a, b) satisfying

|x− a| < δ, we have:

−|g
′(a)|
2

<
g(x)− g(a)

x− a
− g′(a) <

|g′(a)|
2

Since g′(a) < 0, |g′(a)| = −g′(a), so we have:

g′(a)

2
<

g(x)− g(a)

x− a
− g′(a) < −g′(a)

2

Thus,

3g′(a)

2
<

g(x)− g(a)

x− a
<

g′(a)

2

Thus, there exists x ∈ [a, b] such that

g(x)− g(a)

x− a
<

g′(a)

2
< 0

Since x− a ≥ 0, ∃x ∈ [a, b] such that

g(x)− g(a) < 0

or

g(a) > g(x)

In a similar fashion, we can prove that there exists y ∈ (a, b) such that

g(y) < g(b)

(b) Now, complete the proof of Darboux’s theorem started earlier.

Proof.

We perform the following construction:
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Using (a) there exists x1 ∈ (a, b) such that g(a) > g(x1). There exists y1 ∈ (x1, b)
such that g(y1) < g(b). Define I1 = [x1, y1].

Again using (a), there exists x2 ∈ (x1, y1) such that g(x2) > g(x1). There exists
y2 ∈ (x2, y1) such that g(y2) < g(y1). Define I2 = [x2, y2].

By the Nested Interval Property, there exists an element c ∈
∞⋂

n=1

In such that

(xn)→ c and (yn)→ c. Since g is continuous, g(xn)→ g(c) and g(yn)→ g(c).

[Abbott 5.3.1] Recall from the exercise 4.4.9 that a function f : A→ R is Lips-
chitz on A if there exists an M > 0 such that:

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M

for all x ̸= y in A.

(a) Show that if f is differentiable on a closed interval [a, b] and if f ′ is contin-
uous on [a, b] then f is Lipschitz on [a, b].

Proof.

Let x ̸= y be any two arbitrary points in [a, b]. Since f is differentiable on [x, y]
(or [y, x] if y < x), by theMean Value Theorem, there exists c ∈ (x, y) such that:

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ = f ′(c)

Since f ′ is continuous on a closed interval [a, b], by the extreme value theorem,
f ′ attains a maxima and a minima on [a, b], that is, there exists x0, x1 such that
f(x0) ≤ f(x) ≤ f(x1) for all x ∈ [a, b]. Let M = f(x1). Thus, f ′(c) ≤M .

Since x, y were arbitrary points, this must be true for all x, y ∈ [a, b]. Conse-
quently, f is Lipschitz continuous on [a, b].

(b) Review the definition of a contractive function in the exercise 4.3.11. If we
add the assumption that |f ′(x)| < 1 on [a, b], does it follow that f is contractive
on this set?

Proof.

We have: |f(x) − f(y)| ≤ M |x − y|. Since f ′(x) < 1 on [a, b], it follows that
|f(x)− f(y)| < |x− y|. Thus, f is contractive on [a, b].

[Abbott 5.3.2] Let f be differentiable on an interval A. If f ′(x) ̸= 0 on A, show
that f is one-to-one on A. Provide an example to show that the converse state-
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ment need not be true.

Proof.

Let x ̸= y be any two arbitrary points contained in A. Since f is differentiable
on (x, y), there exists a point x < c < y or x > c > y such that :

f(x)− f(y)

x− y
= f ′(c)

Thus,

f(x)− f(y) = f ′(c)(x− y)

Since f ′(c) ̸= 0 and (x − y) ̸= 0, it follows that f(x) ̸= f(y). Thus, x ̸= y =⇒
f(x) ̸= f(y) for all x, y ∈ A. Consequently, f is one-to-one on A.

Consider f(x) = x3. f is one-to-one on any interval of the real-line, but f ′(x) =
3x2 is zero at the point x = 0.

[Abbott 5.3.3] Let h be a differentiable function defined on the inteval [0, 3],
and assume that h(0) = 1, h(1) = 2 and h(3) = 2.

(a) Argue that there exists a point d ∈ [0, 3], where h(d) = d.

Proof.

Consider g(x) = h(x) − x. By the Algebraic differentiability theorem, g is also
differentiable on [a, b].

We have:

g(0) = h(0)− 0 = 1

g(1) = h(1)− 1 = 1

g(3) = h(3)− 3 = −1

Since h is continuous on [1, 3], by the Intermediate Value Theorem, there exists
c ∈ (1, 3) such that g(c) = 0. Consequently, there exists c ∈ (1, 3), such that
h(c) = c.

(b) Argue that at some point c, we have h′(c) = 1/3.

Proof.

Since h is differentiable on (1, 3), there exists c ∈ (0, 3) such that

163



h(3)− h(0)

3− 0
=

2− 1

3
=

1

3
= h′(c)

(c) Argue that h′(x) = 1/4 at some point in the domain.

Proof.

Since h is continuous on [0, 1] and differentiable on the interval (0, 1), by the
Mean Value Theorem, there exists c ∈ (0, 1) such that

h′(c) =
h(1)− h(0)

1
= 1

Since h is continuous on [1, 3] and differentiable on the interval (1, 3), by the
Mean Value Theorem, there exists t ∈ (1, 3) such that

h′(t) =
h(3)− h(1)

3− 1
= 0

Since h is differentiable on [c, t] by the Darboux’s theorem, the derivative func-
tion satisfies the intermediate value property. If h′(t) <

1

4
< h′(c), then there

exists x ∈ (c, t) such that h′(x) =
1

4
.

[Abbott 5.3.4] Let f be differentiable on an interval A containing zero, and
assume (xn) is a sequence in A with (xn)→ 0 and xn ̸= 0.

(a) If f(xn) = 0 for all n ∈ N, show that f(0) = 0 and f ′(0) = 0.

Proof.

Since f is differentiable at zero, f is also continuous at zero. Consequently,
lim
x→0

f(x) = f(0). Thus, for all sequences (xn) → 0, with xn ̸= 0, it follows that
f(xn)→ f(0). But, f(xn) is the constant sequence (0, 0, 0, . . . ). Thus, f(0) = 0.

By definition:

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

Since f is differentiable at zero, for all sequences (tn) → 0 with tn ̸= 0, the
sequence of difference quotients

d(tn) =
f(tn)− f(0)

tn − 0
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approaches f ′(0). So, it must hold for the sequence (xn) ⊆ A as well. We have:

d(xn) =
f(xn)− f(0)

xn − 0
=

0− 0

xn
= 0

So, d(xn) is the constant sequence (0, 0, 0, . . . ) which approaches 0. But, we
know that d(xn)→ f ′(0). Consequently, f ′(0) = 0.

(b) Add the assumption that f is twice-differentiable at zero and show that
f ′′(0) = 0 as well.

Proof.

By definition:

f ′′(0) = lim
x→0

f ′(x)− f ′(0)

x− 0

Since f ′ is differentiable at zero, it follows that for all sequences (xn)→ 0, with
xn ̸= 0, the sequence of the difference quotients:

y(xn) =
f ′(xn)− f ′(0)

xn − 0

approaches f ′′(0). But, f ′(xn) = 0 for all n ∈ N since f(xn) = 0. Consequently,
y(xn) is the constant zero sequence and thus f ′′(0) = 0.

[Abbott 5.3.5] (a) Supply the details for the proof of Cauchy’s Generalized
Mean Value Theorem (Theorem 5.3.5).

Proof.

Let f and g be continuous on the closed interval [a, b] and differentiable on the
open interval (a, b). Define

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x)

We have:

h(a) = f(b)g(a)− f(a)g(a)− g(b)f(a) + f(a)g(a) = f(b)g(a)− g(b)f(a)

h(b) = f(b)g(b)− f(a)g(b)− g(b)f(b) + g(a)f(b) = g(a)f(b)− f(a)g(b)

By theAlgebraic differntiability theorem, h is differentiable on the open interval
(a, b). Applying the Mean Value Theorem, there exists c ∈ (a, b), such that:
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h′(c) =
h(b)− h(a)

b− a
= 0

Differentiating h(x) using the familiar rules of differentiation, we get:

h′(x) = [f(b)− f(a)]g′(x)− [g(b)− g(a)]f ′(x)

Thus,

h′(c) = [f(b)− f(a)]g′(c)− [g(b)− g(a)]f ′(c)

To conclude, there exists a point c ∈ (a, b) such that:

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

(b) Give a graphical interpretation of the Generalized Mean Value Theorem
analogous to the one given for the Mean Value Theorem at the beginning of
section 5.3 (Consider f and g as parametric equations for a curve).

Proof.

Let F : R → R2 be any curve in whose parameteric equation is given by
(x(t), y(t)). Suppose that a particle in motion in the 2D-plane according to this
parametric curve. Then, x′(c) is the x-component of the velocity at time t = c
and y′(c) is the y-component of the velocity at time t = c. The velocity vector at
time t = c is v(c) = (x′(c), y′(c)), the magnitude of the velocity (speed) is given
by |v(c)| =

È
(x′(c))2 + (y′(c))2, whilst the direction of velocity vector is given

by:

tan θ =
y′(c)

x′(c)

Thus, the graphical interepretation of the Generalized Mean Value theorem,
implies, that there exists an instant c ∈ (a, b) during which the direction of
motion of the particle is parallel to the displacment vector between the points
(x(a), y(a)) and (x(b), y(b)).

[Abbott 5.3.6] (a) Let g : [0, a]→ R be differentiable, g(0) = 0 and |g′(x)| ≤M
for all x ∈ [0, a]. Show that |g(x)| ≤Mx for all x ∈ [0, a].

Proof.
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Let x be an arbitrary point in (0, a]. Since g differentiable on the open interval
(0, x), we can apply the mean value theorem. Thus, there exists c ∈ (0, x), such
that:

|g′(c)| =
∣∣∣∣g(x)− g(0)

x− 0

∣∣∣∣ = ∣∣∣∣g(x)x

∣∣∣∣ ≤M

Since x > 0, we can write:

|g(x)| ≤Mx

Since xwas an arbitrary point in (0, a], this must be true for all x ∈ (0, a]. Since,
g(0) = 0, it is also true for x = 0.

(b) Let h : [0, a]→ R be twice differentiable, h′(0) = h(0) = 0 and |h′′(x)| ≤M
for all x ∈ [0, a]. Show that |h(x)| ≤Mx2/2 for all x ∈ [0, a].

Proof.

Using part (a), we have that |h′(x)| ≤Mx for all x ∈ [0, a].

Again as before, let x be an arbitrary point in (0, a]. Since h(x) and g(x) = x2/2
are differentiable on (0, x) by theGeneralizedMeanValue Theorem, there exists
c ∈ (0, x) such that:

h′(c)

c
=

h(x)− h(0)

x2/2− 0

Thus,

∣∣∣∣ h(x)

(x2/2)

∣∣∣∣ = |h′(c)|
c
≤ Mc

c
= M, {∵ c > 0}

Therefore,

|h(x)| ≤ Mx2

2

Since, x was an arbitrary point in (0, a], this must be true for all x ∈ (0, a]. This
is also true for x = 0.

(c) Conjecture and prove and analogous result for a function that is differen-
tiable three times on [0, a].

Proof.
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Let h : [0, a] → R be a function that is differentiable three times on [0, a] and
assume that h′′(0) = h′(0) = h(0) = 0 and |h′′′(x)| ≤ M for all x ∈ [0, a]. Our
claim is that |h(x)| ≤Mx3/6 for all x ∈ [0, a].

Using (b), we know that |h′(x)| ≤Mx2/2 for all x ∈ [0, a].

As before, if x is an arbitrary point in (0, a], applying generalizedMVT to (0, x),
there exists a point c ∈ (0, x) such that:

h(x)− h(0)

x3/3− 0
=

h′(c)

c2

Therefore,

∣∣∣∣h(x)x3/3

∣∣∣∣ ≤ Mc2/2

c2
=

M

2

Consequently,

|h(x)| ≤ Mx3

6

Since x was an arbitrary point in (0, a], this is true for all x ∈ (0, a].

[Abbott 5.4.1] Define

h(x) = |x|

on the interval [−1, 1] and extend the definition of h to all ofR by requiring that
h(x+ 2) = h(x). This results in a periodic sawtooth function.

Sketch a graph of (1/2)h(2x) on [−2, 3]. Give a qualitative description of the
functions:

hn(x) =
1

2n
h (2nx)

as n gets larger.

Now define:

g(x) =

∞∑
n=0

hn(x) =

∞∑
n=0

1

2n
h (2nx)

The claim is that g(x) is continuous on all of R, but fails to be differentiable at
any point.
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Proof.

The graph of h1(x) can be deduced by computing it’s values at a few points:

x h(2x) (1/2)h(2x)
−2 h(−4) = 0 0
−3/2 h(−3) = 1 1/2
−1 h(−2) = 0 0
−1/2 h(−1) = 1 1/2
0 h(0) = 0 0
1/2 h(1) = 1 1/2
1 h(2) = 0 0
3/2 h(3) = 1 1/2
2 h(4) = 0 0

Thus, h1(x) has height (1/2) and a period L = 1. It has a corner at all points of
the form x =

a

2
, where a ∈ Z. h2(x) has height (1/4) and a period L =

1

2
. It

has a corner at all points of the form x =
a

22
, where a ∈ Z.

[Abbott 5.4.2] Fix x ∈ R. Argue that the series

∞∑
n=0

1

2n
h (2nx)

converges and thus g(x) is properly defined.

Proof.

Let (sn) be the sequence of partial sums of the infinite series
∞∑

n=0

1

2n
h (2nx).

Since 1

2n
h (2nx) ≥ 0, the sequence of partial sums is monotonically increasing.

Moreover,

sk =
∑k

n=0
1
2nh (2

nx)

≤
∑k

n=0
1
2n {since h (2nx) ≤ 1}

≤
∑∞

n=0
1
2n = 1

1−1/2

= 2

Consequently, the sequence (sn) is bounded. By the Monotone Convergence
Theorem, (sn) is a convergent sequence. Thus, g(x) is properly defined.

[Abbott 5.4.3] Taking the continuity of h(x) as given, reference the proper the-
orems from chapter 4 that imply that the finite sum:
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gm(x) =

m∑
n=0

1

2n
h (2nx)

is continuous on R.

Proof.

Let c be an arbitrary point in R. Let n ∈ N be arbitrary.

We know that 2nx is continuous c and h(·) is continuous at c. Since, the com-
position of continuous functions is continuous, it follows that h (2nx) is contin-
uous at c.

By the Algebraic Continuity Theorem, the finite sum:

gm(x) =

m∑
n=0

1

2n
h (2nx)

is also continuous at c. Since, c was arbitrary, this must be true for all points
x ∈ R.

[Abbott 5.4.4]As the graph in figure 5.7 suggests, the structure of g(x) is quite
intricate. Answer the following questions, assuming that g(x) is indeed contin-
uous.

(a) How do we know that g attains a maximum valueM on [0, 2]? What is this
value?

Proof.

The function g(x) repeats itself with period L = 2. Moreover, since g is contin-
uous on the closed and bounded interval [0, 2], by the extreme value theorem,
there exists xmin and xmax in [0, 2], such that:

g(xmin) ≤ g(x) ≤ g(xmax)

for all x ∈ [0, 2]. Thus, the above points are global extrema.

(b) Let D be the set of points in [0, 2] where g attains its maximum. That is :

D = {x ∈ [0, 2] : g(x) = M}.

Find one point in D.

[Abbott 6.2.1] Let
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fn(x) =
nx

1 + nx2

(a) Find the pointwise limit of (fn) for all x ∈ (0,∞).

Proof.

For a fixed x ∈ R, we have:

limn→∞ fn(x) = limn→∞
nx

1+nx2

= limn→∞
x

1
n+x2

= x
x2 = 1

x

(b) Is the convergence uniform on (0,∞)?

Proof.

The definition of uniform convergence is :

(∀ϵ > 0)(∃N ∈ N)(∀x ∈ A)(∀n ≥ N)(|fn(x)− f(x)| < ϵ)

Carefully negating the definition of uniform convergence:

(∃ϵ0 > 0)(∀N ∈ N)(∃xn ∈ A)(∃n ≥ N)(|fn(x)− f(x)| ≥ ϵ0)

Note. The point x ∈ A where the distance |fn(x) − f(x)| exceeds ϵ0 can be
different for each N .

Let’s explore the distance |fn(x)− f(x)|. We have:

|fn(x)− f(x)| =
∣∣∣ nx
1+nx2 − 1

x

∣∣∣
=

∣∣∣∣nx2−(1+nx2)
x(1+nx2)

∣∣∣∣
=
∣∣∣− 1

x(1+nx2)

∣∣∣ = ∣∣∣ 1
x(1+nx2)

∣∣∣
= 1

x(1+nx2)

Let ϵ0 = 1. Let us choose 0 < x < 1.

1

x (1 + nx2)
>

1

x(1 + n)

Let’s explore the inequality:

1

x(1 + n)
≥ ϵ0
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We are interested to make

1
x(1+n) ≥ 1

=⇒ x(1 + n) ≤ 1
=⇒ xn ≤ 1

n+1

Consequently, we can choose xn ≤
1

n+ 1
.

(fn) does not converge uniformly to f on (0,∞).

(c) Is the convergence uniform on (0, 1)?

Proof.

No, the convergence is not uniform on (0, 1) as reasoned above.

