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Exercise Problems.

1. Let X : R? — R3 be the parametrized surface given by

X(s,t) = (s> —t*,5 +t,8> + 31)

(a) Determine a normal vector to this surface at the point

(3,1,1) = X(2,-1)

Solution.

We have:

T, = (2s,1,2s)
Tt = (—Zt, la 3)
So, the standard normal vector at the point X(2, —1) is:
N=T, x T,
i i ok
=] 25 1 2s
-2t 1 3

=i(3 —2s) —j(6s + 4st) + k(2s + 2t)
i(3—4) —j(12 +4(2)(~1)) + k(4 — 2)
= i 4j+ 2%

(b) Find an equation for the plane tangent to this surface at the point (3,1, 1).
Solution.

The tangent plane to this surface at the point (3, 1, 1) is given by:

N-(x—(3,1,1))
(_15 _472) ’ ((*T7yvz) - (37 L, 1))
—(z=3)—4(y—1)+2(z—-1)

0
0
0

2. Find an equation for the plane tangent to the torus



X(s,t) = ((5+2cost)coss, (5+ 2cost)sins,2sint)

at the point ((5 — v/3)/v/2, (5 — v/3)/v/2,1).

Solution.

We have:

Ts = (—(5+2cost)sins, (5+ 2cost)cos s, 0)

T, = (—2sintcos s, —2sintsin s, 2 cost)

The standard normal vector is:

N=T,xT;
i j k
=| —(5+42cost)sins (5+2cost)coss 0
—2sintcos s —2sintsins 2cost

i(2(5 + 2cost) cosscost)) +j(2(5 + 2 cost) sin s cos t)
k(2sinssint(5 4 2cost) + 2(5 + 2 cost) sint cos? s)

2(5 + 2 cos t)(cos s cos ti + sin s cos tj + (sin? s + cos? s) sin tk)
2(5 + 2 cost)(cos s cos ti + sin s cos tj + sin tk)

_|_

The point ((5 — v/3)/v2, (5 — v/3)/v/2,1) = ((5 + 2cost) cos s, (5 + 2 cost) sin s, 2sint) yields sint = 1/2, so tg = 7/6 or tg = 57/6.

Since 2cost < 0, tg = 57/6. Then, we can see that :

V3
V2

ot

V3, .
:(5—2-7)51113

So, 59 = /4.

Consequently, the equation of the tangent plane at X(7/4, 57/6) is:

N- (X 7X(So,t0)) =0

26— VA i L4 20 - Iy =
V3 V3
= 6= VaVD - = (G- VIV + (1) =0

—V3(z—(5-V3)/V2) —V3(y — (5-V3)/V2) +V2(z —1) =0
—V3z = 3y +V2z = —2V3(5 - V3) V2 + V2
= —V6(5—V3)+2
=—5V6+3v2+ V2
\/§z+\/§y*\f22:5\/674\/§

3. Find an equation of the plane tangent to the surface

z=e y=1t%* z=2 "+t

at the point (1,4, 0).



Solution.

We have:

T, = (e, 2t —2¢7%)
T, = (0,2te* 1)

The standard normal vector is:

N =T, x T,

i i k

e® 2t%e*  —2e7°

0 2te* 1

= i(2t%e?% + 4te®) —j(e°) + k(2te3)
e ((2t%e® + 4t)i — j + (2te**)k)

Sincee® = 1,5 = 0. Also,as 4 = t2 - 1, we have t = +2. Moreover, 0 = 2 + ¢, so t = —2. So, N(0, —2) is:

N(0,—2) = —j — 4k

The equation of the tangent plane at X(0, —2) is:

N-(z—1,y—4,2)=0
—(y—4)—42=0
y+4z=4

4. LetX(s,t) = (s?cost, s%sint,s), =3 < s < 3,0 <t < 2.
(a) Find a normal vector at (s,t) = (—1,0).
Solution.

We have:

T, = (2scost,2ssint, 1)

T; = (—82 sint, s? cos t,0)

The standard normal vector N is:

N :Ts X Tt
i j k
=| 2scost 2ssint 1

—s2sint  s?cost 0

i(—s%cost) —j(s?sint) + k(25> cos® t 4 25> sin® t)

= —s%costi — s%sintj + 25°k

The vector at (s,t) = (—1,0) is:

N(—1,0) = —i — 2k



Hence, the equation of the tangent plane at X(—1,0) = (1,0, —1) is:

(—i—2) - ((2,9,2) — (1,0,~1)) = 0
—(z—1)—2(z+1)=0
r—14224+2=0

r+2z4+1=0

(b) Find an equation for the image of X in the form F'(z,y, z) = 0.

Solution.

Letx = 52 cost,y = s2sint. Then, 22 + y? = s*(cos? t +sin?t) = s* = 24, So, F(z,y,2) =22 +y> — z* = 0.
5. Consider the parameterized surface X(s,t) = (s, s? + ¢, t2).

(a) Graph the surface for =2 < s <2, -2 <t < 2.

Solution.

The s-coordinate curve at t = 0 is:

T=35
= 82
z=0
This is the parabolic curve y = x? in the xy-plane.
The s-coordinate curve at t = £ is:
T=35
2
y=s"+to
z = tg
Thus, we get parabolas parallel to the xy-plane.
’ t ‘ Curve ‘ Center ‘ z-plane ‘
t():_2 y+2:x2 (‘T7y):(07_2) z=4
to=—1|y+1=22] (z,y)=(0,-1) | z2=1
to=0 y=x° (z,y) =(0,0) | z=0
to=1 |y—1=22] (z,y)=(0,1) z=1
to=2 |y—2=22| (z,y)=(0,2) | z2=4
The t—coordinate curve at s = 0 is:
z=0
y=t
z =1t

These are parabolas parallel to the yz-plane.

t ‘ Curve ‘ Center ‘ z-plane
so=-2|2=(@-41"] (y,2)=(20) [z=-2
so=—1]z2=@w—-1?2] (y,2)=(1,0) | 2 =—
s0=0 2=y (y,2) =(0,0) | z=0
so=1 [ z=@w-12] (y,2)=(1,0) | z=1
50=2 | 2= (—207 | (19 =(20) | 2=




Figure. X(s,t) = (s,8% + t,t?).

(b) Is the sutface smooth?

Solution. The surface is smooth.

(c) Find an equation for the tangent plane at the point (1,0, 1).
Solution.

We have:

T, = (1,2s,0)
T: = (0,1,2¢t)
The standard normal vector N is:
N=T, xT;
i j k
=|1 2s O
0 1 2t
= 4sti — 2tj + k

The point (1,0,1) is (so = 1,t9 = —1).

N(1,—1) = —4i+2j+ k

The equation of the tangent plane at (1, —1) is:

(-4,2,1) (z — 1,y,2—1) =
—Az-1)+2y+(z—-1) =
Az —1)-2y—(2—1)=0
dr—4—-2y—2z+4+1=0

dr —2y—z=3

6. Describe the parameterized surface of exercise problem 1 by an equation of the form z = f(z,y).
Solution.

The parametric surface X(s, t) is:



X(s,t) = (s —t* s +t,5° + 3t)

In exercise (1), we see thatz = (s — t)(s +t) = y(s+¢) so s+t = x/y and y = s — t. This allows us to solve simultaneously for s and t.

2
25 = x/y + y and 2t = 2/y — y. This means that z = s2 + 3t can be written as 2 = % (% + y) + % (% — y)

7. Let S be the surface patameterized by:

T = scost
Yy = ssint

where s > 0,0 <t < 2m.

(a) At what points is S smooth? Find an equation for the tangent plane at the point (1, V3, 4).
Solution.

The surface S is 72 + y? = 2. This is a paraboloid. It is smooth at all points.

We have:

T, = (cost,sint, 2s)
T; = (—ssint, scost,0)

The standard normal vector N is:

N = TS X Tt
i j k
= cost sint  2s

—ssint  scost 0
= (=252 cost)i — (25% sint)j + (s cos® +ssin® t)k
= (—2s% cost)i — (2s%sint)j + sk

Ats=2,t=m/6,

N(2,7/6) = —4V/3i — 4j + 2k

The equation of the tangent plane at X(2, 7/6) is:

(—4V3,-4,2) - (x — 1,y — V3,2 —4) =0
4V3(x —1) +4(y —V3) —2(z —4) =0
3Bz —4V3+4y —4V3 —22+8=0
4V3x + 4y — 22 = 8(v/3 1)
2V3x 42y — 2 =4(V/3 1)

(b) Sketch the graph of S. Can you recognize S as a familiar surface?



-0.5

1

Figure. X(s,t) = (scost, ssint, s?)

(c) Describe S by an equation of the form z = f(z,y).

Solution. Again z = 2% + 2.

(d) Using your answer in part(c), discuss whether .S has a tangent plane at evety point.
Solution.

S has a tangent plane at every point and is smooth. Part (a) takes care of every point except the origin. At the origin N = (0,0, 0). But, we
easily see, that the tangent plane at the origin is the horizontal plane 2z = 0. Thus, smoothness as defined in the text, depends on both the
parameterization and the geometry of the underlying surface.

8. Verify that the image of the parametrized surface

X(s,t) = (2sinscost, 3sin ssint, cos s)

0<s<mand 0 <t < 27 is an ellipsoid.
Solution.

We can easily write:

Figure. X(s,t) = (2sin s cost, 3sin ssint, cos s)



9. Verify that, for the torus of example 5, the s-coordinate curve, when ¢ = £ is a circle of radius a + b cos tg.
Solution.