(d) Is the convergence uniform on (1,∞)?

Let us explore the expression |fn(x)− f(x)| :

|fn(x)− f(x)| = 1
x(1+nx2)

≤ 1
1+n {∵ x ≥ 1}

We can choose N >
1

ϵ
. Then, |fn(x) − f(x)| < ϵ for all n ≥ N and for all

x ∈ (1,∞).

[Abbott 6.2.2] (a) Define a sequence of functions on R by:

fn(x) =

¨
1 if x = 1, 1

2 ,
1
3 , . . . ,

1
n

0

and let f be the pointwise limit of the function fn. Is each fn continuous at
zero? Does fn → f uniformly on R? Is f continuous at zero?

Proof.

Point-wise convergence:

The definition of pointwise convergence is:

(∀ϵ > 0)(∀x ∈ A)(∃N ∈ N)(∀n ≥ N)(|fn(x)− f(x)| < ϵ)
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Define

f(x) =

¨
1 if x = 1

n ,∀n ∈ N

0 otherwise

Let S be the set of rational numbers of the form:

S =

§
1

m
: m ∈ N

ª

We are interested to prove that fn → f pointwise. For x > 1 or x < 0 or x /∈ S,
fn(x) = 0 for all n ∈ N. Thus, what is of interest to us, is the set S.

Assume that x ∈ S and let x =
1

M
be fixed, where M is some natural number.

Pick an arbitrary ϵ > 0. We have: f(x) = 1. We are interested to make the
distance |fn(x) − f(x)| as small as we please. If we choose n ≥ M , it follows
that 1

n
≤ 1

M
and fn(x) = 1. Thus, |fn(x)− f(x)| = 0 < ϵ.

Consequently, the suitable response to the given ϵ-challenge is to pick N ≥M .

Continuity of fn at zero.

Pick an arbitrary ϵ > 0. Pick an arbitrary fixed fN (x). We are interested to prove
that fN (x) is continuous at zero.

By definition, fN (x) = 1 for x = 1,
1

2
, . . . ,

1

N
. Thus, if we choose δ =

1

N + 1
,

for all x ∈ Vδ(0), it follows that |fN (x) − fN (0)| = 0 < ϵ. Consequently, fN (x)
is continuous at c = 0. Since, N was arbitrary to begin with, this must be true
for all N ∈ N.

Uniform convergence on R.

Let ϵ0 =
1

2
. We pick xn ≥

1

n+ 1
. Clearly, fn(xn) = 0 and f(xn) = 1, so

|fn(xn)− f(xn)| ≥ ϵ0. Hence, fn is not uniformly convergent onR.

Is f continuous at zero?

The uniform convergence of the sequence of functions (fn) is a necessary con-
dition for the limit function f to be continuous. The absence of uniform conver-
gence implies that f is not continuous at zero.

(b) Repeat this exercise using the sequence of functions
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gn(x) =

¨
x if x = 1, 1

2 ,
1
3 , . . . ,

1
n

0 otherwise

Point-wise convergence:

Define

g(x) =

¨
x if x = 1

n , n ∈ N

0 otherwise

Let S be the set of rational numbers of the form:

S =

§
1

m
: m ∈ N

ª

gn converges pointwise to g for all x /∈ S. Hence, let’s investigate what happens
if x is an arbitrary fixed element of S. Let x =

1

M
.

Again as before, if we pick n ≥M +1, then gn(x) = x and g(x) = x, so |gn(x)−
g(x)| = 0 < ϵ.

Hence, the suitable response to the given ϵ-challenge is N ≥M + 1.

Continuity of gn at zero.

Pick an arbitrary ϵ > 0. Pick an arbitrary fixed gN (x). We are interested to prove
that gN (x) is continuous at zero. By definition:

gN (x) =

¨
x if x = 1, 1

2 ,
1
3 , . . . ,

1
N

0 otherwise

If we choose δ <
1

N
, then for all x ∈ R satisfying |x| < δ, we have |gN (x) −

gN (0)| = 0 < ϵ. Consequently, gN (x) is continuous at zero. Since, N was
abitrary, this must be true for all n ∈ N.

Uniform convergence on R.

Pick an arbitrary ϵ > 0. By the Archimedean property there exists a natural
number K ∈ N, such that 1

K
< ϵ. Consider what happens when we sample

fK , fK+1 at the points x =
1

K
,

1

K + 1
, . . . .
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gK
(

1
K

)
= 1

K gK
�

1
K+1

�
= 0 gK

�
1

K+2

�
= 0

gK+1

(
1
K

)
= 1

K gK+1

�
1

K+1

�
= 1

K+1 gK+1

�
1

K+2

�
= 0

g
(

1
K

)
= 1

K g
�

1
K+1

�
= 1

K+1 g
�

1
K+2

�
= 1

K+2

Then, for all x ∈ R, for k ≥ K, it follows that |gk(x)− g(x)| < ϵ.

Is g continuous at zero?

The sequence functions (gn) are continuous at zero and (gn) converges uni-
formly to g. By the Continuous Limit Theorem, g is continuous at zero.

(c) Repeat the exercise once more with the sequence

hn(x) =


1 if x = 1

n

x if x = 1, 1
2 , . . . ,

1
n−1

0 otherwise

Proof.

Point-wise convergence:

Define

h(x) =

¨
x if x = 1

n : n ∈ N

0 otherwise

Pick an arbitrary ϵ > 0. Let x ∈ R be a fixed arbitrary real number of the form
1

m
, where m ∈ N. Let N ∈ N be such that N > m. Then, hn(x) = x =

1

m
for

all n ≥ N . Consequently, |hn(x)− h(x)| = 0 < ϵ for all n ≥ N .

Thus, the sequence of functions (hn) converge pointwise to h.

Continuity of hn at zero.

Let ϵ > 0 be arbitrary. Pick δ <
1

n
. Then, for all x ∈ Vδ(0), we have |hn(x) −

hn(0)| = 0 < ϵ. Consequently, hn is continuous at zero.

Uniform convergence on R.

Let ϵ0 =
1

2
.

Case I. N = 1. There exists x1 =
1

2
, such that |h1(x1)− h(x1)| =

1

2
≥ ϵ0.
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Case II. N ≥ 2. Pick xn =
1

N
. We have |hN (xn)− h(xn)| = 1− 1

N
≥ 1

2
= ϵ0.

Consequently,

(∃ϵ0 > 0)(∀N ∈ N)(∃xn ∈ A)(∃n ≥ N)(|hn(xn)− h(xn)| ≥ ϵ0)

Hence, (hn) does not converge uniformly to h.

[Kaczor&Nowak 3.1.1] Prove that a sequence of functions {fn} defined on A
is uniformly convergent on B ⊂ A to f : B → R if and only if the sequence of
numbers {dn}, where:

dn = sup{|fn − f(x)| : x ∈ B}, n ∈ N

converges to zero.

Proof.

=⇒direction.

Pick an arbitrary ϵ > 0. (fn) converges to f uniformly, so there exists Nϵ0 such
that for all x ∈ B, |fn(x)− f(x)| < ϵ for all n ≥ Nϵ. Thus, the set

DNϵ = {|fNϵ − f(x)| : x ∈ B}

has lower bound 0 andupper bound ϵ. This applies to all the setsDNϵ+1,DNϵ+2,DNϵ+3,....

This can also be seen if we graph fn and f . fn is always within an ϵ-band of f .
So, the distance between fn and f is bounded.

By the least upper bound property, the supremum of Dn exists for all n ≥ Nϵ.
Let dn = supDn.

Since dn is a limit point of the set Dn, by the order limit theorem, 0 ≤ dn ≤ ϵ.
Again, this holds for all n ≥ Nϵ.

Consequently, it follows that (dn)→ 0.

⇐= direction.

Pick an arbitrary ϵ > 0.

Since (dn)→ 0, there exists N ∈ N such that
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−ϵ < 0 ≤ dn < ϵ

Since dn is an upper bound for the set Dn:

−ϵ < 0 ≤ |fn(x)− f(x)| ≤ sup {|fn(x)− f(x)| : x ∈ B} < ϵ

∀x ∈ B, ∀n ≥ N .

Thus, (fn) converges uniformly to f .

[Abbott 6.2.3] For each n ∈ N and x ∈ [0,∞), let:

gn(x) =
x

1 + xn
and hn(x) =

¨
1 x ≥ 1

n

nx if 0 ≤ x < 1
n

Answer the following questions for the sequences (gn) and (hn):

(a) Find the pointwise limit on [0,∞).

Proof.

The pointwise limit of gn(x) is given by:

Case I. 0 < x < 1.

We have:

limn→∞ gn(x) = limn→∞
x

1+xn

= limn→∞ x
limn→∞ 1+limn→∞ xn

= x
1+0 {∵ (x)n → 0, if 0 < x < 1}

= x

Case II. x = 1.

We have:

lim
n→∞

gn(x) = lim
n→∞

1

1 + 1n
=

1

2

Case III. x > 1.

We have:
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limn→∞ gn(x) = limn→∞
x

1+xn

= limn→∞
x−n+1

x−n+1

= 0
0+1 = 0

Thus, the sequence of functions (gn) converges pointwise to g defined by:

g(x) =


x if 0 ≤ x < 1
1
2 if x = 1

0 if x > 1

The pointwise limit of hn(x) is given by:

Case I. If x > 0.

Pick an arbitrary ϵ > 0. By the Archimedean property, there existsN ∈ N, such
that 1

N
< x. For all n ≥ N , the distance |hn(x)− h(x)| = 0 < ϵ.

Case II. If x = 0.

The sequence (hn(0)) = (0, 0, 0, 0, 0, . . . ) converges to 0.

Thus, the sequence of functions (hn) converges pointwise to h defined by:

h(x) =

¨
1 if x > 0

0 if x = 0

(b) Explain how we know that the convergence cannot be uniform on [0,∞).

The sequence of functions (gn):

Let x ∈ (0, 1). Let’s explore the expression |gn(x)− g(x)|. We have:

|gn(x)− g(x)| =
∣∣∣ x
1+xn − x

∣∣∣
=
∣∣∣x−x−xn+1

1+xn

∣∣∣
=
∣∣∣ xn+1

1+xn

∣∣∣
= xn+1

1+xn

{
∵ xn+1 > 0 and 1 + xn > 0

}
> xn+1

2 > x2n

2

Let ϵ0 =
1

4
. Our claim is:
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x2n

2 > 1
22

x2n > 1
2

xn >
(
1
2

)2n
Thus,

(∃ϵ0 > 0)(∀N ∈ N)(∃xn ∈ [0,∞))(∃n ≥ N)(|gn(xn)− g(xn)| ≥ ϵ0)

So, (gn) does not converge uniformly to g.

The sequence of functions (hn):

This is actually evident from the graph of h(x). If we draw an ϵ band around h,
for each N ∈ N, there exists points xn ∈ (0, 1), such that |hn(xn)− h(xn)| ≥ ϵ.

Let ϵ0 =
1

4
. For all N ∈ N, pick xN ∈

�
0,

1

2N

�
. Then, |hN (xN ) − h(xN )| ≥

1− 1

2
=

1

2
≥ ϵ0.

Again,

(∃ϵ0 > 0)(∀N ∈ N)(∃xn ∈ [0,∞))(∃n ≥ N)(|hn(xn)− h(xn)| ≥ ϵ0)

(c) Choose a smaller set over which the convergence is uniform and supply an
argument to show that this is indeed the case.

Proof.

Using a computer algebra system to plot (gn), I think that (gn) should converge

uniformly g(x) = x in the interval
�
0,

1

2

�
.

Mathematically,

|gn(x)− g(x)| =
∣∣∣ x
1+xn − x

∣∣∣
=
∣∣∣ xn+1

1+xn

∣∣∣ = xn+1

1+xn

{
∵ xn+1 ≥ 0 and 1 + xn > 0

}
< (1/2)n+1

1+0n {∵ 0 ≤ x ≤ 1/2}
=
(
1
2

)n+1

Pick an arbitray ϵ > 0. Our claim is that:

1

2n+1
< ϵ
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Thus:

2n+1 >
1

ϵ

which implies that

(n+ 1) >
1

2
log(1/ϵ)

Thus,

(∀ϵ > 0)(∃N ∈ N)(∀x ∈ [0, 1/2])(∀n ≥ N)(|gn(x)− g(x)| < ϵ)

Consequently, (gn) converges uniformly to g on [0, 1/2]. Actually, it converges
uniformly to g on any closed interval [0, a] where a < 1, as well as any interval
of the form [a,∞)where a > 1.

Similarly, (hn) converges uniformly to h on
�
1

2
, 1

�
. Let ϵ > 0 be arbitrary. Pick

N ≥ 2. Then, for all x ∈
�
1

2
, 1

�
and for all n ≥ N , |hn(x)− h(x)| = 0 < ϵ.

[Kaczor&Nowak 3.1.2] Assume that (fn) converges uniformly to f on A and
(gn) converges uniformly to g on A. Show that (fn + gn) converge uniformly to
(f + g) on A. Is it true that (fn · gn) converge uniformly (f.g)?

Proof.

Pick an arbitrary ϵ > 0.

There exists N1 ∈ N for all x ∈ A, such that for all n ≥ N , |fn(x)− f(x)| < ϵ

2
.

There exists N2 ∈ N for all x ∈ A, such that for all n ≥ N2, |gn(x)− g(x)| < ϵ

2
.

We can write:

|(fn(x) + gn(x))− (f(x) + g(x)| = |fn(x)− f(x) + gn(x)− g(x)|
≤ |fn(x)− f(x)|+ |gn(x)− g(x)|

Let N = max{N1, N2}. Then for all n ≥ N , it follows that:

|(fn(x) + gn(x))− (f(x) + g(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)|
= ϵ

2 + ϵ
2 = ϵ
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Counterexample.

[Abbott 6.2.4] Review exercise 5.2.8 which includes the definition for a uni-
formly differentiable function. Use the results discussed in the section 6.2 to
show that if f is uniformly differentiable, then f ′ is continuous.

Proof.

Define the sequence of functions

gn(x) =
f
(
x+ 1

n

)
− f(x)(

1
n

)
and let

g(x) = f ′(x)

We can show that (gn) converges uniformly on A to g.

Pick an arbitrary ϵ > 0. By definition of uniform differentiability, there exists
δ > 0 (where δ is only a function of ϵ), such that for all x, y ∈ A, satisfying
|x− y| < δ, it follows that:

∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < ϵ

By the Archimedean property, there exists N ∈ N, such that 1

N
< δ. But, this

means, that for all n ≥ N , the point y = x+
1

n
satisfies |y − x| < δ.

Thus, there exists N ∈ N, such that for all x ∈ A and n ≥ N , it follows that:

∣∣∣∣f(x+ 1/n)− f(x)

1/n
− f ′(x)

∣∣∣∣ < ϵ

Note that N is a function of δ, which in turn depends only on ϵ. Hence, the
sequence of functions (gn) converge uniformly on A to g.

Now,

Uniform differentiability of f =⇒ Differentiability of f =⇒ Continuity of f

For a fixed n, since x+
1

n
is continuous and f is continuous, f(x+ 1/n) is also

continuous. By algebraic continuity theorem,
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gn(x) =
f(x+ 1/n)− f(x)

(1/n)

is continous.

Let c ∈ A be an arbitrary fixed point.

Each of the gn are continuous at c ∈ A and (gn) converges uniformly to g on A.
By the continuous limit theorem, g is continuous at c ∈ A. Since cwas arbitrary
to begin with, g is continuous on the whole of A.

[Abbott 6.2.5] Using the Cauchy Criterion for convergent sequences of real
numbers, supply a proof for Theorem 6.2.5. (First define a candidate for f(x)
and then argue that (fn)→ f uniformly).

Proof.

=⇒direction.

We are given that a sequence of functions (fn) defined on the set A ⊆ R con-
verges uniformly on A to f .

Pick an arbitrary ϵ > 0. There exists N ∈ N for all x ∈ A, such that for all
k ≥ N :

|fk(x)− f(x)| < ϵ/2

Let n,m ≥ N be arbitrary. We have:

|fn(x)− fm(x)| = |(fn(x)− f(x))− (fm(x)− f(x))|
≤ |(fn(x)− f(x))|+ |(fm(x)− f(x))|
= ϵ

2 + ϵ
2 = ϵ

Since n,m ≥ N were arbitrary to begin with, this must be true ∀n,m ≥ N .

⇐= direction.

We are given that, for all ϵ > 0, ∃N ∈ N, such that for all x ∈ A and for all
n,m ≥ N , we have:

|fn(x)− fm(x)| < ϵ

Fix t ∈ A. Then it follows that, (fn(t)) is a Cauchy sequence. By the Cauchy
criterion for convergence of real numbers, (fn(t)) is a convergent sequence and
lim

n→∞
fn(t) exists.
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Since t was arbitrary, this must be true for all t ∈ A. Consequently, we define:

f(x) = lim
n→∞

fn(x)

Now, fix n ≥ N and x ∈ A be arbitrary. Consider the sequence:

|fn(x)− fN (x)|, |fn(x)− fN+1(x)|, . . . , |fn(x)− fm(x)|, . . .

Pick an arbitrary ϵ > 0.

By the uniform Cauchy condition, ∃N(ϵ) ∈ N, such that for all m ≥ N , am =
|fn(x)− fm(x)| < ϵ. Thus, lim

m→∞
am exists.