The parametric equations of the Torus in example 5 were:

x = (a+bcost)coss
y = (a+bcost)sins

z =bsint

The s-coordinate curve at t = t is:
x = (a+bcosty) cos s
y = (a+bcosty)sins

z = bsinty

These are circles of radius a 4 b cos tg in the plane z = bsin .

And they satisfy 2% + y? = (a + bcostg)?.

Figure. Torus X(s,t) = ((a + bcost) cos s, (a + bcost)sin s, bsint)

9. The surface in R? parametrized by:

X(r,8) = (rcos,rsinb,0)

where 7 > 0 and —00 < 6 < o0 is called a helicoid.
(a) Describe the r-coordinate curve when 6 = /3. Give a general description of the 7-coordinate curves.
Solution.

The r-coordinate curve when 6 = 7/3 is:

x=r/2
y = V3r/2
z=m/3

It is the straight-line y = V/3z in the plane z = 7/3.



The r-coordinate curve when 6 = 0y is:

x = 7 cos by
y = 7sinf

2’:90

It is the straight line y = (tan 6p)z in the plane z = 6.
(b) Desctibe the f-cootdinate curve when r = 1. Give a general desctiption of the f-coordinate cutves.
Solution.

The O-coordinate curve when r = 1 is:

T = cos @
y = sinf
z=20

This is a helix with parameter 6 and radius 1.

The O-coordinate curve when r = 7 is:

r = 1o cosb
Yy =rgsinf
z=20

These are helixes of radius rg > 0.

(c) Sketch the graph of the helicoid using a computer for 0 < 7 < 1,0 < 0 < 47. Can you see why the surface is called a helicoid?

-0.5
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Figure. Helicoid X(r, 0) = (r cos 0, rsin 6, 6)

11. Given a sphere of radius 2 centered at (2, —1,0), find an equation for the plane tangent to it at the point (1,0, /2) in three ways:

(2) by consider the sphere as the graph of the function f(z,y) = /4 — (z — 2)2 — (y + 1)%.
Solution.

We have:

grad f = [ % % ]
_ [ (z—2) _ (y+1) }

T VA (@-2)2—(y+1)? VA—(@—2)2—(y+1)




Thus,

arad £(1,0) = (

-
=l

So, the tangent plane at the point (1,0, v/2) is:

z=f(1,0)+ (x—a)-Vf
=V2+ (z - 1,9)- (1/v2),~(1/v2))

(b) by considering the sphere as a level surface of the function

F(z,y,2) = (x —2)> 4+ (y + 1)® + 22

The gradient VI is :

— | 9F OF OF
VF—|:8:B Oy 8z:|

=[2z-2) 2y+1) 2z]

If xg = (%0, Yo, 20) is a point on the level set S = {(z,y, 2) : F(x,y,z) = c}, then the gradient vector VF(x) at the point xg is perpendicular
to S. (1,0,1/2) is point on the level set S = { (2,5, 2)|(z — 2)% + (y +1)? + 22 = 4}. So, VF(1,0,v2) = (—2,2,21/2) is the normal vector
to the sphere F(z,v, z) = 4 at the point (1,0, v/2).

If (x,y, 2) is an arbitrary point in the tangent plane, we must have:

(x—1,9,2—V2)-(=2,2,2v/2) =0

(z—1,y,2—V2) - (=1,1,v/2) =0

—(z -1 +y+v2(z-V2)=0

(x—1)—y—V2(z—V2)=0

T—y—V224+1=0
z—y+1=+2z

(c) By considering the sphere as the surface parametrized by :

X(s,t) = (2sinscost + 2,2sinssint — 1,2 cos s)
Solution.

We have:

Ts = (2cosscost,2cos ssint, —2sin s)

T, = (—2sinssint, 2sin s cost,0)



The standard normal vector N is:

N=T, xT;
i j k
=| 2cosscost 2cosssint —2sins
—2sinssint  2sinscost 0

= 4sin? scosti — (—4sin? ssint)j + (4 sin s cos s cos® t 4 4 sin s cos s sin” )k

= 4sin? s cos ti + 4sin? s sintj + 4 sin s cos sk

Now, 2 cos s = /2 50 cos § = % and thus s = /4. Consequently, v/2 cost + 2 = 1 and therefore cost = —%, which implies ¢ = 37 /4.

The normal vector at X(7 /4, 37 /4) is:

L R
S S B
2 2 2 ﬁ]
—V2i + V2j + 2k

N(7/4,37/4) =4-

The equation of the tangent plane is:

(—V2,v2,2) - (x = 1,4,2 = vV2) =0
(-L,1,v2)- (z = Ly,2=v2) =0
r—y+1=1+2z

In exercises 12-15, represent the given surface as a piecewise smooth parameterized surface.
12. The lower hemisphere 22 + y2 + 22 = 9 including the equatorial circle.
Solution.