Since each of the terms am is strictly smaller than ϵ, by the Order Limit theorem,
lim am ≤ ϵ.

We have:
lim am = limm→∞ |fn(x)− fm(x)|

= | limm→∞ fn(x)− limm→∞ fm(x)| {Since lim |bn| = | lim bn|}
= |fn(x)− f(x)|

Consequently, |fn(x) − f(x)| ≤ ϵ. Since n ≥ N and x ∈ A were arbitrary to
begin with, this must be true for all x ∈ A and n ≥ N .

By definition, (fn) converges uniformly on A to f .

[Abbott 6.2.6] Assume that fn → f on the set A. Theorem 6.2.6 is an exam-
ple of a typical question which asks whether a trait possessed by each fn is
inherited by the limit function. Provide an example to show that all of the fol-
lowing propositions are false if the convergence is only assumed to pointwise
on A. Then, go back and decide which are true under the stronger hypothesis
of uniform convergence.

(a) If each fn is uniformly continuous, then f is uniformly continous.

Proof.

Let fn(x) = xn for x ∈ [0, 1]. Since fn(x) is continuous on a compact set [0, 1],
it is uniformly continuous on [0, 1].

Define

f(x) =

¨
0 if 0 ≤ x < 1

1 if x = 1
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Pick x ∈ [0, 1). We know that, if |x| < 1, then (xn)→ 0. If x = 1, then (xn) is the
constant sequence (1, 1, 1, . . . ) and converges to 1. Consequently, fn converges
pointwise to f .

Since f is not continuous at c = 1, f is not uniformly continuous on [0, 1].

Claim. If fn
A−→ f and if each fn is uniformly continuous, f is uniformly con-

tinuous.

By definition of uniform continuity:

(∀ϵ > 0)(∃δ(ϵ) > 0)(∀x, y ∈ A)(∀|x− y| < δ)(|fn(x)− fn(y)| < ϵ)

By definition of uniform convergence:

(∀ϵ > 0)(∃N(ϵ) ∈ N)(∀x ∈ A)(∀n ≥ N)(|fn(x)− f(x)| < ϵ)

Pick an arbitrary ϵ > 0.

There exists N(ϵ/3) such that for all x ∈ A, |fN (x)− f(x)| < ϵ/3.

There exists δ(ϵ/3) such that for all x, y ∈ A, satisfying |x − y| < δ, |fN (x) −
fN (y)| < ϵ/3.

We can write for all x, y ∈ A satisfying |x− y| < δ:

|f(x)− f(y)| = |f(x)− fN (x) + fN (x)− fN (y) + fN (y)− f(y)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
< ϵ/3 + ϵ/3 + ϵ/3 = ϵ

Consequently, f is uniformly continuous on A.

(b) If each fn is bounded, then f is bounded.

Proof.

Claim. If fn
A−→ f and each fn is bounded, f is bouned.

By the definition of uniform convergence:

(∀ϵ > 0)(∃N(ϵ) ∈ N)(∀x ∈ A)(∀n ≥ N)(|fn(x)− f(x)| < ϵ)

Pick ϵ = 1. Then, there exists N ∈ N such that for all x ∈ A,
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|f(x)| ≤ |fN (x)|+ 1

Since fN (x) is bounded, ∃M > 0, ∀x ∈ A, such that |fN (x)| ≤M . Consequently,
for all x ∈ A,

|f(x)| ≤M + 1

Thus, f(x) is bounded.

[Abbott 6.2.7] Let f be uniformly continuous on all ofR and define a sequence

of functions by fn(x) = f

�
x+

1

n

�
. Show that fn → f uniformly. Give an

example to show that this proposition fails if f is only assumed to be continuous
and not uniformly continuous on R.

Proof.

Pick an arbitrary ϵ > 0.

Since f is uniformly continuous on R, ∃δ0(ϵ) > 0, such that for all |x − y| < δ,
|f(x)− f(y)| < ϵ.

Let y be any arbitrary point defined by the following linear function:

y = x+
1

n

where n ∈ N. Now, we can choose y to be arbitrarily close to x. Pick N >
1

δ0
. Then, for all n ≥ N , |x − y| < δ. But, this implies, that for all n ≥ N ,

|f(x+ 1/n)− f(x)| < ϵ|.

Consequently,

(∀ϵ > 0)(∃N(ϵ) ∈ N)(n ≥ N)(|fn(x)− f(x)| < ϵ)

Thus, fn converges uniformly onR to f .

Carefully negating the definition of uniform convergence, we have:

(∃ϵ0 > 0)(∀N ∈ N)(∃n ≥ N)(∃xn ∈ A)(|fn(xn)− f(x)| ≥ ϵ0)

Let f(x) = x2. We know that f is continuous on R, but it is not uniformly
continuous (the derivative is not bounded).
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Fix ϵ0 =
1

2
. Let’s explore the expression:

∣∣∣∣f �x+
1

n

�
− f(x)

∣∣∣∣. We have:

∣∣f (x+ 1
n

)
− f(x)

∣∣ =
(
x+ 1

n

)2 − x2

= x2 + 2x
n + 1

n2 − x2

=��x2 + 2x
n + 1

n2 −��x2

= 2x
n + 1

n2

≥ 2x
n

Let’s explore the inequality:

2x

n
≥ ϵ0 =

1

2

Pick xN ≥
N

4
. Then,

∣∣∣∣f �x+
1

N

�
− f(x)

∣∣∣∣ = 2xN

N
+

1

N2
=

2(N/4)

N
+

1

N2
=

1

2
+

1

N2

Thus, fn(x) does not converge uniformly to f(x).

[Abbott 6.2.8] Let gn be a sequence of continuous functions that converges uni-
formly to g on a compact set K. If g(x) ̸= 0 on K, show that 1

gn
converges

uniformly on K to 1

g
.

Proof.

Consider the expression
∣∣∣∣ 1

gn(x)
− 1

g(x)

∣∣∣∣. We have:

∣∣∣ 1
gn(x)

− 1
g(x)

∣∣∣ = |gn(x)−g(x)|
|gn(x)||g(x)|

Now, (gn)
K−→ g. Since, each gn is continuous onK, by the continuous limit the-

orem, g is continuous on K. By the extreme value theorem, g attains a minima
m and maxima M on K, such that:

m ≤ g(x) ≤M

for all x ∈ K. Since g(x) ̸= 0 for all x ∈ K, either g is strictly positive or g is
strictly negative, and it does not intersect the x-axis.

Let L = min(|m|, |M |). We have, L > 0 and |g(x)| ≥ L.
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Pick ϵ =
L

2
. As (gn)

K−→ g, there exists N1(L/2) such that for all x ∈ K and for
all n ≥ N1, we have:

||gn(x)| − |g(x)|| ≤ |gn(x)− g(x)| < L

2

So, for all x ∈ K and n ≥ N1,

||gn(x)| − |g(x)|| < L
2

⇐⇒ −L
2 < |gn(x)| − |g(x)| < L

2

⇐⇒ |g(x)| − L
2 < |gn(x)| < |g(x)|+ L

2

This implies, (∀x ∈ K)(∀n ≥ N1) :

|gn(x)| > |g(x)| − L
2

> L− L
2 = L

2

Finally, since (gn)
K−→ g, there existsN2(ϵ) such that, for all x ∈ K and ∀n ≥ N2:

|gn(x)− g(x)| < ϵ · L
2

2

Choose N = max{N1, N2}. Then, for all x ∈ K and n ≥ N ,

∣∣∣ 1
gn(x)

− 1
g(x)

∣∣∣ = |gn(x)−g(x)|
|gn(x)||g(x)| <

ϵ
(
L2/2

)
(L2/2)

= ϵ

Thus,
�

1

gn

�
K−→ 1

g
.

[Abbott 6.2.10] This exercise and the next explore partial converses of the Con-
tinuous Limit Theorem. Assume that fn → f pointwise on [a, b] and the limit
function f is continuous on [a, b]. If each fn is increasing (but not necessarily
continuous), show that fn → f uniformly.

Proof.

Define the sequence of functions

gn(x) = fn(x) − f(x)

Fix x ∈ [a, b].

We have:
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lim
n→∞

gn(x) = lim
n→∞

fn(x)− lim
n→∞

f(x) = 0

Thus, gn(x) converges pointwise to the constant zero function g(x) = 0 on [a, b].
Moreover, eachgn(x) is increasing.

Pick an arbitrary ϵ > 0.

Since gn(a) → 0, there exists N1(ϵ, a) ∈ N, such that for all n ≥ N1, gn(a) ∈
(−ϵ, ϵ).

Since gn(b) → 0, there exists N2(ϵ, b) ∈ N, such that for all n ≥ N2,gn(b) ∈
(−ϵ, ϵ).

Let N = max{N1, N2}. Let x ∈ [a, b] be an arbitrary point.

Since a ≤ x ≤ b, gn(a) ≤ gn(x) ≤ gn(b). Thus, for all n ≥ N , gn(x) ∈ (−ϵ, ϵ).
Since x was arbitrary, this is true for all x ∈ [a, b].

Consequently,

(∀ϵ > 0)(∃N(ϵ, a, b) ∈ N)(∀n ≥ N)(∀x ∈ [a, b])(|fn(x)− f(x)| < ϵ)

Thus, fn converges uniformly to f on [a, b].

[Abbott 6.2.11] (Dini’s Theorem). Assume that fn → f pointwise on a com-
pact set K and assume that for each x ∈ K the sequence fn(x) is increasing.
Follow these steps to show that if fn and f are continuous on K, then the con-
vergence is uniform.

(a) Set gn = f − fn and translate the preceding hypotheses into statements
about the sequence (gn).

Proof.

We have: gn → g pointwise, where g(x) = 0 the constantly zero function on a
compact set K, and for each x ∈ K, the sequence (gn(x)) is decreasing.

Since both fn and f are continuous on K, gn is continuous onK.

(b) Let ϵ > 0 and define Kn = {x ∈ K : gn(x) ≥ ϵ}. Argue that K1 ⊇ K2 ⊇
K3 ⊇ . . . and use this observation to finish the argument.

[Abbott 6.3.1] Consider the sequence of functions defined by:

gn(x) =
xn

n
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(a) Show that (gn) converges uniformly on [0, 1] and find g = lim gn. Show that
g is differentiable and compute g′(x) for all x ∈ [0, 1].

Proof.

Define g as the constantly zero function:

g(x) = 0

Our claim is that gn converges uniformly on [0, 1] to g. Our claim is that:

|gn(x)− g(x)| < ϵ
xn

n < ϵ

We can strengthen the condition we wish to prove by replacing the LHS by its
upper bound. Since xn

n
≤ 1

n
, we are interested to prove:

1

n
< ϵ

Choose N >
1

ϵ
. Then, for all n ≥ N , 1

n
< ϵ. Consequently, (∀x ∈ [0, 1])(∀n ≥

N)(|gn(x)− g(x)| < ϵ). Thus, gn converges uniformly on [0, 1] to g.

The constantly zero function g is differentiable for all x ∈ [0, 1] and g′(x) = 0
for all x ∈ [0, 1].

(b) Now show that (g′n) converges on [0, 1]. Is the convergence uniform? Set
h = lim g′n and compare h and g′. Are they the same?

Proof.

We have:

g′n(x) = xn−1

Define h as:

h(x) =

¨
0 if 0 ≤ x < 1

1 if x = 1

g′n converges pointwise to h. The convergence is not uniform. Pick ϵ0 =
1

2
. Let

xn ∈
�
1

2
, 1

�
. We are interested to make :

xn−1 ≥ 1
2
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If we replace the LHS by its lower bound, we can strengthen the condition we
wish to prove. Since xn−1 ≥ xn, our claim is:

xn ≥ 1

2

So, we choose:

x ≥
�
1

2

�(1/n)

Hence,

(∃ϵ0 > 0)(∀N ∈ N)(∃xn ∈ [0, 1])(∃n ≥ N)(|g′n(xn)− h(xn)| ≥ ϵ0)

Consequently, g′n converges NOT uniformly on [0, 1] to h.

h and g′ are not the same.

[Abbott 6.3.2] Consider the sequence of functions :

hn(x) =

É
x2 +

1

n

(a) Compute the pointwise limit of (hn) and then prove that the convergence
is uniform on R.

Proof.

Fix x ∈ R. We know that, if lim an = a, then lim
√
an =

√
lim an =

√
a. Thus:

limn→∞ hn(x) = limn→∞
È

x2 + 1
n

=
È
limn→∞

(
x2 + 1

n

)
=
[
limn→∞ x2 + limn→∞

1
n

](1/2)
=
√
x2

= |x|

Consider the expression:
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|hn(x)− hm(x)| =
∣∣∣Èx2 + 1

n −
È
x2 + 1

m

∣∣∣
=
|(x2+ 1

n )−(x
2+ 1

m )|∣∣∣√x2+ 1
n+
√

x2+ 1
m

∣∣∣
=

| 1n− 1
m |√

x2+ 1
n+
√

x2+ 1
m

{isnon− negative}

≤ |
1
n− 1

m |
1√
n
+ 1√

m

{
∵ x2 ≥ 0

}
=

∣∣∣ 1√
n
− 1√

m

∣∣∣� 1√
n
+ 1√

m

�
�

1√
n
+ 1√

m

�

=
∣∣∣ 1√

n
− 1√

m

∣∣∣
Pick an arbitrary ϵ > 0. Since 1√

n
→ 0, and convergent sequences are Cauchy,

there exists N(ϵ) > 0, such that for all n > m ≥ N ,∣∣∣∣ 1√
n
− 1√

m

∣∣∣∣ < ϵ

Consequently, by Cauchy criterion for uniform convergence of a sequence of
functions, (hn) converges uniformly onR to h.

(b) Note that each hn is differentiable. Show that g(x) = limh′
n(x) exists for all

x and explain howwe can be certain that the convergence is not uniform on any
neighbourhood of zero.

Proof.

By Chain rule of differentiation, we have:

h′
n(x) =

xÈ
x2 + 1

n

Moreover,

limh′
n(x) = lim

n→∞

xÈ
x2 + 1

n

=
x

|x|

If x > 0, limh′
n(x) = 1. If x < 0, then limh′

n(x) = −1. Define:

h′(x) =

¨
1 if x > 0

−1 if x < 0

h′(x) is not defined at x = 0.

We are given that the sequence of functions (hn) that converge pointwise to h
and are differentiable on any neighbourhood of zero.
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By the Differentiable Limit Theorem, if (h′
n) converges uniformly on any neigh-

bourhood of zero to g, then g = h′.

By the contrapositive of the Differentiable Limit Theorem, since h′ is not de-
fined at x = 0, so h′ is not differentiable on any neighbourhood containing 0,
so it implies (h′

n) does NOT converge uniformly to h on any neighbourhood
containing zero.

[Abbott 6.3.3] Consider the sequence of functions

fn(x) =
x

1 + nx2

(a) Find the points onRwhere each fn(x) attains its maximum and minimum
value. Use this to prove that (fn) converges uniformly on R. What is the limit
function?

Proof.

We have:
f ′
n(x) =

(1+nx2)(1)−(x)(2nx)

(1+nx2)2

=
(1+nx2−2nx2)

(1+nx2)2

= 1−nx2

(1+nx2)2

f ′
n(x) attains a maxima/minima at the points :

x0 = − 1√
n
, x1 =

1√
n

We have:

fn(x0) = −
1

2
√
n
, fn(x1) =

1

2
√
n

The limit function f :

Firstly, fix x = 0. Then, (fn(x)) is the constant zero sequence (0, 0, 0, 0, . . . )
which converges to 0.

Next, assume that x ̸= 0. We have:

lim fn(x) = limn→∞
x

1+nx2

= limn→∞
(x/n)

(1/n)+x2

= 0
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Consequently, the limit function f is the constantly zero function f(x) = 0.

Uniform convergence to f :

Pick an arbitrary ϵ > 0.

We have:

|fn(x)− f(x)| =
∣∣∣ x
1+nx2

∣∣∣
≤ 1

2
√
n

¦
− 1

2
√
n
≤ fn(x) ≤ 1

2
√
n

©

Pick N >
1

4ϵ2
. Then, for all n ≥ N and for all x ∈ R, |fn(x) − f(x)| < ϵ.

Consequently, (fn) converges uniformly on R to f .

(b) Let f = lim fn. Compute f ′
n(x) and find all the values of x for which f ′(x) =

lim f ′
n(x).

Proof.

We have:

f ′
n(x) =

1− nx2

(1 + nx2)
2

Fix x ̸= 0. Then,

limn→∞ f ′
n(x) = lim n→∞

1−nx2

(1+nx2)2

= limn→∞
1
n2 − x2

n

( 1
n+x2)

2

= 0

If x = 0, then f ′
n(x) = 1, so lim

n→∞
f ′
n(x) = 1.

Also, since the limit function f is the constant zero function f(x) = 0, its deriva-
tive f ′(x) = 0.

Thus, f ′(x) = lim f ′
n(x) for all values of x except x = 0.

[Abbott 6.3.4] Let

hn(x) =
sin(nx)√

n
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Show that hn → 0 uniformly on R but that the sequence of derivatives (h′
n)

diverges for every x ∈ R.

Proof.