We can parametrize the lower hemisphere of the sphere as X(s,t) = (s,t, —/9 — (22 4 y2)). Alternatively, we may parametrize it as X (¢, 0):

x = 3sin¢cosf
y = 3sin¢sinf
z=3cos¢

where 0 < 0 < 2rand /2 < ¢ < .
13. The part of the cylinder 22 + 22 = 4 lying between y = —1 and y = 3.
Solution.

We can parametrize the cylinder as:

T =2coss
y=t
z=2sins

where 0 < s < 2mand —1 <t < 3.
14. The closed triangular region in R? with vertices (2, 0,0), (0,1, 0) and (0,0, 5).
Solution.

A parameterization of a plane can be written as :



x=3sa+th+p

where a and b are two vectors in the plane and p is a point in the plane. To see why this is the case, suppose x = (z, y, 2) is an arbitrary point in

the plane and p = (%0, Yo, 20) is 2 known point. Then PX = x — p must be a linear combination of a and b. So, x — p = sa + tb.

We have four planes that are described by:

X(s,t) = s(2,0,—5) +¢(0,1,-5) + (0,0,5) = (2s,t, —5s — 5t + 5)
Since we are interested in the first octant of R® all coordinates must be non-negative. So, 0 < 25 < 2, thatis0 < s < 1,0 < ¢ < 1and
—5s — 5t + 5 > 0. In other words, t < 1 — s.
14. The hyperboloid 22 — 2 — y? = 1. (Hint: Use two maps to parametrize the surface)
Solution.

The equation of the hyperboloid as:

2 =21+ 22 + 92

Therefore, the hyperboloid may be paramterized with two maps:

Xl(Svt) = (Satv 1+x2+y2)

XQ(svt) = (Svtvf\/ 1+'T2 +y2)

16. This problem concerns the parameterized surface X(s,t) = (53,13, st).
(2) Find an equation of a plane tangent to this surface at the point (1, —1, —1).
Solution.

We have:

T, = (35%,0,t)
T, = (0,32, )

The standard normal vector N is:

N = TS X Tt
i j k
=|3s2 0 ¢
0 32 s

= —3t3%1 — 35% + 952’k

We have s = 1, tg = —1. So, N(1, —1) = (3, —3,9). The equation of the tangent plane to the surface at (1, —1,—1) is:

(3,-3,9) - (z—1y+1,241)=0
(1,-1,3)- (¢ -Ly+1,2+1)=0
(z—1)—(y+1)+3(z+1)=0
r—1—-y—14324+3=0
z—y+32+1=0

(b) Use a computer to graph this surface for =1 <s <1, -1 <¢ < 1.

Solution.



Figure. X(s,t) = (83,13, st)

(c) Is the surface smooth?

Solution.

The normal vector N = 0 at (sg,%o) = (0, 0) that is at (0,0, 0). So, the surface fails to be smooth there.
17. The surface given parametrically by X(s,t) = (st, t, s2) is known as Whitney’s umbrella.

(a) Verify that this surface may also be described by the zyz-coordinate equation y?z = z2.
Solution.

Clearly, y2z = (t?)(s?) = (st)? = 22.

(b) Is X smooth?

Solution.

We have:

T, = (¢,0,2s)
Tt = (Sa 1’0)

The standard normal vector is :

i j k
N=|t 0 2s
s 1 0

= —2si + 25%j + tk

The normal vector N = (0,0, 0) at (s,t) = (0,0) that is at the point (0,0, 0). Hence, X is not smooth at this point.
(c) Use a computer to graph this surface for =2 < s <2, -2 <¢ < 2.

Solution.



Figure. X(s,t) = (st,t,s?)

(d) Give an equation of the plane tangent to this surface at the point (2,1, 4).
Solution.

The standard normal vector at the point X(2, 1) is (—4, 8, 1). Hence, the equation of the tangent plane to the surface at the point X(1, 2) is

(-4,8,1) (z—2,y—1,2—4) =
—A(z—2)+8(y—1)+ (2 4)
4z —2)—8(y—1)— (-4

dr —8y —z=—4

(e) Some points (, y, z) of the surface do not correspond to a single parameter point (s, t). Which ones? Explain how this relates to the graph?
Solution.
Let X(Sl, tl) = X(SQ, tg). Then,

81t1 = Sata
t1 =19
2_ 2
51 = 83

Thus, ift; = to = 0 and 81 = +s5 we get the same image that is X(s, 0) = X(—s,0) = (0,0, s). Thus, the positive z-axis does not corespond
to a single point.

18. Let S be the surface defined as the graph of a function f(z,y) of class C'!. Then, example 4 shows that S is also a parametrized surface.
Show that formula (5) for the tangent plane to S at (a, b, f(a, b)) agrees with formula (4) in section 2.3.