Since | sinnx| ≤ 1, we have:

|hn(x)− 0| ≤ 1√
n

If we pick N >
1

ϵ2
, then for all n ≥ N and for all x ∈ R, we have:

|hn(x)− 0| < ϵ

Thus, (hn) converges uniformly on R to the constantly zero function h(x) = 0.

By the familiar rules of differentiation,

h′
n(x) =

√
n cosnx

Now, h′(x) = 0.

If x = 0, clearly
√
n is a divergent sequence. If x is a multiple of π/2, then the

subsequence of even terms (h′
2, h

′
4, . . . ) is divergent, so the sequence is diver-

gent.

Fix x ∈ R, such that x ̸= 0 and x is not a multiple of π/2. Consequently, sinx ̸=
0.

We can show that cosnx is not a convergent sequence.

We proceed by contradiction. Let un = cosnx. Then, un+2 = cos(n+ 2)x.
Assume that (un) is a convergent sequence. Then, lim(un − un+2) = 0. We
have:

(un − un+2) = cosnx− cos(n+ 2)x
= 2 sin(n+ 1)x · sinx

Since lim(un − un+2) = 0, this implies that lim sin(n+ 1)x approaches zero
{since sinx ̸= 0}, which implies that lim sinnx = 0. But, with the addition
formula for since, we have:

sin(n+ 1)x = sinnx cosx+ cosnx sinx
lim sin(n+ 1)x = lim(sinnx cosx) + lim(cosnx sinx)

= lim cosnx
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So, both limnx = 0 and lim cosnx = 0. But, we know that:

sin2 nx+ cos2 nx = 1

Passing to limits on both sides, we have a contradiction. Hence, out initial as-
sumption is false. un = cosnx is not a convergent sequence.

[Abbott 6.3.5] Let

gn(x) =
nx+ x2

2n

and set g(x) = lim gn(x). Show that g is differentiable in two ways:

(a) Compute g(x) by algebraically taking the limit as n → ∞ and then find
g′(x).

Proof.

Fix x ∈ R. We have:

limn→∞ gn(x) = limn→∞
�
nx+x2

2n

�
= limn→∞

(
x+x2/n

2

)
=

limn→∞ x+limn→∞
x2

n

limn→∞ 2

= x
2

Thus, the limit function g(x) =
x

2
. The derivative of the limit function is:

g′(x) =
1

2

(b) Compute g′n(x) for each n ∈ N for each n ∈ N and show that the sequence
of derivatives (g′n) converges uniformly on every interval [−M,M ]. Use the
theorem 6.3.3 to conclude that g′(x) = lim g′n(x).

Proof.

Fix n ∈ N. By the familiar rules of differentiation:

g′n(x) =
1

2n
(n+ 2x) =

1

2
+

x

2n

We are interested to prove that g′n(x) converges uniformly on any bounded in-
terval [−M,M ] to the constant function h(x) =

1

2
.
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Pick an arbitrary ϵ > 0. We are interested to make the distance |g′n(x) − h(x)|
smaller than ϵ.

We have:
|g′n(x)− h(x)| =

∣∣ x
2n

∣∣
≤ M

2n

If we pickN >
M

2ϵ
, then for all n ≥ N , and for all x ∈ [−M,M ], |g′n(x)−g′(x)| <

ϵ.

Consequently, the sequence of the derivatives (g′n) converges uniformly on [−M,M ]

to the constant function h(x) = lim g′n(x) =
1

2
.

We find that the sequence of functions (gn) converge pointwise on the closed
interval [−M,M ] to g and are differentiable. Since (g′n) converges uniformly on
[−M,M ] to h, by the Differentiable Limit Theorem, it follows that lim g′n = h =
g′ on [−M,M ].

(c) Repeat parts (a) and (b) for the sequence fn(x) =
(
nx2 + 1

)
/(2n+ x).

Proof.

Pointwise convergence of fn:

Fix x ∈ R. We have:

limn→∞ fn(x) = limn→∞
nx2+1
2n+x

= limn→∞
(x2+1/n)
(2+x/n)

= x2

2

Let f(x) = x2

2
.

Uniform convergence of f ′
n on any bounded interval [−M,M ]:

Our claim is that the sequence of derivatives (f ′
n) converges uniformly on [−M,M ]

to g(x) = x.

By the familiar rules of differentiation:

f ′
n(x) = d

dx

�
nx2+1
2n+x

�
=

(2n+x)(2nx)−(nx2+1)(1)
(2n+x)2

= nx2+4n2x−1
(2n+x)2

We have:
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f ′
n(x)− x = nx2+4n2−1

(2n+x)2 − x

=
nx2+4n2x−1−x(4n2+4nx+x2)

(2n+x)2

= nx2+4n2x−1−4n2x−4nx2−x3

(2n+x)2

= −x3+3nx2+1
(2n+x)2

Pick an arbitrary ϵ > 0.

We have:

|f ′
n(x)− x| = |x

3 + 3nx2 + 1|
(2n+ x)2

Since x ∈ [−M,M ], we have:

(2n+ x)2 ≥ (2n−M)2

and

|x3 + 3nx2 + 1| ≤ |x3|+ |3nx2|+ 1 ≤M3 + 3nM2 + 1

Pick N1 > max

§
1

M2
,M

ª
. Then, for all n ≥ N1, since

n > M =⇒ nM2 > M3 =⇒ 3nM2 > M3 {M ∈ (0,∞)}

Also,
nM2 > 1

Thus,

|x3 + 3nx2 + 1| ≤M3 + 3nM2 + 1 ≤ 3nM2 + 3nM2 + nM2 = 7nM2

Since, M > 0, 2n > 2n−M . Consequently:

1

(2n)2
<

1

(2n−M)2

|f ′
n(x)− x| = |x

3 + 3nx2 + 1|
(2n+ x)2

≤ 7nM2

4n2
=

7M2

4n

Pick N2 >
7M2

4ϵ
. Then, for all n ≥ N2, the |f ′

n(x)− x| < ϵ.

197



Thus, a suitable response to the given ϵ-challenge is N = max{N1, N2}.

[Abbott 6.3.6] Provide an example or explain why the request is impossible.
Let’s take the domain of the functions to be all of R.

(a) A sequence (fn) of nowhere differentiable functions with fn → f uniformly
and f everywhere differentiable.

Proof.

Consider the sequence of functions (tn) defined by:

tn(x) =

¨
1
n if x /∈ Q

0 if x ∈ Q

tn(x) is nowhere continuous and hence nowhere differentiable. However, (tn)
converges uniformly on R to the constantly zero function t(x) = 0, which is
differentiable.

(b) A sequence (fn) of differentiable functions such that (f ′
n) converges uni-

formly but the original sequence (fn) does not converge for any x ∈ R.

Proof.

(c) A sequence (fn) of differentiable functions such that both (fn) and (f ′
n)

converge uniformly but f = lim fn is not differentiable at some point.

Proof.

This proposition is false. The sequence of functions (fn) converges pointwise to
f and are differentiable. Moreover,the sequence of the derivative functions (f ′

n)
converges uniformly onR. By the Differentiable Limit Theorem, lim f ′

n = f ′ for
all x ∈ R.

[Abbott 6.3.7]Use theMean Value Theorem to supply a proof for the Theorem
6.3.2. To get started, observe that the triangle inequality implies that, for any
x ∈ [a, b] andm,n ∈ N,

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0)|+ |fn(x0)− fm(x0)|

Proof.

Pick an arbitrary ϵ > 0.

Fix x ∈ [a, b] and consider the closed interval [x, x0] ([x0, x] if x0 < x).
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Since fn− fm is continuous on [x0, x] and differentiable on (x0, x), by the Mean
Value Theorem(MVT), there exists α ∈ (x, x0), such that:

|(fn(x)− fm(x))− (fn(x0)− fm(x0))| = |f ′
n(α)− f ′

m(α)| · |x− x0|
≤ |f ′

n(α)− f ′
m(α)| · |b− a|

Since (f ′
n) converges uniformly on [a, b], there exists N1 ∈ N such that for all

n > m ≥ N1 and for all x ∈ [a, b],

|f ′
n(x)− f ′

m(x)| < ϵ

2|b− a|

Since (fn(x0)) is convergent, by the Cauchy criterion for sequences of real num-
bers, there exists N2(x0, ϵ), such that for all n > m ≥ N2,

|fn(x0)− fm(x0)| <
ϵ

2

If we pick N = max{N1, N2}, then for all n > m ≥ N and for all x ∈ [a, b],

|fn(x)− fm(x)| < ϵ

Note that, neither N1 nor N2 are functions of x, so our choice of N works re-
gardless of what x is. This closes the proof.

[Abbott 6.4.1] Supply the details for the proof of theWeierstrassM-Test (Corol-
lary 6.4.5).

Proof.

Pick an arbitrary ϵ > 0.

We are given, that the infinite series
∞∑

n=1

Mn converges. By the Cauchy Criterion

for the convergence of an infinite series of real numbers, it follows that, there
exists N(ϵ), such that for all n > m ≥ N , we have:

|Mm+1 +Mm+2 + . . .+Mn| < ϵ
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Pick an arbitrary x ∈ A. For all n > m ≥ N , we have:

|fm+1(x) + fm+2(x) + . . .+ fn(x)| ≤ |fm+1(x)|+ |fm+2(x)|+ . . .+ |fn(x)|
≤Mm+1 +Mm+2 + . . .+Mn

= |Mm+1 +Mm+2 + . . .+Mn| {Mn > 0 ∀n ∈ N}
< ϵ

Since x was arbitrary, this is true for all x ∈ A.

Thus:

(∀ϵ > 0)(∃N(ϵ) ∈ N)(∀x ∈ A)(∀n > m ≥ N)(|fm+1(x) + . . .+ fn(x)| < ϵ)

By the Cauchy criterion for the uniform convergence of infinite series,
∞∑

n=1

fn

converges.

[Abbott 6.4.2] Decide whether each proposition is true or false, providing a
short justification or counterexample as appropriate.

(a) If
∞∑

n=1

gn converges uniformly, then (gn) converges uniformly to zero.

Proof.

This proposition is true.

We are given that
∞∑

n=1

gn converges uniformly.

Pick an arbitrary ϵ > 0.

By the Cauchy criterion for the uniform convergence of infinite series, there
exists N ∈ N(ϵ), such that for allm,n ≥ N and for all x ∈ A, we have:

|gm+1(x) + . . .+ gn(x)| < ϵ

Hence, for all n ≥ N and ∀x ∈ A, it follows that:

|gn(x)| < ϵ

By the definition of uniform convergence, the sequence of functions (gn) con-
verges uniformly to the constantly zero function g(x) = 0.
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(b) If 0 ≤ fn(x) ≤ gn(x) and
∞∑

n=1

gn converges uniformly, then
∞∑

n=1

fn converges

uniformly.

Proof.

This proposition is true.

We have for all m,n ∈ N and for all x ∈ A:

|fm+1(x) + . . .+ fn(x)| = fm+1(x) + . . .+ fn(x) {since fn(x) ≥ 0 ∀n ∈ N}
≤ gm+1(x) + . . .+ gn(x)
≤ |gm+1(x) + . . .+ gn(x)|

Pick an arbitrary ϵ > 0. There exists N(ϵ) ∈ N, such that for all x ∈ A and for
all n > m ≥ N , it follows that:

|fm+1(x) + . . .+ fn(x)| ≤ |gm+1(x) + . . .+ gn(x)| < ϵ

Consequently,
∞∑

n=1

fn converges uniformly.

(c) If
∞∑

n=1

fn converges uniformly onA, then there exists constantsMn such that

|fn(x)| ≤Mn for all x ∈ A and
∞∑

n=1

Mn converges.

Proof.

The converse of the Weierstrass M-Test is:

For all uniformly convergent series
∞∑

n=1

fn(x), (∃Mn) (|fn(x)| ≤Mn)∧

( ∞∑
n=1

Mn converges
)
.

We are interested to prove, that this proposition is false.

We are interested to show that there exists a uniformly convergent series
∞∑

n=1

fn(x)

such that theredoes not exist a sequence (Mn) such that the properties (|fn(x)| ≤

Mn) and
( ∞∑

n=1

Mn converges
)

are both true.

Consider the sequence of constant functions :
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fn(x) =
(−1)n

n

We know that,
∞∑

n=1

(−1)n

n
converges uniformly on R. For all sequences Mn

satisfying, |fn(x)| ≤Mn, we must have:

Mn ≥
1

n

But,
∞∑

n=1

1

n
is a divergent series. By the comparision test,

∞∑
n=1

Mn diverges.

[Abbott 6.4.3] (a) Show that:

g(x) =

∞∑
n=0

cos (2nx)

2n

is continuous on all of R.

Proof.

Since, (∃Mn) such that

|gn(x)| =
∣∣∣∣cos (2nx)2n

∣∣∣∣ ≤ 1

2n
= Mn

and
∞∑

n=1

Mn converges, by the Weierstrass M-Test,
∞∑

n=1

gn converges uniformly

on R.

Since each gn(x) is continuous on R, by the term-by-term Continuity theorem,
∞∑

n=1

gn(x) is continuous on R.

(b) The function gwas cited in section 5.4 as an example of a continuous nowhere
differentiable function. What happens if we try to use the theorem 6.4.3 to ex-
plore whether g is differentiable?

Proof.

Let

gn(x) =
cos (2nx)

2n
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So,

g′n(x) = − sin (2nx)

Since g is nowhere differentiable, by the contrapositive of the term-by-term dif-
ferentiability theorem, we have that:

If g is not differentiable on A, then either
∑

gn(x) converges NOT pointwise
for all x ∈ A, or

∑
g′n(x) converges NOT uniformly on A.

Since
∑

gn converges uniformly on R, the only possibility is that
∞∑

n=1

g′n =∑
sin (2nx) does not converge uniformly on R. We can actually prove this

result.

If the infinite series
∑

hn is uniformly convergent on A, it uniformly conver-
gent on S, (∀S ⊆ A).

If (∃S ∈ A), where
∑

hn converges NOT uniformly, then
∑

hn is not uni-
formly convergent on A.

Consider the point x0 =
π

3
. Then,

(g′n(x0)) = (− sin 2π/3,− sin 4π/3,− sin 8π/3,− sin 16π/3,− sin 32π/3, . . . )

=
�
−

√
3
2 ,

√
3
2 ,−

√
3
2 ,

√
3
2 , . . .

�
Thus, g′n(x0) is a divergent sequence. By the nth term test,

∑
g′n(x0) does not

converge pointwise at x0 = π/3. Consequently,
∑

g′n(x) does not converge
uniformly on any interval [a, b] containing x0 = π/3. So,

∑
g′n does not con-

verge uniformly on R.

[Abbott 6.4.4] Define:

g(x) =

∞∑
n=0

x2n

1 + x2n

Find the values of x where the series converges and show that we get a contin-
uous function on this set.

Proof.

Let x0 be a fixed point in (−1, 1). Then,

203



0 ≤ gn(x0) =
x2n
0

1 + x2n
0

≤ x2n
0

We know that,
∞∑

n=1

x2n
0 is a convergent series. Hence, by the comparison test

∞∑
n=1

x2n
0

1 + x2n
0

is a convergent series. Hence,
∞∑

n=1

gn(x) converges pointwise on

(−1, 1).

Let x belong to any compact interval [a, b] such that −1 < a < b < 1. Let
c = max{|a|, |b|}.

We have:

gn(x) =
x2n

1 + x2n
≤ x2n ≤ c2n

{
since x2n ≥ 0

}
Define Mn = c2n. Then,

∞∑
n=1

Mn =
1

1− c2

By the Weierstrass M -test, the infinite series
∞∑

n=1

x2n

1 + x2n
converges uniformly

on [a, b].

Since
∞∑

n=1

gn converges uniformly on [a, b] to g, and each gn is continuous on

[a, b], by the term-by-term continuity theorem, g is continuous on [a, b].

Let’s show that the radius of convergence does not exceed 1.

Assume that |x0| = 1. Let sk(x) be the sequence of partial sums of the infinite

series
∞∑

n=1

gn(x). We have:

sk(x0) =

k∑
n=1

gn(x0) =

k∑
n=1

1

2
=

k

2

We know that this is a divergent sequence. Hence,
∞∑

n=1

gn(x) does not converge

at x0 = 1.

204



Assume that |x0| > 1. We know that, if
∞∑

n=1

an converges, then (an) → 0. We

have:

lim
(x0)

2n

1 + (x0)2n
= lim

1

(1/x0)2n + 1
=

1

0 + 1
= 1

Thus,
∞∑

n=1

gn(x) does not converge for |x| > 1.

[Kaczor&Nowak 3.2.1] Find where the following series converges pointwise:

(a)
∞∑

n=1

1

1 + xn
, x ̸= 1.

Proof.

Case I. Fix x = x0 and assume that |x0| < 1. Then, −1 < x0 < 1. We have:

limn→∞ fn(x0) = limn→∞
1

1+xn
0

= 1
1+limn→∞ xn

0

= 1
1+0 = 1

We know that if
∞∑

n=1

an converges, then (an) → 0. Thus,
∞∑

n=1

fn(x) does not

converge for |x| < 1.

Case II. If x0 = −1, then fn(x0) is an unbounded sequence and hence diverges.

Case III. Assume that x0 > 1 or x0 < −1. If x0 > 1, then it follows that
0 <

1

x0
< 1. Moreover, if x0 < −1, then −1 <

1

x0
< 0. Consequently, we must

have −1 <
1

x0
< 1. We have:

0 < fn(x0) =
1

1 + xn
0

<
1

xn
0

= gn(x0)

Since
∞∑

n=1

1

xn
0

is a geometric series with 0 <

∣∣∣∣ 1x0

∣∣∣∣ < 1, it follows that the series

∞∑
n=1

gn(x0) is convergent. By the comparison test,
∞∑

n=1

fn(x) also converges for

|x| > 1.
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(b)
∞∑

n=1

xn

1 + xn
, x ̸= −1.

Proof.

Case I. Fix x = x0. Let’s quickly dispose off the case when |x0| > 1. We have:

lim fn(x0) = lim 1�
1
x0

�n
+1

= 1
0+1 = 1

We know that, if the infinite series
∞∑

n=1

an converges, then (an) → 0. Thus,

∞∑
n=1

fn(x) does not converge for |x0| > 1.

Case II. Also, if x0 = 1, then lim fn(x0) =
1

2
. Thus, fn(x0) does not converge

for x0 = 1.

Case III. Assume that 0 < x0 < 1. Since x0 > 0, xn
0 > 0 and thus 1 + xn

0 > 1.
Consequently,

0 < fn(x0) =
xn
0

1 + xn
0

< xn
0 = gn(x0)

We know that,
∞∑

n=1

gn(x0) is a convergent series. Hence, by the comparison test,

∞∑
n=1

fn(x0) converges for 0 < x0 < 1.

Case IV. If x0 = 0, the series converges to 0.

Case V. Now, assume that −1 < x0 < 0. We have:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣xn+1

0

xn
0

∣∣∣∣∣ ·
∣∣∣∣ 1 + xn

0

1 + xn+1
0

∣∣∣∣ = |x0| ·
∣∣∣∣ 1 + xn

0

1 + xn+1
0

∣∣∣∣
So,

lim

∣∣∣∣an+1

an

∣∣∣∣ = |x0| · lim
∣∣∣∣ 1 + xn

0

1 + xn+1
0

∣∣∣∣
Since lim|an| = | lim an|, we have:
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lim

∣∣∣∣an+1

an

∣∣∣∣ = |x0| ·
∣∣∣∣ 1 + limxn

0

1 + limxn+1
0

∣∣∣∣ = |x0| < 1

Hence, by the ratio test,
∞∑

n=1

an converges absolutely over −1 < x0 < 0.

(c)
∞∑

n=1

2n + xn

1 + 3nxn
, x ̸= −1

3

Proof.

Case I. Fix x = x0. Assume that x0 > 1. Then,

0 < fn(x0) =
2n + xn

0

1 + 3nxn
0

≤ 2n + xn
0

1 + 2nxn
0

=
2n + xn

0

2nxn
0

=
1

xn
0

+
1

2n

Since (1/x0) < 1, it follows that
∞∑

n=1

1

xn
0

+
1

2n
converges.

By the comparison test,
∞∑

n=1

fn(x0) converges.

Case II. Assume that .

[Abbott 6.4.5] (a) Prove that :

h(x) =

∞∑
n=1

xn

n2
= x+

x2

4
+

x3

9
+

x4

16
+ . . .

is continuous on [−1, 1].

Proof.

Assume that x ∈ [−1, 1]. We have:

|hn(x)| =
∣∣∣∣xn

n2

∣∣∣∣ ≤ 1

n2
, {since |x|n < 1}

Let Mn =
1

n2
. We know that,

∞∑
n=1

Mn is a convergent series. By the Weierstrass

M -Test,
∞∑

n=1

hn(x) converges uniformly on [−1, 1]. Further, since each hn(x) is

continuous on [−1, 1], by the term-by-term continuity theorem, h(x) is contin-
uous on [−1, 1].
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(b) The series

f(x) =

∞∑
n=1

xn

n
= x+

x2

2
+

x3

3
+

x4

4
+ . . .

converges for every x in the half-open interval [−1, 1) but does not converge
when x = 1. For a fixed x0 ∈ (−1, 1) explain howwe can still use theWeierstrass
M -Test to prove that f is continuous at x0.

Proof.

Let x0 be an arbitrary point in (−1, 1) and let c < 1 be such that the interval
(−1, c)

|fn(x0)| = |x0|n
n

≤ |x0|n

Define:

Mn = |x0|n

We know that,
∞∑

n=1

Mn converges, since |x0| < 1. Hence, by the Weierstrass M -

Test,
∞∑

n=1

fn converges uniformly at x0. Since each fn(x) is continuous at x0, by

the Term-by-term continuity theorem, f(x) is continuous at x0.

[Abbott 6.4.6] Let

f(x) =
1

x
− 1

x+ 1
+

1

x+ 2
− 1

x+ 3
+

1

x+ 4
− . . .

Show that f is defined for all x > 0. Is f continuous on (0,∞)? How about
differentiable?

Proof.

Well-definedness of f .

Define

fn(x) =
(−1)n

x+ n
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Then,

f(x) =

∞∑
n=0

fn(x)

Let x0 be an arbitrary point, such that x0 > 0. Fix x = x0.

We have:

1

x0
≥ 1

x0 + 1
≥ 1

x0 + 2
≥ . . . ≥ 0

Moreover,

lim
1

x0 + n
= 0

By the Alternating Series Test for convergence,
∞∑

n=0

fn(x) converges pointwise

on x > 0.

Continuity of f .

Let [a,∞) be any interval such that a > 0. Let us pair of the terms of f and
write:

f(x) =
�
1
x −

1
x+1

�
+
�

1
x+2 −

1
x+3

�
+
�

1
x+4 −

1
x+5

�
+ . . .

Infinite addition is associative, as long as we have conditional convergence.

Define:

gn(x) =
1

(x+ 2n)
− 1

(x+ 2n+ 1)
=

1

(x+ 2n)(x+ 2n+ 1)

Then,

f(x) =

∞∑
n=0

gn(x)

Now, g0(x) =
1

a(a+ 1)
= M0. Moreover,

0 ≤ gn(x) ≤
1

(2n)(2n+ 1)
≤ 1

4n2
= Mn
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for all n ≥ 1. Since
∞∑

n=0

Mn converges, by the Weierstrass M -Test,
∞∑

n=0

gn(x)

converges uniformly on [a,∞) for any a > 0.

Since each gn(x) is continuous for x > 0, by the Term-by-term continuity the-
orem, f(x) is continuous on [a,∞), where a > 0. Thus, f is continuous on
(0,∞).

Differentiability of f .

We have:

f ′
n(x) = (−1)n ·

�
− 1

(x+ n)2

�
=

(−1)n+1

(x+ n)2

Again let [a,∞) be an interval such that a > 0 is arbitrary. Now,

|f ′
0(x)| ≤

1

a2
= M0

and

|f ′
n(x)| ≤

1

n2
= Mn

Since
∞∑

n=1

Mn converges, by the Weierstrass M -Test,
∑

f ′
n is uniformly conver-

gent on [a,∞). Since each fn is differentiable, and
∑

fn(x) converges point-

wise on [a,∞), by the Term-by-Term differentiability theorem, f(x) =
∞∑

n=0

fn(x)

is differentiable and further f ′(x) =

∞∑
n=0

f ′
n(x).

[Abbott 6.4.7] Let

f(x) =

∞∑
k=1

sin kx

k3

(a) Show that f(x) is differentiable and the derivative f ′(x) is continuous.

Proof.

Let us recall that, the infinite series
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∞∑
n=1

1

np

converges if and only if p > 1. If p > 1, we have:

Consider the Cauchy series:

∞∑
n=0

2nb2n = b1 + 2b2 + 4b4 + . . .

which is:

∞∑
n=0

2n · 1

(2n)
p =

∞∑
n=0

�
1

2p−1

�n

The latter series converges if and only if 1

2p−1
< 1, that is 2p−1 > 1, whichmeans

p − 1 > 0 or p > 1. By the Cauchy condensation test, if the series
∞∑

n=0

2nb2n

converges, it implies that
∞∑

n=1

bn converges.

Uniform Convergence of fk(x).

We have:

0 ≤ |fk(x0)| =
∣∣∣∣ sin kxk3

∣∣∣∣ ≤ 1

k3
= Mk

We know that
∞∑
k=1

Mk converges and hence by the Weierstrass M -Test,
∞∑
k=1

fk

converges uniformly on R.

Uniform Convergence of f ′
k(x).

We have:

f ′
k(x) =

cos kx

k2

And,

0 ≤ |f ′
k(x)| =

∣∣∣∣cos kxk2

∣∣∣∣ ≤ 1

k2
= Ck
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We know that,
∞∑
k=1

Ck is convergent. Hence, by the Weierstrass M -Test,
∑

f ′
k

converges uniformly on R.

Since
∑

f ′
k converges uniformly on R,

∑
fk converges uniformly on R and

each fk is differentiable, by the term by term differentiability theorem, f(x) is
differentiable and further f ′(x) =

∑
f ′
k(x) for all x ∈ R.

Moreover, since each f ′
k is continuous on R, by the term-by-term continuity

theorem, f ′(x) =
∑

f ′
k(x) is continuous onR.

(b) Can we determine if f is twice-differentiable?

Proof.

We have:

f ′′
k (x) = −

sin kx

k

It is not possible to determine if f is twice differentiable.

[Abbott 6.4.8] Consider the function

f(x) =

∞∑
k=1

sin(x/k)

k

Where is f defined? Continuous? Differentiable? Twice-differentiable?

Proof.

Well-definedness.

Fix x = x0 and consider the absolute value series:

∞∑
k=1

∣∣∣∣ sin(x0/k)

k

∣∣∣∣
We have that:

0 ≤
∣∣∣∣ sin(x0/k)

k

∣∣∣∣ ≤ |x0/k|
k

=
|x0|
k2
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Since
∑ |x0|

k2
is a convergent series, by the comparision test,

∞∑
k=1

∣∣∣∣ sin(x0/k)

k

∣∣∣∣ is
convergent. By the Absolute convergence test,

∞∑
k=1

sin(x0/k)

k
also converges.

Consequently, f is defined onR.

Uniform Convergence and continuity.

Let x ∈ [−1, 1]. Define Mk as:

0 ≤
∣∣∣∣ sin(x/k)k

∣∣∣∣ ≤ |x/k|k
≤ 1

k2

Since
∑

Mk is a convergent series, by the WeierstrassM -Test,
∑

fk converges
uniformly on [−1, 1]. Since each fk is continuous on [−1, 1], by the term-by-term
continuity theorem, f is continuous on [−1, 1].

Differentiability.

We have:

f ′
k(x) =

cosx/k

k2

Define Ck as :

0 ≤
∣∣∣∣cosx/kk2

∣∣∣∣ ≤ 1

k2

Since
∑

Ck is convergent, by the Weierstrass M -Test,
∑

f ′
k is uniformly con-

vergent on R.
∑

fk is convergent pointwise on atleast one point in [−1, 1].
Each fk is differentiable onR. Hence, by the term-by-term differentiability the-
orem, f is differentiable on R and f ′(x) =

∑
f ′
k(x) for all x ∈ R. In turn, this

implies f is continuous onR.

Twice Differentiability.

We have:

f ′′
k (x) = −

sinx/k

k3

Define Dk as :
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0 ≤
∣∣∣∣− sinx/k

k3

∣∣∣∣ ≤ 1

k3

Since
∑

Dk is convergent, by the Weierstrass M -Test,
∑

f ′′
k is uniformly con-

vergent onR.
∑

f ′
k is convergent pointwise on atleast one point inR. Each f ′

k

is differentiable on R. Hence, by the term-by-term differentiability theorem, f
is twice-differentiable on R.

In fact, f is infinitely differentiable.

[Abbott 6.4.9] Let

h(x) =

∞∑
n=1

1

x2 + n2

(a) Show that h is a continuous function defined on all of R.

Proof.

Since x2 ≥ 0, we have that:

0 < hn(x) =
1

x2 + n2
≤ 1

n2
= Mn

By the Weierstrass M -Test, since
∑

Mn converges, it follows that
∑

hn con-
verges uniformly on R. Since each hn(x) is continuous on R, by the term-by-
term continuity theorem, h is continuous on R.

(b) Is h differentiable? If so, is the derivative function h′ continuous?

Proof.

We have:

h′
n(x) = −

2x

(x2 + n2)
2

Power Series.

It is time to put some mathematical teeth into our understanding of functions
expressed in the form of a power series; that is functions of the form:

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .
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The first order of business is to determine the points x ∈ R for which the result-
ing series on the right-hand side converges. This set certainly contains x = 0
and as the next result demonstrates it takes a very predictable form.

Theorem 6.5.1. If a power series
∞∑

n=1

anx
n converges at some point x0 ∈ R, then

it converges absolutely for any x satisfying |x| < |x0|.

Proof.

If
∞∑

n=0

anx
n
0 converges, then (anxn

0 )→ 0. Since convergent sequences are bounded,

(anx
n
0 ) is a boundd sequence. Let M > 0 and satisfy |anxn

0 | ≤M for all n ∈ N.
If x ∈ R satisfies |x| < |x0| then:

|anxn| = |anxn
0 | ·
∣∣∣∣ xx0

∣∣∣∣n ≤M

∣∣∣∣ xx0

∣∣∣∣n
But notice that:

∞∑
n=0

M

∣∣∣∣ xx0

∣∣∣∣n
is a geometric series with the ratio

∣∣∣∣ xx0

∣∣∣∣ < 1 and so it converges. By the Compar-

ison Test,
∞∑

n=0

anx
n converges absolutely. If a series converges absolutely, then

it also converges conditionally. Hence,
∞∑

n=0

anx
n converges for all |x| < |x0|.

The main implication of theorem 6.5.1 is that the set of points for which a given
power series converges must necessarily be {0}, R or a bounded interval cen-
tered around x = 0. Because of the strict inequality in theorem 6.5.1, there
is some ambiguity about the endpoints of the interval, and it is possible that
the set of convergent points may be of the form (−R,R), [−R,R), (−R,R] or
[−R,R].

The value ofR is referred to as the radius of convergence of a power series, and
it is customary to assignR the value 0 or∞ to represent the set {0} orR respec-
tively. Some of the standard devices for computing the radius of convergence
of a power series are explored in the exercises. Of more interest to us here,
is the properties of functions defined in this way. Are they continuous? Are
they differentiable? If so, can we differentiate the series term-by-term? What
happens at the endpoints?
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Establishing Uniform Convergence.

The positive answers to the preceding questions, and the userfulness of power
series in general, are largely due to the fact that they converge uniformly on
compact sets contained in their domain of convergent points. As we are about
to see, a complete proof of this fact requires a fairly delicate argument attributed
to the Norwegian mathematician Niels Henrik Abel. A significant amount of
progress, however, can be made with the Weierstrass M -Test.

Theorem 6.5.2. If a power series
∞∑

n=0

anx
n converges absolutely at a point x0,

then it converges uniformly on the closed interval [−c, c], where c = |x0|.

The proof is requested in Exercise 6.5.3.

Formany applications, theorem 6.5.2 is good enough. For instance, because any
x ∈ (−R,R) is contained in the interior of a closed interval [−c, c] ⊆ (−R,R), it
follows that if a power series is convergent on an open interval, then

(1) It converges absolutely on the closed interval [−c, c] by theorem 6.5.1.

(2) It follows that it converges uniformly on the closed interval [−c, c]

(3) By the term-by-term continuity theorem, it is continuous on [−c, c]

Since it is continuous for any closed interval in (−R,R), it is continuous on
(−R,R).

But, what happens if we know that a series converges at an endpoint of its inter-
val of convergence? Does the good behavior of the series on (−R,R) necessarily
extend to the endpointx = R?

If the convergence of the series at x = R is absolute, then we can again rely
on theorem 6.5.2, to conclude that the series converges uniformly on the set
[−R,R]. The remaining open question question is what happens if a series con-
verges conditionally at a point x = R. Wemay still use Theorem 6.5.1. to conclude
that we have pointwise convergence on the interval (−R,R], but more work is
needed to establish that we have uniform convergence on compact sets contain-
ing x = R.

Abel’s Theorem.

We should remark that if the power series g(x) =

∞∑
n=0

anx
n converges condi-

tionally at x = R, then it is possible for it to diverge at x = −R. As a counterex-
ample, let:
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gn(x) =
(−1)n

n
xn

∞∑
n=1

gn(x) converges at x = 1, but diverges at x = −1. To keep our attention

fixed on the convergent endpoint, we will prove uniform convergence on [0, R].
The first step in the argument is an estimate that should be compared to Abel’s
test for the convergence of series developed back in chapter 2. (Exercise 2.7.13).

Lemma 6.5.3 (Abel’s Lemma). Let bn satisfy b1 ≥ b2 ≥ b3 ≥ . . . ≥ 0 and
∞∑

n=1

an

be a series for which the partial sums are bounded. In other words, assume that
there exists A > 0 such that

|a1 + a2 + . . .+ an| ≤ A

for all n ∈ N. Then, for all n ∈ N, we have:

|a1b1 + a2b2 + . . .+ anbn| ≤ Ab1

Proof.