Solution.
We have:

Ts = (1,0,f5(8,t))
Tt = (Oa 17 ft(sat))

The standard normal vector Nat the point (s, t) is

N = TS X Tt
i j k
=11 0 fss,t)
0 1 ft(87t)

= _fs(sat)i - ft(sat)i +k



So, the equation of the tangent plane to the surface at X(s, t) is:

(_fsa_ft; 1) : ({E —S5Y —t,Z - f(s7t)) = 0
0 0
= fs0)= P+ Sy 1
19. (a) Write a formula for the tangent plane to the surface described by the equation y = g(z, 2).
Solution.

We have:

X(s,t) = (s,9(s,1), 1)

So,

The standard normal vector N is:

N=T, xT;
ik
=|1 gs(sat) 0
O gt(S,t) 1
=gs(s,t)i—j+ g:(s, )k

So, the equation of the tangent plane to the surface at the point (g, g(o, 20), 20) is:

(9s(s,t), =1, 9¢(s,1)) - (x — w0,y — g(x0, 20), 2 — 20) = 0
9s(s,t)(z — x0) — (y — 9(w0, 20)) + g(z — 20) =0
y = g(wo, 20) + gs(x — x0) + g:(2 — 20)
(b) Repeat part (a) for a surface described by the equation « = h(y, z).
Solution.

The equation of the tangent plane to the suface at the point (h(yo, 20), Yo, 20) is:

x = h(yo,20) + hy(y — yo) + h=(z — 20)

20. Suppose that X : D — R? is a parameterized surface that is smooth at X(sp, tg). Show how the definition of the derivative DX (s, to) can
be used to give vector parametric equations for the plane tangent to S = X(D) at the point X (s, to).
Solution.

Let X(s,t) = (x(s,t),y(s,1), 2(s,t)). The derivative DX(s, t) is:

DX(s,t) =

TIRFIETR
S

LS

Hence, the equation of the tangent plane to surface X(s, t) at the point (g, to) is:

x(s,t) = X(s0, o) + DX(s0, to) - { 8= 50 ]

= X(s0,t0) + Ts(s0,t0)(s — s0) + Tt(s0,t0)(t — to)



Surface Integrals

Scalar Surface Integrals

Definition. Let X : D — R3 be a smooth parametrized surface whose domain D C R? is a bounded region. Let f be a continuous function
whose domain includes S = X(D). Then, the scalar surface integral of f along X is:

/Af%=/éﬂmmmmxnwwt

— [ [ sxs.0) NG o) ds as
D

X maps any rectangle with sides ds, dt and area ds - dt in D to a parallelogram in X(D) with sides dsT and dtT;. The area of the parallelogram
is the cross-product || Ts X T¢|| ds dt. Thus,||Ts x T¢|| is the scaling factor.

If f is identically 1 on all of X(D) then:

// f-dS= // 1[|Ts x T¢|| ds dt = Surface area of X(D)
X D

The scalar surface integral is thus a generalization of the integral we use to calculate the surface area. We can think of [ fX f-dS as alimit of the
weighted sum of the surface area pieces, the weightings given by f. If f represents the mass or electrical charge density, then [ fx f - dS yields
the total mass or the total charge on X(D).

For computational purposes, recall that if we write the components of X as:

X(Sat) = (QZ(S,t), y(sat)a Z(Sat))

then

i j k
—| 9z 9y 0=z
- ds s ds
oz 9Jy Oz
ot ot ot
9y 9z oz 0z 9z Oy
& B F £ 2]
ot ot ot ot ot ot
0 0 0
2, dw) O
(s, t (s, 1) (s, 1)

So, we obtain:

[ frras= ] fpeasenzon|(53) (53 + (525) s

If the surface S is given by a graph of z = g(x,%y) where g is of class C'! on some region D in R?, then S is parameterized by X(x,y) =
(z,y,9(x,y)) with (x,y) € D. Then, from example 13 in section 7.1,

N(z,y) = —gzi — gyj + k

so that:

/Af“:/Lﬂmw@mJﬂE;Emw



Vector Surface Integrals

We can develop a means to integrate vector fields along surfaces beginning with the definition.

Definition. LetX : D — R3 be a smooth parametetized surface, where D is a bounded region in the R? plane, and let F(z, y, z) be a continuous
vector field whose domain includes S = X(D). Then, the vector surface integral of F along X is:

//XF.ds://DF(X(D))'N(s,t)dsdt

where N(s,t) = T X T.

As with line integrals, we should be careful about the notation for surface integrals. In the vector surface integral [ fX F - dS, the differential term
is considered to be a vector quantity, whereas in the scalar surface integral f fX f - dS, the differential term is scalar quantity - the differential of
the sutface area.

Example. Let F = zi + yj + (2 — 2y)k. We evaluate [ [i F - dS where X is the helicoid

X(s,t) = (scost, ssint,t)

where 0 < s < 1,0 <t < 27,

Solution.