Let sn = a1 + a2 + . . .+ an. Using the summation-by-parts formula derived in
the exercise 2.7.12, we can write:

n∑
k=1

akbk = snbn+1 +

n∑
k=1

sk(bk − bk+1)

Thus,

|
∑n

k=1 akbk| = |snbn+1 +
∑n

k=1 sk(bk − bk+1)|
≤ |sn||bn+1|+ |

∑n
k=1 sk(bk − bk+1)| {Triangle Inequality}

≤ |sn||bn+1|+
∑n

k=1 |sk||(bk − bk+1)|
≤ Abn+1 +

∑n
k=1 A(bk − bk+1)

= Abn+1 + (Ab1 −Ab2 +Ab2 −Ab3 + . . .+Abn −Abn+1) {Telescopic Sum}
= Ab1

Hence the sequence of partial sums of the product series
∞∑

n=1

anbn is bounded.

It is worth observing that if A were an upper bound on the partial sums of∑
|an| (the absolute value series), then the proof of lemma 6.5.3 would be a
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simple exercise in the triangle inequality. The point of thematter is that because
we are only assuming conditional convergence, the triangle inequality is not
going to be of any use in proving Abel’s theorem, but we are now in possession
of an inequality we can use in its place.

Theorem 6.5.4 (Abel’s Theorem.) Let g(x) =
∞∑

n=0

anx
n be a power series that

converges at the point x = R > 0. Then, the series converges uniformly on the
interval [0, R]. A similar result holds if the series converges at x = −R.

Proof.

To set the stage for an application of lemma 6.5.3, we first write:

g(x) =

∞∑
n=0

anx
n =

∞∑
n=0

anR
n

�
xn

Rn

�

Let ϵ > 0. By the Cauchy Criterion for the Uniform Convergence of the series
(Theorem 6.4.4), we will be done, if we can produce an N such that for all
n > m ≥ N and for all x ∈ [0, R], we have:

|gm+1(x) + . . .+ gn(x)| < ϵ

that is:

∣∣∣∣am+1R
m+1

�
xm+1

Rm+1

�
+ . . .+ anR

n

�
xn

Rn

�∣∣∣∣ < ϵ (4)

Because we are assuming that
∞∑

n=1

anR
n converges, the Cauchy criterion for an

infinite series of real numbers implies that:

(∃N(ϵ) ∈ N)(∀n > m ≥ N)
(
|am+1R

m+1 + anR
n| < ϵ

2

)
Now, fix x ∈ [0, R] and fix the index m ∈ N.

Consider the partial sums of
∞∑

j=m+1

am+1R
m+1. The sequence of partial sums

is bounded by ϵ/2. Moreover,
�
xm+1

Rm+1

�
≥ . . . ≥

�
xn

Rn

�
≥ 0

form a non-negative monotonically decreasing sequence.
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Hence, applying Abel’s lemma, we have:

∣∣∣∣∣∣
n∑

k=m+1

am+1R
m+1

�
xm+1

Rm+1

�
+ . . .+ anR

n

�
xn

Rn

�∣∣∣∣∣∣ < ϵ

2
·
( x
R

)m+1

< ϵ

Since m ≥ N was arbitrary and x ∈ [0, R] was arbitrary, this holds true for all
n > m ≥ N and for all x ∈ [0, R].

Consequently, by the Cauchy criterion for the uniform convergence of series of

functions,
∞∑

n=0

anx
n converges uniformly on the interval [0, R].

The Success of the Power Series.

An economical way to summarize the conclusions of theorem 6.5.2 and Abel’s
theorem is with the following statement:

Theorem 6.5.5. If a power series converges pointwise on the set A ⊆ R, then it
converges uniformly on any compact set K ⊆ A.

Proof.

Let K ⊆ A be an arbitrary compact set in A. A compact set contains both it’s
maximum x1 and a minimum x0, which by the hypothesis must be in A. Since

the power series
∞∑

n=1

anx
n converges at x = x1, by the Abel’s theorem, the series

converges uniformly on [x0, x1]. Hence, it converges uniformly on K. Since K
was arbitrary, the series converges uniformly ∀K ⊆ A, where K is a compact
set.

Let c be an arbitrary point in the domain of convergence,A, of the series
∞∑

n=1

anx
n.

We can always construct a compact interval containing c. Hence, the power
series is uniformly convergent on this compact interval. By the term-by-term

continuity theorem, g(x) =

∞∑
n=1

anx
n is continuous on this compact interval

and therefore at c. Since c was arbitrary, g is continuous for all c ∈ A. Thus, a
power series is continuous at every point at which it converges.

To make an argument for differentiation, we would like to appeal to the Term-
by-Term differentiability theorem. However, this result has a more involved set

of hypotheses. In order to conclude that a power series
∞∑

n=0

anx
n is differen-

tiable, and that term-by-term differentiation is allowed, we need to know be-
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forehand that the differentiated series
∑

nanx
n−1 converges uniformly.

Theorem 6.5.6. If
∞∑

n=0

anx
n converges for all x ∈ (−R,R), then the differentiated

series
∞∑

n=1

nanx
n−1 converges at each x ∈ (−R,R) as well. Consequently, the

convergence is uniform on compact sets contained in (−R,R).

Proof.

Exercise 6.5.5.

We should point out that it is possible for a series to converge at an endpoint

x = R but for the differentiated series to diverge at this point. The series
∞∑

n=1

xn

n

has this property at x = −1. On the other hand, if the differentiated series does
converge at the point x = R, then Abel’s theorem applies and the convergence
of the differentiated series is uniform on compact sets that contain R.

With all pieces in place, we summarize the impressive conclusions of this sec-
tion.

Theorem 6.5.7. Assume that:

f(x) =

∞∑
n=0

anx
n

converges on an interval A ⊆ R. The function f is continuous on A and differ-
entiable on any open interval (−R,R) ⊆ A. The derivative is given by:

f ′(x) =
∞∑

n=1

nanx
n−1

Moreover, f is infinitely differentiable on (−R,R), and the successive deriva-
tives can be obtained by term-by-term differentiation of the appropriate series.

Proof.

The details of why f is continuous have already been discussed. Theorem 6.5.6
justifies that the differentiated series converges uniformly on any compact set
in (−R,R). Hence, by the Term-by-Term differentiability theorem, f is differ-

entiable and f ′(x) =

∞∑
n=1

nanx
n−1.
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A differentiated power series is a power series in it’s own right, and applying
theorem 6.5.6 implies that, although the series may no longer converge at a
particular end-point, the radius of convergence does not change. By induction
then, power series are differentiable an infinite number of times.

[Abbott 6.5.1] Consider the formula g defined by the power series

g(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− . . .

(a) Is g defined on (−1, 1)? Is it continuous on this set? Is g defined on (−1, 1]?
Is it continuous on this set? What happens on [−1, 1]? Can the power series for
g(x) possibly converge for any other points |x| > 1? Explain.

Proof.

Fix x0 ∈ (−1, 1). Define:

an =
xn
0

n

Then,
∞∑

n=1

(−1)n+1an is an alternating series. We have, a1 ≥ a2 ≥ . . . ≥ 0 and

(an) → 0. Hence, by the alternating series test,
∑

(−1)n+1an converges on
(−1, 1). Hence, g is defined on (−1, 1). Since a power series is continuous on
it’s domain of convergence, it is continuous on (−1, 1).

Since
∞∑

n=1

(−1)n+1

n
is convergent, g is defined at x = 1. Hence, g is continuous

on (−1, 1].

Since
∞∑

n=1

1

n
is divergent, g is not defined at x = −1.

The power series cannot converge for any other points |x| > 1. Consider an
arbitrary point x0, such that |x0| > 1. We have:

|yn| =
|x0|n

n
≥ |x0|n

|x0|n/2
≥ |x0|n/2

Consequently, (yn) =
(−1)n+1xn

0

n
is an unbounded and hence divergent se-

quence. So, (yn)does not converge to zero. Hence, by thenth term test
∞∑

n=1

(−1)n+1xn
0

n

is divergent. Since, x0 was arbitrary, this is true for all |x| > 1.
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(b) For what values of x is g′(x) defined? Find a formula for g′(x).

Proof.

By the theoremon the convergence of a power-series, if a power series converges
on A, it is continuous on A and differentiable on all (−R,R) ⊆ A. Thus, g′ is
defined on (−1, 1). Also, g′ is given by the term-by-term differentiation of g:

g′(x) =

∞∑
n=1

(−1)n−1xn−1 = 1− x+ x2 − x3 + . . .

[Abbott 6.5.2] Find suitable coefficients (an) so that the resulting power series∑
anx

n has the given properties, or explain why such a request is impossible.

(a) Converges for every value of x ∈ R.

Consider the power series for the function

f(x) = ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

The radius of convergence of this infinite series is R.

Fix x = x0. We have:

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

∣∣∣∣∣∣∣
(

xn+1
0

(n+1)!

)
�
xn
0

n!

�
∣∣∣∣∣∣∣ = lim

∣∣∣∣ x0

(n+ 1)

∣∣∣∣ = 0 = r < 1

Hence, by the ratio test,
∑ xn

0

n!
is a convergent series. Since x0 was arbitrary,

this must be true for all x ∈ R.

(b) Diverges for every value of x ∈ R.

Proof.

This request is impossible. Any power series converges at x = 0.

(c) Converges absolutely for all x ∈ [−1, 1] and diverges off this set.

Proof.

Consider the series
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g(x) =

∞∑
n=1

xn

n2

This power series converges at 1. Moreover, if x = −1:

0 ≤ |(−1)
n|

n2
≤ 1

n2

Hence, the series converges absolutely at x = 1 and x = −1.

If a power series converges at one of the end-points, x = 1, it converges abso-
lutely for all |x| < 1. Thus, it converges for all x ∈ [−1, 1].

The above power series diverges for |x| > 1. Fix |x0| > 1. Then,

|x0|n

n2
≥ n3

n2
= n

Consequently, the sequence
�
xn
0

n2

�
is unbounded. Unbounded sequences are

divergent. So, it does not converge to zero. Hence, by the nth term test, it di-
verges for all |x| > 1.

(d) Converges conditionally at x = −1 and converges absolutely at x = 1.

This request is impossible.

We are given that
∞∑

n=1

anx
n is conditionally convergent at x = −1. Hence, it is

convergent at x = −1, but not absolutely convergent. So,
∞∑

n=1

|an(−1)n| is not

convergent. That is,
∞∑

n=1

|an| is not convergent. So,
∞∑

n=1

anx
n is not absolutely

convergent at x = 1.

(e) Converges conditionally at both x = −1 and x = 1.

Consider the series

∞∑
n=1

(−1)nx
2n

n

The series converges conditionally at both x = −1 and x = 1.

[Abbott 6.5.3] Use the Weierstrass M -Test to prove the theorem 6.5.2.
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Theorem. If a power series converges absolutely at a point x0, it converges uni-
formly on the interval [−c, c]where c = |x0|.

Proof.

Define

f(x) =

∞∑
n=1

fn(x) =

∞∑
n=1

anx
n

Consider x ∈ [−|x0|, |x0|]. Then, |x| ≤ |x0|. The power series of f(x) converges

absolutely at x = x0. Thus,
∞∑

n=1

|anxn
0 | is convergent. We have:

0 ≤ |fn(x)| = |anxn| = |an| · |x|n ≤ |an| · |x0|n = Mn

Since
∞∑

n=1

Mn =

∞∑
n=1

|anxn
0 | is convergent, by the Weierstrass M -Test, it follows

that
∞∑

n=1

fn(x) converges uniformly for all x ∈ [−c, c]where c = |x0|.

[Abbott 6.5.4] (Term-by-termAnti-differentiation). Assume that f(x) =
∞∑

n=0

anx
n

converges on (−R,R).

(a) Show that:

F (x) =

∞∑
n=0

an
n+ 1

xn+1

is defined on (−R,R) and satisfies F ′(x) = f(x).

Proof.

Fix x0 ∈ (−R,R). Let δ0 =
R− |x0|

2
. Then,

∞∑
n=0

anxn converges at the point

c = x0 + δ0. Thus,
∞∑

n=0

anxn converges absolutely for all |x| < |c|. Hence,

∞∑
n=0

anxn converges absolutely at x0.

Define
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un = anx
n
0

Then,
∞∑

n=0

|un| is a convergent series.

Define

vn =
x0

n+ 1

Then,

|v0| ≥ |v1| ≥ |v2| ≥ . . . ≥ 0

By Abel’s test of convergence for an infinite series of real numbers, the product

series
∞∑

n=0

unvn converges absolutely at x0. Since x0 was arbitrary, this must be

true for all x ∈ (−R,R).

If a power series F (x) =

∞∑
n=0

Fn(x) converges on A, then it is continuous on A

and differentiable on all intervals (−R,R) ⊆ A. And, further F ′(x) is given by
the term-by-term differentiation of F (x). Thus,

F ′(x) =

∞∑
n=0

anx
n = f(x)

(b) Anti-derivatives are not unique. If g is an arbitrary function satisfying
g′(x) = f(x) on (−R,R), find a power series representation for g.

[Abbott 6.5.5] (a) If s satisfies 0 < s < 1, show that nsn−1 is bounded for all
n ≥ 1.

Proof.

Let C =
1

s
. Then, C > 1. Consider:

lim
n→∞

nsn−1 = lim
n→∞

n

Cn−1

This is of the form ∞
∞

. Applying the L’hopital’s rule:

lim
n→∞

nsn−1 = lim
n→∞

n

Cn−1
= lim

n→∞

1

Cn−1 logC
= 0
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This is also apparent by the fact, that an exponential term grows much faster
than a polynomial term.

Since convergent sequences are bounded, it implies that nsn−1 is a bounded
sequence.

(b) Given an arbitrary x ∈ (−R,R), pick t to satisfy |x| < t < R. Use this start
to constuct a proof for the theorem 6.5.6.

Proof.

Let x ∈ (−R,R) be arbitrary. We can always pick t such that 0 ≤ |x| < t < R.

Define

fn(x) = nanx
n−1

We have:

0 ≤ |fn(x)| = |nanxn−1| ≤ n ·
� |x|

t

�n−1

· |an|tn−1

Since 0 < |x|/t < 1, the quantity n(|x|/t)n−1 is bounded. So, we can write:

0 ≤ |fn(x)| = |nanxn−1| ≤M · |an|tn−1

Moreover, since
∑

anx
n is convergent for all x ∈ (−R,R) it is absolutely con-

vergent at t. So,
∞∑

n=1

|an|tn is a convergent series.

From the properties of the infinite series for real numbers, if
∞∑

n=1

ak = A, then

∞∑
n=1

cak = cA. Consequently, for a fixed t, the seriesM
∞∑

n=1

|an|tn

t
= M

∞∑
n=1

|an|tn−1

is also convergent.

By the comparison test,
∞∑

n=1

|nanxn−1| is convergent.

As x was arbitrary,
∞∑

n=1

nanx
n−1 is absolutely convergent for all x ∈ (−R,R).

[Abbott 6.5.6] Previous work on the geometric series justifies the formula:
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1

1− x
= 1 + x+ x2 + x3 + . . . , for all |x| < 1

Use the results about the power series proved in this section to find values for
∞∑

n=1

n

2n
and

∞∑
n=1

n2

2n
. The discussion in section 6.1 might be helpful.

Proof.

The power series

f(x) =
∞∑

n=1

fn(x) =

∞∑
n=1

anx
n

is continuous on its domain of convergenceA and it is differentiable on all open
intervals (−R,R) ⊆ A. Moreover, the derivative of the power series is given by
the differentiated series:

f ′(x) =

∞∑
n=1

f ′
n(x) =

∞∑
n=1

anx
n−1

Let

g(x) =
1

1− x
=

∞∑
n=1

xn

where |x| < 1.

Then,

g′(x) =
1

(1− x)2
=

∞∑
n=1

nxn−1

Multiplying both sides by x, we have

x

(1− x)2
=

∞∑
n=1

nxn

This is also a power serieswith the same domain of convergence. The derivative
of this power series is given by:
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(1−x)2+x·2(1−x)
(1−x)4 =

∑∞
n=1 n

2xn−1

(1−x)+2x
(1−x)3 = 1+x

(1−x)3 =
∑∞

n=1 n
2xn−1

x(1+x)
(1−x)3 =

∑∞
n=1 n

2xn

Hence,

∞∑
n=1

n

2n
=

(1/2)

(1− (1/2))2
=

(1/2)

(1/4)
= 2

and

∞∑
n=1

n2

2n
=

(1/2)(1 + 1/2)

(1− 1/2)3
=

1

2
· 3
2
· 8 = 6

[Abbott 6.5.7] Let
∑

anx
n be a power series with an ̸= 0, and assume that

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists.

(a) Show that if L ̸= 0, then the series converges for all x in (−1/L, 1/L). (The
advice in exercise 2.7.9 may be helpful).

Proof.

Fix x0 ∈ (−1/L, 1/L) be an arbitrary point.

The absolute value ratio of the successive terms of the power series at the point
x0 is given by:

∣∣∣∣∣an+1x
n+1
0

anxn
0

∣∣∣∣∣ =
∣∣∣∣an+1

an

∣∣∣∣ · |x0|

Passing to the limits, as n→∞, we have:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ · |x0| = L · |x0| < 1

If L ̸= 0, then 0 < L · |x0| = r < 1.

By the ratio test for the convergence of an infinite series of real numbers,
∞∑

n=1

anx
n
0
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converges. Since, x0 was arbitrary, this holds true for all x ∈ (−1/L, 1/L). Con-

sequently,
∞∑

n=1

anx
n converges.

(b) Show that if L = 0, then the series converges for all x ∈ R.

Proof.

We are given that L = 0. So, the lim
∣∣∣∣an+1

an

∣∣∣∣ = 0.

Fix an arbitrary x = x0 and consider the series
∑

anx
n
0 . Then, we have:

lim

∣∣∣∣∣an+1x
n+1
0

anxn
0

∣∣∣∣∣ = |x0| lim
∣∣∣∣an+1

an

∣∣∣∣ = |x0| · L = 0 < 1

Hence, by the ratio test,
∑

anx
n
0 is a convergent series.

Since x = x0 was arbitrary,
∑

anx
n converges for all x ∈ R.

(c) Show that (a) and (b) continue to hold if L is replaced by the limit

L′ = lim sn where sn = sup

§∣∣∣∣ak+1

ak

∣∣∣∣ : k ≥ n

ª

Proof.

Fix x0 ∈
�
− 1

L′ ,
1

L′

�
.

Define

sn = sup

¨∣∣∣∣∣ak+1x
k+1
0

akxk
0

∣∣∣∣∣ : k ≥ n

«
= sup

§∣∣∣∣ak+1

ak

∣∣∣∣ |x0| : k ≥ n

ª
= |x0|·sup

§∣∣∣∣ak+1

ak

∣∣∣∣ : k ≥ n

ª

and
rn =

∣∣∣∣an+1

an

∣∣∣∣ |x0|

We know that:

rn ≤ sn

229



[Abbott 6.5.8] (a) Show that power series representations are unique. If we
have:

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n

for all x in an interval (−R,R), prove that an = bn for all n = 0, 1, 2, ...

Proof.

Define:

f(x) =

∞∑
n=0

fn(x) =

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n

Subtracting the two power series, we have:

∞∑
n=0

anx
n −

∞∑
n=0

bnx
n = 0

Thus, the power series

∞∑
n=0

(an − bn)x
n = 0

converges to the constantly zero function g(x) = 0 for all x ∈ (−R,R).

At the point x = 0, we must have:

(a0 − b0) = 0

The differentiated series also converges to the constantly zero function g(x) = 0
for all x ∈ (−R,R). Hence,

∞∑
n=1

n(an − bn)x
n−1 = 0

At the point x = 0, we must have:

(a1 − b1) = 0
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Again, it’s differentiated series converges to the constantly zero function g(x) =
0 for all x ∈ (−R,R). Hence,

∞∑
n=2

n(n− 1)(an − bn)x
n−2 = 0

At the point x = 0, we have:

2! (a2 − b2) = 0

Continuing in this fashion, an = bn ∀n ∈ N.

(b) Let f(x) =
∞∑

n=0

anx
n converge on (−R,R) and assume that f ′(x) = f(x) for

all x ∈ (−R,R) and f(0) = 1. Deduce the values of an.

Proof.

We have:

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + . . .

and
f ′(x) =

∞∑
n=1

nanx
n−1 = a1 + 2a2x+ 3a3x

2 + . . .

Clearly, since f(x) = f ′(x) for all x ∈ (−R,R), we must have:

a0 = 1,

a1 = a0 = 1,

a2 =
a1
2

=
1

2!
,

a3 =
a2
3

=
1

3!
,

an =
1

n!

Moreover, since f(0) = 1, it follows that a0 = 1. Hence,

f(x) = 1 + x+
x2

2!
+

x3

3!
+ . . .
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[Abbott 6.5.9] Review the definitions and results from secti on 2.8 concern-
ing the products of series and Cauchy products in particular. At the end of
section 2.9, we mentioned the following result: if both

∑
an and

∑
bn con-

verge conditionally to A and B respectively, then it is possible for the Cauchy
product,

∑
dn where dn = a0bn + a1bn−1 + . . .+ anb0

to diverge. However, if
∑

dn does converge, then it must converge to AB. To
prove this, set

f(x) =
∑

anx
n, g(x) =

∑
bnx

n and h(x) =
∑

dnx
n

Use Abel’s theorem and the result in exercise 2.8.7 to establish this result.

Proof.

[Abbott 6.6.1] The derivation in the example 6.6.1 shows the Taylor’s series
for arctan(x) is valid for all x ∈ (−1, 1). Notice, however, that the series also
converges when x = 1. Assuming that arctan(x) is continuous, explain why
the value of the series at x = 1 must necessarily be arctan(1). What interesting
identity do we get in this case?

Proof.

Let

∞∑
n=0

fn(x) = x− x3

3
+

x5

5
− x7

7
+ . . .

At x = 1, the series

1− 1

3
+

1

5
− 1

7
+ . . .

is convergent by the alternating series test. Thus,
∞∑

n=0

fn(x) is well-defined at

x = 1.

Both the functions
∞∑

n=0

fn(x) and arctan(x) agree for all values of x ∈ (−1, 1).
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Since a power series continuous on its interval of convergence, it follows that
∞∑

n=0

fn(x) is continuous on (−1, 1].

Passing to the limits on both sides, we may write:

lim
x→1

∞∑
n=0

fn(x) = lim
x→1

arctanx

Since arctan(x) is continuous at 1, we get the following identity:

1− 1

3
+

1

5
− 1

7
+ . . . = arctan(1) =

π

4

[Abbott 6.6.2] Starting from one of the previously generated series in this sec-
tion, use the manipulations similar to those in example 6.6.1 to find the Taylor
series representations for each of the following functions. For precisely what
values of x is each series representation valid?

(a) x cos
(
x2
)
.

Proof.

Consider the Taylor’s series expansion for sin(x). We have:

sin(x) =
∑

anx
n = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

We know, by the Lagrange’s remainder theorem, that the above Taylor’s series
converges uniformly to sin(x) over any interval of the form [−R,R].

By Theorem 6.5.7, the above power series is continuous onR and infinitely dif-
ferentiable on R.

We have:

sin
(
x2
)
= x2 − x6

3!
+

x10

5!
− x14

7!
+ . . .

Applying the theorem on the continuity and differentiability of a power se-
ries(Theorem 6.5.7) to the above result, we have:

2x cos
(
x2
)
= 2x− 6x5

3!
+

10x9

5!
− 14x13

7!
+ . . .

Thus,
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x cos
(
x2
)
= x− x5

2!
+

x9

4!
− x13

6!
+

x17

8!
− . . .

(b) x/
(
1 + 4x2

)2.
Proof.

We know that:

1

1− x
= 1 + x+ x2 + x3 + x4 . . .

for all |x| < 1.

Replacing x by −4x2, we get:

1

1 + 4x2
= 1− 4x2 + 16x4 − 64x6 + 256x8 + . . .

By the theorem on continuity and differentiation of a power series (Theorem
6.5.7), the above power series is continuous on (−1, 1) and differentiable on
(−1, 1).

We have:

− 8x

(1 + 4x2)
2 = −8x+ 64x3 − 384x5 + (256)(8)x7 − . . .

So,

x

(1 + 4x2)
2 = x− 8x3 + 48x5 − 256x7 + . . .

for all x ∈ (−1, 1).

(c) log
(
1 + x2

)
Proof.

We know that:

1

1− x
= 1 + x+ x2 + x3 + . . .

for all |x| < 1.

By the Term-by-Term Anti-differentiation theorem, we have:
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∫
dx

1− x
= − ln(1− x) = x+

x2

2
+

x3

3
+

x4

4
+ . . .

for all |x| < 1.

Thus,

ln
(
1 + x2

)
= −

�
−x2 +

x4

2
− x6

3
+

x8

8
− . . .

�
= x2 − x4

2
+

x6

3
− . . .

[Abbott 6.6.3] Derive the formula for the Taylor coefficients given in the theo-
rem 6.6.2.

Proof.

Let f(x) have the power series representation:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . .+ anx

n + . . .

for all x belonging to some neighborhood (−R,R) centered at zero.

Hence, at x = 0, we have:

a0 = f(0)

By the theoremon continuity and differentiability of the power series (Theorem
6.5.7), we have:

f ′(x) = a1 + 2a2x+ 3a3x
2 + . . .+ nanx

n−1 + . . .

for all x ∈ (−R,R).

Hence, at x = 0, we have:

a1 = f ′(0)

Since f ′(x) is in its own right a power series, by the theorem on continuity and
differentiability of the power series (Theorem 6.5.7), we have:

f ′′(x) = (2 · 1)a2 + (3 · 2)a3x+ . . .+ n · (n− 1) · anxn−2 + . . .
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for all x ∈ (−R,R).

Hence, at x = 0, we have:

a2 =
f (2)(0)

2!

Since f ′′(x) is in its own right a power series, by the theorem on continuity and
differentiability of the power series (Theorem 6.5.7), we have:

f (3)(x) = (3 · 2 · 1)a3 + . . .+ n · (n− 1) · (n− 2) · anxn−3 + . . .

for all x ∈ (−R,R).

Hence, at x = 0, we have:

a3 =
f (3)(0)

3!

Continuing in this fashion, we have that:

an =
f (n)(0)

n!

This closes the proof.

[Abbott 6.6.4] Explain how Lagrange’s remainder theorem can be modified to
prove that

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = ln(2)

Proof.

We can modify Lagrange’s remainder theorem, such that the result holds, if f
is (N + 1) times differentiable on the interval [0, R].

Thus, there exists 0 < c < x ≤ R, such that:

EN (x) =
f (N+1)(c)

(N + 1)!
xN+1

We have:
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EN (x) =
(−1)NN !

(1 + c)N+1(N + 1)!
xN+1

|EN (x)| ≤ 1

(N + 1)

{ since 1 + c ≥ 1, x ≤ 1}

Thus, the sequence of partial sums of the Taylor’s series (SN (x))∞N=0 converges
uniformly to log(1 + x) on the interval [0, 1].

Consequently,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = log 2

[Abbott 6.6.5] (a) Generate Taylor’s coefficients for the exponential function
f(x) = ex and then prove that the corresponding Taylor’s series converges uni-
formly to ex on any interval of the form [−R,R].

Proof.

We have:

f (n)(x) = ex

By the Taylor’s formula:

an =
f (n)(0)

n!
=

1

n!

So, the Taylor’s series for ex is:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . .

Let

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

(n+ 1)
= 0

Since L = 0, by the ratio test, the power series
∞∑

n=0

xn

n!
converges absolutely for

all x ∈ R.

237



Pick an arbitrary point x = R. Then, by theorem 6.5.2, it converges uniformly
on the closed interval [−R,R].

(b) Verify the fomula f ′(x) = ex.

Since the power series converges for all x ∈ R, by the theorem on continuity
and differentiability of power series, we have:

f ′(x) = 1 +
2x

2!
+

3x2

3!
+

4x3

4!
+ . . . = 1 + x+

x2

2!
+

x3

3!
+ . . . = ex

(c) Use a substitution to generate the series for e−x, and then informally calcu-
late ex · e−x by multiplying together the two series and collecting the common
powers of x.

Proof.

We have:

e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− . . .

Multiplying the series for e−x with ex, we get:

e−x · ex =
�
1− x+ x2

2! −
x3

3! + . . .
� �

1 + x+ x2

2! +
x3

3! + . . .
�

= 1 + x− x+ x2

2! +
x2

2! − x2 + x3

3! −
x3

3! −
x3

2! +
x3

2! + . . .
= 1

[Abbott 6.6.6] Review the proof that g′(0) = 0 for the function:

g(x) =

¨
e−1/x2 for x ̸= 0

0 for x = 0

introduced at the end of this section.

(a) Compute g′(x) for x ̸= 0. Then use the definition of the derivative to find
g′′(0).

Proof.

We have:

g′(x) =
2

x3
e−1/x2

By definition,
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g′′(0) = limx→0
g′(x)−g′(0)

x−0

= limx→0
g′(x)
x

= limx→0

1
x4

e1/x2

= limx→0
x3·(−4/x5)
(−2e1/x2)

{L’Hospital’s rule,∞/∞}

= 2 limx→0

1
x2

e1/x2

= 2 limx→0
− 2

x3

− 2
x3 e1/x2 {L’Hospital’s rule,∞/∞}

= 2 limx→0
1

e1/x2

= 0

(b) Compute g′′(x) and g′′′(x) for x ̸= 0. Use these observations and invent
whatever notation is needed to give a general description for the nth derivative
g(n)(x) at points different from zero.

Proof.

If x ̸= 0, we have:

g′(x) = 2e−1/x2 ( 1
x3

)
g′′(x) = 2

[(
x−3

)′ �
e−1/x2

�
+
(
x−3

) �
e−1/x2

�′]
= 2e−1/x2 [− 3

x4 + 2
x6

]
g′′′(x) = 2

[�
e−1/x2

�′
·
(
− 3

x4 + 2
x6

)
+ e−1/x2 (− 3

x4 + 2
x6

)′]
= 2e−1/x2 [ 2

x3

(
− 3

x4 + 2
x6

)
+
(
12
x5 − 12

x7

)]
= 2e−1/x2 [ 12

x5 − 12
x7 − 6

x7 + 4
x9

]
Our propsition is that, for all x ̸= 0, and for all n ∈ N, g(n)(x) = e−1/x2

· p(1/x),
where p is some polynomial in 1/x .

(c) Construct a general argument for why g(n)(0) = 0 for all n ∈ N.

Proof.

We proceed by mathematical induction. We know that, g(0) = 0, g′(0) = 0,
g′′(0) = 0.

Assume that g(n)(0) = 0.

Our claim is that g(n+1)(0) = 0.

We have:
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g(n+1)(0) = limx→0
g(n)(x)−g(n)(0)

x

= limx→0
p(1/x)

xe1/x2

Assume that bN (x) =
1

xN
. Then,

b(N+1)(0) = limx→0
( 1

xN+1 )
e1/x2

= limx→0

(N+1)

xN+2

2
x3 e1/x2 {L’hopital’s rule}

= (N+1)
2 limx→0

1

xN−1

e1/x2

= (N+1)
2 limx→0

(N−1)

xN

2
x3 e1/x2 {L’hopital’s rule}

= (N+1)(N−1)
22 limx→0

1

xN−3

e1/x2

IfN is even, then the limit on the RHSwill be eventually reduced to lim
x→0

1
x

e1/x2 =

1

2
lim
x→0

x · 1

e1/x2 = 0. If N is odd, then the limit on the RHS will be eventually

reduced to lim
x→0

1

e1/x2 = 0.

Any polynomial in (1/x) is a finite linear combination of the basis functions
(1/x)N and hence the derivative g(N+1)(0) = 0.

By the principle of mathematical induction, g(n)(0) = 0 for all n ∈ N.

[Abbott 6.6.7] Find an example of each of the following or explain why no such
function exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor’s series
that converges to g(x) only for x ∈ (−1, 1).

Proof.

Consider the infinite series :

1 + x+ x2 + x3 + . . .

which converges to the function:

g(x) =
1

1− x

for all |x| < 1.
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Pick an arbitrary x0 ≥ 1. The nth term of the series is an = xn
0 . Since the

sequence (an) does NOT converge to zero, the infinite series
∞∑

n=1

an =

∞∑
n=1

xn
0

diverges. Since x0 was arbitrary, this applies for all |x| ≥ 1.

Since g(x) has a power series representation, it is infinitely differentiable on
(−1, 1).

(b) An infinitely differentiable function h(x) with the same Taylor’s series as
sin(x) but such that h(x) ̸= sin(x) for all x ̸= 0.

Proof.

This request is impossible. We proceed by contradiction. Assume that there
exists h(x) having the same Taylor’s series as sin(x), but the power series does
NOT converge to sinx for all x ̸= 0.

We have:

h(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

for all x ∈ R.

Since the power series is infinitely differentiable for all (−R,R) ⊆ R, we can
write:

h′(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . = cos(x)

By the Term-By-Term antidifferentiation theorem,

g(x) = x− x3

3!
+

x5

5!
− . . . = sin(x) + c

satisfies g′(x) = h′(x)

(c) An infinitely differentiable function f(x) on all of R with a Taylor’s series
that converges to f(x) if and only if x ≤ 0.

Proof.

[Abbott 7.2.1] Let f be a bounded function on [a, b] and let P be an arbitrary
partition of [a, b]. First explain why L(f, P ) ≤ U(f)? Now, prove Lemma 7.2.6.

Proof.
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LetP be the set of all partitions of the closed interval [a, b]. Fix P ∈ P . We know
that:

L(f, P ) ≤ U(f,Q)

(∀Q ∈ P).

Since {U(f,Q) : Q ∈ P} is bounded below, by the axiom of completeness,
inf{U(f,Q) : Q ∈ P} exists. We can easily construct a sequence of partitions
Q1 ⊆ Q2 ⊆ Q3 ⊆ . . . , such that:

limU(f,Qn) = inf{U(f,Q) : Q ∈ P} = U(f)

By definition, U(f) is a limit point of the set {U(f,Q) : Q ∈ P}.

By the Order Limit Theorem:

L(f, P ) ≤ lim
n→∞

U(f,Qn) = U(f)

Claim. For any bounded function f on [a, b], it is always the case that U(f) ≥
L(f).

Proof.