1 —0.5
Figure. X(s,t) = (scost, ssint, t)
We have:
Ts = (cost,sint,0)
T, = (—ssint, scost, 1)

The standard normal vector N is:

N=T, xT;
i j k
= cost sint 0

—ssint scost 1

= sinti — costj + sk



Hence:

(scost,ssint,t — 2ssint) - (sint, — cost, s)dsdt

J
2m 1
/ (ssintcost — ssintcost + st — 252 sint)dsdt
0
/ (st — 2s? sint)dsdt

0

27 .2 3
2
= [%t - % sint]bdt
2m
t 2
t2 9 27
= |= + = cost
1 + 3 cos ]0

Further Interpretations

As is the case for vector and scalar line integrals, there is a connection between vector and scalar surface integrals. Suppose X : D — R3 is a
smooth paramettized surface and F is continuous on S = X(D). Let N(s,t) = T, X T; be the usual normal vector and let:

That is, n is the unit vector pointing in the same direction as N. In particular,

N(s,t) = [N(s,t)[ n(s, 1)

Plugging this into the definition of the vector surface integral, we get:

//XF.dS://DF(X(D)).N(S’t)dS.dt

://DF(X(D))-HN(s,t)Hn(s,t)ds-dt
- / /D (B(X(D)) - n(s, 1)) [IN(s, )| ds - dt

://X(F~n)dS

Since n is a unit vector, the quantity F - n is precisely the component of the vector field F in the direction of n. In other words, the vector surface
integral of F along X is the scalar surface integral of the component of F normal to S = X (D). Recall that, the vector line integral of F along a
path x is the scalar line integral of the component of F tangent to the image curve. To summarize, we have the following results:

Line Integrals: [ F-ds = fg (F-T)ds M

Surface Integrals : // F-dS = // (F-n)-ds-dt @)
X D

The vector line integral fx F - ds in equation (1) is called the flow-integral of F along x. The teason for this is the following.

Suppose F represents the velocity vector field of a fluid. Consider the amount of fluid moved tangentially along a small segment of the path x
during a brief time interval AT.



Figure. The amount of fluid transported tangentially along a segment of the closed path x is approximately (F(x(¢))A7 - T)As

Since F - T gives the tangential component of the velocity vectot F, the rate of flow at the point x() is F - T. So, the amount of fluid transported
tangentially in A7 time through the point x(t) is Rate of flow x time = (FAT) - T. A line segment of the path x(t) of length As can be
thought to be made up of As such points. So, the total amount of fluid transported tangentially in A7 time along a segment of length As equals

(FAT) - TAs.

Amount of fluid moved &~ (F(x(¢))AT1 - T)As

If we divide the above expression by time AT, we get the average rate of transport of the fluid along the segment :
AL
Ar

. . AL dL
Instantaneous rate of fluid flow = lim — = — =
AT—0 AT dr

b
/ F(x(t)) - T - ds
/bF(x(t)) T ds

If x is a closed path, the flow-integral is also called circulation.

Now, let’s try to interpret the vector surface integral in equation (2).

F(x(uo, vo)) At

S/

Figure. The amount of fluid transported across a small piece of S during a brief time interval At may be approximated by the volume of the
parallelopiped.

Consider a small piece of S, having the atea AS and the amount of fluid transported across it duting a brief time interval A¢. This amount
is the volume determined by F duting At. The above figure suggests that this volume can be approximated by the volume of an appropriate

parallelopiped.
The height of the parallelopiped is the normal component of FAt, FAt - n(ug, vg) and the atea of the base is AS. Hence:



Amount of fluid displaced ~ volume of parallelopiped
= (height) (area of base)
= F(X(ug,v0))At - n(ug, vg)AS 3)

We obtain the average rate of transpott across the surface piece during the time interval At by dividing (3) by At:

Average rate of transport &~ F(X(ug, vg)) - n(ug, vo)AS @

Now, we break up the entire surface S = X(D) into infinitely many such small partitions AS;; and sum the corresponding contributions to the
rate of transport in the form given (4). If we let all the pieces shrink, then, in the limit as all AS — 0, we have that the total average rate of
transport of the fluid during At is approximately :

%4 ~ / /X (B(X(D)) - n)dS )

Passing to the limits as At — 0, the instantaneous rate of fluid transport across X can be defined as the flow integral:

. AM dM
Jim S = = | e mas ©

Reparametrization of surfaces

Definition. LetX: D; CR? 5> R%®andY: Dy C RZ — R3 be parametrized surfaces. Y is said to be a reparametrization of X, if there exists
a one-to-one and onto function H : R — R? such that Y = X(H(s, t)).

Example. Suppose X is a smooth parametrized surface. Let Y(s,t) = X(u,v), where & = t,v = s. Thatis, Y = X(H). Then, Y is a smooth

parametrization that appears to accomplish little. However, if we let Ny denote the usual normal vector Ty X Ty = % X %, then we have:

v _ox v o
s _ov Yot T ou

so that:

oy ox
Y 9s ot
oX 00X
JR— >< JR—
ov  Ou

oX 00X
[ — X JR—

Ju Ov
= _NX

The parametrized surface Y is the same as X, except that the standard normal vector arising from Y points in the opposite direction to the one
arising from X.