We know that, the set {L(f, P ) : P ∈ P} is bounded above. By the Axiom
of Completeness(AoC), sup{L(f, P ) : P ∈ P} = L(f) exists. We can easily
construct a sequence of partitions P1 ⊆ P2 ⊆ P3 ⊆ . . . , such that (L(f, Pn)) is a
monotonically increasing sequence and

limL(f, Pn) = L(f)

By the Order Limit Theorem:

L(f) ≤ U(f)

This closes the proof.

[Abbott 7.2.2] Consider f(x) = 1/x over the interval [1, 4]. Let P be the parti-
tion consisting of the points {1, 3/2, 2, 4}.

(a) Compute L(f, P ), U(f, P ) and U(f, P )− L(f, P ).

Proof.
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We have:

L(f, P ) =
∑

mk∆xk =
2

3
· 1
2
+

1

2
· 1
2
+

1

4
· 2 =

1

3
+

1

4
+

1

2
=

3

4
+

1

3
=

13

12

U(f, P ) =
∑

Mk∆xk =
1

2
+

2

3
· 1
2
+

1

2
· 2 =

1

2
+

1

3
+ 1 =

3

2
+

1

3
=

11

6
=

22

12

Finally,

U(f, P )− L(f, P ) =
9

12
=

3

4

(b) What happens to the value of U(f, P ) − L(f, P ) when we add the point 3
to the partition?

Proof.

We have:

L(f, P ) =
1

3
+

1

4
+

1

3
+

1

4
=

2

3
+

1

2
=

7

6
=

14

12

and

U(f, P ) =
1

2
+

1

3
+

1

2
+

1

3
=

2

3
+ 1 =

4

3
=

16

12

The difference U(f, P )− L(f, P ) decreases to 1

6
.

(c) Find a partition P ′ of [1, 4] for which U(f, P ′)− L(f, P ′) < 2/5.

Proof.

Let P ′ =

§
1,

8

5
,
11

5
,
14

5
,
17

5
, 4

ª
. We have:

U(f, P ′) =

�
5

5
+

5

8
+

5

14
+

5

17

�
· 3
5
=

1

5
+

1

8
+

1

14
+

1

17

L(f, P ′) =

�
5

8
+

5

14
+

5

17
+

5

20

�
· 3
5
=

1

8
+

1

14
+

1

17
+

1

20

Thus,
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U(f, P ′)− L(f, P ′) =
1

5
− 1

20
=

3

20
<

2

5

[Abbott 7.2.3] (Sequential Criterion for Integrability).

(a) Prove that a bounded function f is integrable on [a, b] if and only if there
exists a sequence of partitions (Pn)

∞
n=1 satisfying:

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0

and in this case:

∫ b

a

f = lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn)

Proof.

(=⇒) direction.

We are given that the function f : [a, b]→ R is bounded and integrable.

By the theorem on the criterion for integrability, it follows that:

(∀ϵ > 0)(∃Pϵ)(U(f, Pϵ)− L(f, Pϵ) < ϵ)

Pick ϵ = 1. There exists P1, such that:

U(f, P1)− L(f, P1) < 1

Pick ϵ =
1

2
. There exists P2, such that:

U(f, P2)− L(f, P2) <
1

2

Continuing in this fashion, let ϵ = 1

n
, (∀n ∈ N). There exists Pn, such that:

U(f, Pn)− L(f, Pn) <
1

n

Now, let ϵ > 0 be arbitrary. If we choose N >
1

ϵ
, then for all n ≥ N , we have:

U(f, Pn)− L(f, Pn) < ϵ
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Consequently, there exists a sequence (Pn)
∞
n=1, such that:

lim(U(f, Pn)− L(f, Pn)) = 0

By definition,

∫ b

a

f = L(f) = U(f)

(⇐=) direction.

We are given that, f is bounded and that there exists a sequence of partitions
(Pn)

∞
n=1 satisfying:

limU(f, Pn)− L(f, Pn) = 0

Our claim is that f is integrable.

Pick an arbitrary ϵ > 0. There exists Pϵ such that:

|U(f, Pϵ)− L(f, Pϵ)| = U(f, Pϵ)− L(f, Pϵ) < ϵ

Since ϵ was arbitrary, this must be true for all ϵ > 0. Consequently, by the
theorem on the criterion for integrability, f is integrable.

(b) For each n, let Pn be the partition of [0, 1] into n equal subintervals. Find
formulas for U(f, Pn) and L(f, Pn) if f(x) = x. The formula 1+2+3+ . . .+n =
n(n+ 1)/2 will be useful.

Proof.

We have:

Pn =

§
0,

1

n
,
2

n
, . . . ,

n− 1

n
, 1

ª

Thus,

U(f, Pn) =

�
1

n
+

2

n
+ . . .+

n

n

�
· 1
n
=

n(n+ 1)

2n
· 1
n
=

n+ 1

2n
=

1

2
+

1

2n

and

L(f, Pn) =
(1 + 2 + 3 + . . . n− 1)

n2
=

(n− 1)n

2n2
=

n− 1

2n
=

1

2
− 1

2n
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(c) Use the sequential criterion for integrability from (a) to show directly that

f(x) = x is integrable on [0, 1] and compute
∫ 1

0

f .

Proof.

We have shown, that there exists a sequence of intervals (Pn)
∞
n=1, where:

Pn =

§
j

n
: j ∈ Z, 0 ≤ j ≤ n

ª

such that

limU(f, Pn) =
1

2

and

limL(f, Pn) =
1

2

and thus

limU(f, Pn)− L(f, Pn) = 0

Consequently, f(x) = x is integrable on [0, 1]. Moreover:

∫ 1

0

f =
1

2

[Abbott 7.2.4]Let g be bounded on [a, b] and assume that there exists a partition
withL(g, P ) = U(g, P ). Describe g. Is g necessarily continuous. Is it integrable?

If so, what is the value of
∫ b

a

g?

Proof.

Let P = {x0 = a, x1, x2, , xn = b}. Define:

Mk = sup{f(x) : x ∈ [xk−1, xk]}
mk = inf{f(x) : x ∈ [xk−1, xk]}

Since U(f, P )− L(f, P ) = 0, we must have:
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n∑
k=1

(Mk −mk)∆xk = 0

Since ∆xk ̸= 0 for all k, we must have Mk = mk (∀k ∈ N).

Consequently, g must be constant function of the form g(x) = c.

Pick any arbitrary ϵ > 0. Let Pϵ be any refinement of P . Then, we have:

U(g, Pϵ)− L(g, Pϵ) ≤ U(g, P )− L(g, P ) = 0 < ϵ

Thus, g is Riemann integrable.

[Abbott 7.2.5] Assume that, for each n, fn is an integrable function on [a, b]. If
(fn) → f uniformly on [a, b], prove that f is also integrable on this set. (We
will see that, this conclusion does not necessarily follow if the convergence is
pointwise.)

Proof.

Pick an arbitrary ϵ > 0.

Let P be any arbitrary partition. We can write:

U(f, P )− L(f, P ) = U(f, P )− U(fn, P ) + U(fn, P )− L(fn, P ) + L(fn, P )− L(f, P )

Since (fn)→ f uniformly, ∃N , such that for all x ∈ [a, b], we have:

|fN (x)− f(x)| < ϵ

3(b− a)

Since fN is integrable, we can write:

(∃Pϵ ∈ P)
(
U(fN , Pϵ)− L(fN , Pϵ) <

ϵ

3

)
We choose the partition P = Pϵ. Assume that Pϵ = {x0 = a, x1, . . . , xm = b}.

Define z∗k ∈ [xk−1, xk] such that f(z∗k) = sup{f(x) : x ∈ [xk−1, xk]}.

Define zk ∈ [xk−1, xk] such that fN (zk) = sup{fN (x) : x ∈ [xk−1, xk]}.
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Define y∗k ∈ [xk−1, xk] such that f(y∗k) = inf{f(x) : x ∈ [xk−1, xk]}.

Define yk ∈ [xk−1, xk] such that fN (yk) = inf{fN (x) : x ∈ [xk−1, xk]}.

We have:

L(fN , Pϵ)− L(f, Pϵ) =≤
∑

(fN (yk)− f(y∗k))∆xk

≤
∑
|fN (yk)− f(y∗k)|∆xk

< ϵ
3(b−a)

∑
∆xk

= ϵ
3

Similarly, we have:

U(f, Pϵ)− U(fN , Pϵ) <
ϵ
3

Consequently,

U(f, Pϵ)− L(f, Pϵ) = U(f, P )− U(fN , P ) + U(fN , P )− L(fN , P ) + L(fN , P )− L(f, P )
< ϵ

3 + ϵ
3 + ϵ

3
= ϵ

This closes the proof.

[Abbott 7.2.6]A tagged partition (P, {ck}) is onewhere in addition to a partition
P we choose a sampling point ck in each of the subintervals [xk−1, xk]. The
corresponding Riemann sum:

R(f, P ) =

n∑
k=1

f(ck)∆xk

is discussed in section 7.1., where the original definition is alluded to.

Riemann’s original definition of the Integral. A bounded function f is inte-

grable on [a, b] with
∫ b

a

f = A if for all ϵ > 0 there exists a δ > 0 such that for

any tagged partition (P, {ck}) satisfying ∆xk < δ for all k, it follows that

|R(f, P )−A| < ϵ

Show that if f satisfies Riemann’s definition above, then f is integrable in the
sense of the definition 7.2.7. (The full equivalence of these two characterizations
of integrability is proved in section 8.1).
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Proof.

Pick an arbitrary ϵ > 0. There exists a partition P = {x0, x1, x2, . . . , xn} of [a, b]
such that for any choice of tags {ck}, we have:

A− ϵ

4
< R(f, P ) < A+

ϵ

4

Since, f is bounded, define

Mk = sup{f(x) : x ∈ [xk−1, xk]}, mk = inf{f(x) : x ∈ [xk−1, xk]}

By the properties of supremum and infimum, there exists ξk, ηk ∈ [xk−1, xk]
such that:

Mk −
ϵ

4(b− a)
< f(ξk) < Mk

and

mk < f(ηk) < mk +
ϵ

4(b− a)

Then, we can write:

R(f, P, {ξk}) =
n∑

k=1

f(ξk)(xk − xk−1)

>

n∑
k=1

�
Mk −

ϵ

4(b− a)

�
(xk − xk−1)

=

n∑
k=1

Mk(xk − xk−1)−
ϵ

4(b− a)

n∑
k=1

(xk − xk−1)

= U(f, P )− ϵ

4

And,
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R(f, P, {ηk}) =
n∑

k=1

f(ηk)(xk − xk−1)

<

n∑
k=1

�
mk +

ϵ

4(b− a)

�
(xk − xk−1)

=

n∑
k=1

mk(xk − xk−1) +
ϵ

4(b− a)

n∑
k=1

(xk − xk−1)

= L(f, P ) +
ϵ

4

Thus,

U(f, P )− ϵ

4
< A+

ϵ

4

L(f, P ) +
ϵ

4
> A− ϵ

4

Consequently,

U(f, P )− L(f, P ) < ϵ

This closes the proof.

[Abbott 7.3.1] Consider the function:

h(x) =

¨
1 for 0 ≤ x < 1

2 for x = 1

over the interval [0, 1].

(a) Show that L(f, P ) = 1 for every partition P of [0, 1].

Proof.

We have:

L(f, P ) =

n∑
k=1

mk∆xk

Since mk = 1 for all k = 1, 2, . . . , n,
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L(f, P ) =

n∑
k=1

∆xk = 1

(b) Construct a partition P for which U(f, P ) < 1 + 1/10.

Proof.

Consider the partition Pϵ = {0, 1− ϵ, 1}. Then,

U(f, Pϵ) = (1− ϵ) + 2ϵ = 1 + ϵ

If we pick ϵ < 1/10, then

U(f, Pϵ) < 1 + 1/10

For example, P =

§
0,

19

20
, 1

ª
satisfies the above property.

(c) Pϵ =
{
0, 1− ϵ

2 , 1
}
.

[Abbott 7.3.2] Recall that Thomae’s function

t(x) =


1 if x = 0

1/n if x = m/n ∈ Q \ {0} is in its lowest terms with n > 0

0 if x /∈ Q

has a countable set of discontinuities occurring at precisely every rational num-

ber. Follow these steps to prove that t(x) is integrable on [0, 1]with
∫ 1

0

t = 0.

(a) First argue that L(t, P ) = 0 for any partition P of [0, 1].

Proof.

Let P be any arbitrary partition of [0, 1]. Since the irrational numbers are dense
in R, every sub-interval of P contains an irrational number. Thus:

L(t, P ) =

n∑
k=1

mk∆xk = 0 {∵ mk = 0,∀k}

(b) Let ϵ > 0 and consider the set of points Dϵ/2 = {x ∈ [0, 1] : t(x) ≥ ϵ/2}.
How big is Dϵ/2?

Proof.
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We define N ∈ N to be the smallest natural number such that, for all n ≥ N

1

n
<

ϵ

2

Thus, the set {t(x) : t(x) ≥ ϵ/2} consists of :

§
1

N − 1
,

1

N − 2
, . . . , 1

ª

Thus, the set Dϵ/2 consists of:

Dϵ/2 =

§
N − 2

N − 1
,
N − 3

N − 1
, . . . ,

1

N − 1
,
N − 3

N − 2
, . . . ,

1

N − 2
, . . . ,

1

2
, 1

ª

Dϵ/2 contains at most a finite number of points.

(c) To complete the argument, explain how to construct a partition Pϵ of [0, 1]
so that U(t, Pϵ) < ϵ.

Proof.

Pick an arbitrary ϵ > 0.

We define N to be the smallest natural number such that:

1

N
<

ϵ

2

Since Dϵ/2 is a finite non-empty set, let us denote it by the ordered set {q1 <
. . . < qM}.

We now surround each of the points qk by subintervals of length ϵ
2M . Thus, we

have M subintervals each of length given by :

ξ = min
{ ϵ

2M
, qk − qk−1, qk+1 − qk

}
Their total contribution to the upper Riemann sum is

M∑
k=1

Mk ·∆xk ≤
M∑
k=1

1 · ϵ

2M
= ϵ/2
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The region between those intervals forms the rest of the partition. Again, these
are finitelymany in number. For this entire region, t(x) < ϵ/2. And

∑
∆xk < 1.

Consequently, its contribution to the upper sum is lesser than ϵ/2.

[Abbott 7.3.3] Let

f(x) =

¨
1 if x = 1/n for some n ∈ N

0 otherwise

Show that f is integrable on [0, 1] and compute
∫ 1

0

f .

Proof.

Firstly, for any arbitrary partition P , the lower Riemann sum L(f, P ) = 0.

Pick an arbitrary ϵ > 0. Pick N to be the smallest natural number such that for
all n ≥ N , 1

n < ϵ
2 .

We cut [0, 1] into two parts A = [0, 1
N ] and B = [ 1N , 1]. Surround each of the N

points in B by a subinterval of length

ξ = min

§
ϵ

2N
,

1

N(N − 1)

ª

and the end points are surrounded by [ 1N , 1
N + ξ] and [1− ξ, 1].

There are atmost finitelymanygaps between these subintervals inB, but f(x) =
0 on these gaps, so their contribution of U(f, P ) = 0.

The total contribution of the points in B is

N∑
k=1

Mk∆xk ≤
N∑

k=1

1 · ϵ

2N
=

ϵ

2

The total contribution of the points in A is:

1 · 1
N
≤ ϵ

2

This closes the proof.
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[Abbott 7.3.4] Let f and g be functions defined on (possibly different) closed
intervals and assume that the range of f is contained in the domain of g so that
the composition g ◦ f is properly defined.

(a) Show, by example that it is not the case that if fand g are integrable then
g ◦ f is integrable.

Proof.

Unbounded functions like 1
x are not Riemann integrable.

Consider f(x) = x− 2 and f(x) = 1
x+2 on the interval [0, 1]. Then,

g(f(x)) =
1

x

which does not have an upper Riemann sum.

Now decide on the validity of each of the following conjectures, supplying a
proof or counterexample as appropriate.

(b) If f is increasing and g is integrable, then g ◦ f is integrable.

Proof.

This proposition is false. The functions f and g discussed above suffice as
counter-example.

(c)If f is integrable and g is increasing, then g(f(·)) is integrable.

Proof.

Let f(x) = x + 2 and g(x) = − 1
x−2 on the interval [0, 1]. Then, g(f(x)) = − 1

x
which is not Riemann integrable on [0, 1].

[Abbott 7.3.5] Provide an example or give a reason why the request is impos-
sible.

(a) A sequence (fn)→ f pointwise, where each fn has at most a finite number
of discontinuities but f is not integrable.

Proof.

The set of rational numbers is countable. Let Q = {q1, q2, q3, . . . , }. Define:

fn(x) =

¨
1 if x ∈ {qj : 1 ≤ j ≤ n, j ∈ N}
0 otherwise

254



The function fN has a finite number n of discontinuities, and we can easily sur-
round each rational qj by the sub-interval [qj−ξ, qj+ξ], where ξ = min{ ϵ

2N , d
2},

d = min{qj+1− qj : j = 1, 2, 3, . . . , n} to see that the upper intergral is ϵ and the
lower integral is 0, so the sequence (fn) is Riemann integrable. But, (fn)→ IQ,
the Dirichlet function which is not Riemann integrable.
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