The calculation in the above example thus generalizes. Suppose X is a smooth parametrized surface and Y is a smooth reparametrization of X via
H, that is:

Y(s,t) = X(u,v) = X(H(s, t))

By the chain rule:



DY(s,t) = DX(u,v) - DH(s,t)

T Xt Ty T
S u v us ut
Ys Yt = Yu Yo
Vs Ut
Zs 2t Zu Ry

From the above, we see that:

Ts = UsTu + USTU
Tt = utTu + UtT’U

So,

Ts X Tt = (usTy + v:Ty) X (usTy + 04 Ty)
=usu; Ty X Ty +usvi Ty X Ty +vsu Ty X Ty + 00Ty X Ty,
= (usvs — upvs) Ty X T,

O(u,v)

(s, t) %

Ny =

Thus, Ny is always a scalar multiple of Nx. In addition, since H is invertible and both H and H~! are of class C1, it follows that the jacobian
(determinant) is always positive or negative. Hence, the standard normal vector Ny either always points in the same direction as Nxor else always

( 7 )

points in the opposite direction. Under thse assumptions, we say that both H and Y are orientiation-preserving if the Jacobian (1) is positive,

orientation-reversing if 9(u, v)/9(s,t) is negative.

Theorem. LerX : D1 — R3 be a smooth parametrized surface and f any continuons function whose domain includes X(D1). IfY : Dy — R3 is any smooth
reparametrization of X, then:

[ o

Proof.
We have:

/Lfﬁfﬂ“%ﬂwwmmmmwMt
/ﬂ%m X(u,v)) [Nx(u |ﬂ

Since u = u(s,t),v = v(s,t), by the change of variables theorem, du - dv = ‘ s t)

[ Lras=[ [ o) Nstw ) dudo
Z//Xf~dS

Theorem. LetX : Dy — R3 be a smooth parametrized surface and ¥ be any continnons vector field whose domain includes X(D1). IfY : Dy — R is any
smooth reparametrization of X, then:

ds dt

(1) If Yis orientation-preserving, we have:



/LF&:/LF%

(2) IfY is orientiation-reversing, we bhave:

/AFd&:i/AFdS
Proof.

This result can be established along the lines of the previous proof. Beginning with the definition and using the lemma just established, we have:

// dS—//D ) Ne(s, £)ds dt
-/ /Dz ) Nl

If Yis orientation preserving, then d(u, v)/d(x,y) > 0, so |0(u,v)/0(x,y)| = O(u,v)/O(x,y). Then, by change of variables theorem:
O(u,v)

// dS_//(”)eD2 X(u,v)) - Nx(u,v) )
//(uv)eD1 X(u,v)) - Nx(u,v) - du - dv

:/LF%

IfY is orientation reversing, then O(u,v)/d(z,y) < 0. So, |0(u,v)/I(z,y)| = —0(u,v)/d(x,y). Thus,

//YF-dS: _//(s,t>eD2 F(X(u, v)) - Ny (1, v) ZEzZ;
—/AFdS

Given a smooth surface, we need to choose an orientation for it. This is akin to orienting a curve, but perhaps surprisingly, it is not always possible,
even for a well-behaved, smooth parametrized surface, as the next example illustrates.

ds dt

ds dt

Definition. A smooth, connected sutrface S is otientable (or two-sided) if it is possible to define a single unit normal vector at each point of
S so that the collection of these normal vectots vaties continuously over S. (In particular, this means that unit normal vectors must point to the
same side of S.) Otherwise, S is called as non-orientable.

Example. Consider the surface parametrized by

(14 tcos(s/2))coss
y = (1+tcos(s/2))sins
z =tsins/2

T

where 0 < s < 27 and —1/2 < ¢t < ¢. This is called 2 Mobius sttip. It may be visualized as follows : The ¢-coordinate curve at § = s is:

x = cos(8p/2) cos(sp)t + cos(sp)
y = cos(s0/2) sin(sp)t + sin(sp)
z = t(sin s/2)



If we isolate ¢ in the above three equations, we find:

T — oS Sp Yy — sin sg z—0

cos(sg/2) cossg  cos(s0/2)sinsg  sin(s0/2)

This is a plane that passes through the point (cos Sg, sin g, 0) and parallel to the vector:

a = (cos(s0/2) cos sg, cos(s0/2) sin S, sin 59/2)

Consider a few such coordinate curves:

| s | Parallel Vector | Passes through the Point | Plane |
50 =0 a=(1,0,0) (1,0,0) x = (1,0,0) + (1,0,0)
so=7/2 | a=(0,1/v/2,1/v2) (0,1,0) x =1(0,1/v/2,1/+/2) +(0,1,0)
S0 =1 a=(0,0,1) (—1,0,0) x = 1(0,0,1) + (—1,0,0)
so =31/2 | a=(0,1/3/2,1/v/2) (0,—1,0) x = 1(0,1/v/2,1/v2) + (0,-1,0)
50 = 27 a=(—1,0,0) (1,0,0) x =t(—1,0,0) + (1,0,0)
z

Figure. t-coordinate curves

Figure. Mobius Strip

We see that the Mobius strip is generated by a moving line segment that begins at s = 0 lying along the positive x-axis, rises to a vertical position
with the center at (—1,0,0) when s = 7 and then falls back to the center with direction reversal at s = 27. The s-coordinate curve at t = 0 is
parametrized by:



T = cos$
Yy =sins

z=0

and so is a circle in the zy-plane. The full Mobius strip is shown in the figure above. You can make a physical model by taking a strip of paper,
giving it a half-twist, and joining the short-ends.

You can understand the gluing process analytically by noting that the map :

1 1
X: [0,27'('] X [—57_5] — R3

defining the Mobius strip as a parametrized surface has the property that X(0,¢) = X (27, —t) but is otherwise one to one. Therefore, every

point (0,%) on the left edge of the domain rectangle [0, 2] x [—3, ] is mapped to the point (1 + ¢, 0, 0) of the Mobius strip, as is the point

(27, —t) on the right edge of the rectangle.

Now, let’s investigate the orientability of the Mobius strip. Firstly,

x = (14tcos(s/2))coss
Zg = —sins + t(cos $/2 - coss)s
1
= —sins+t(—§sins/2coss—coss/?sins)

= —sins — t((1/2) sins/2 cos s + cos s/2 sin s)

¢ = cos(s/2) cos s

y = (1+tcos(s/2))sins

sin s + t cos(s/2) sin s

Ys = cos s + t(—1/2sins/2sin s + cos s/2 cos )
= cos s + t(cos s/2cos s — (1/2)sins/2sin s)

Y+ = cos 8/2sin s

z =tsins/2
zs =t/2coss/2
2z =sins/2

Hence:

a(s,) T
= (cos s + t(cos /2 cos s — (1/2)sins/2sin s))(sins/2) — (/2 cos $/2)(cos $/2sin 8)
= cos §sins/2 + tsins/2coss/2cos s — t/2sin® 5/2sins — t/2sin s cos® 5/2
= cosssins/2 + tsins/2cos s/2coss — t/2sin s(sin® 5/2 + cos? 5/2)
= cos $sins/2 + tsins/2cos $/2cos s — tsins/2cos s/2
=sins/2(cos s — tcos s/2(1 — cos s))
= sin s/2(cos s — 2t cos 5/2(sin” 5/2))
= sins/2(cos s — 2t cos 5/2(1 — cos® 5/2))
= sin 5/2(cos s — 2t(cos 5/2 — cos® 5/2))



= TsZt — TtZs

= (—sins — t((1/2) sins/2 cos s + cos s/2sin s) sin s/2 — (cos(s/2) cos s)(t/2 cos s/2)
—sinssins/2 —t/2sin? s/2cos s — tsins/2cos s/2sins — t/2 cos s cos® 5/2
= —sinssins/2 —t/2coss —t/2sin’ s
= —2sin® 5/2coss/2 —t/2cos s — t/2(1 — cos® s)
1

= —5(4(1 —cos?5/2) coss/2 +tcoss +t —tcos® s)

1
= —5(4(:088/2 — 4 cos® s/2+t(1 4+ coss — cos® 5))

3(5,25) = TslYt — TtYs
= (—sins — t((1/2) sin s/2 cos s + cos s/2sin s))(cos s/2 sin 8) — (cos(s/2) cos s)(cos s + t(cos /2 cos s — (1/2) sins/2sin s))

= —sin% s cos 5/2 fwftcosz 5/2(sin? s 4 cos? s) 7c0s5/2c0525+W

= —cos 5/2(sin? 5 4 cos? 5) — t cos? 5/2
= —cos$/2(1 + tcoss/2)

The standard normal vector is:

N(s,t) =Ts x Ty
oy, 2); O 7). Oy)

T At 90 T as,b)
= sins/2(cos s — 2t(cos /2 — cos® 5/2))i

1
+ 5(4coss/2 —4cos®5/2 +t(1 4 cos s — cos® 8))j
—cos $/2(1 + tcos s/2)k

We have:

N(O.1) = i (1+ 1)k

and

N(2m, —t) = —%j + (14 )k = —=N(0, )

Therefore, a uniquely determined normal vector has not been defined. More vividly, imagine travelling around the Mobius sttip via the s—coor-
dinate path at ¢ = 0, that is along the circular path

x(s) = X(s,0) = (cos s,sins,0), 0<s <27

Follow the standard normal N. At s = 0, it is N(0, 0) = —k. But, by the time we close the loop, it is N(27,0) = k. This apparent reversal of
the normal vector means that the strip is not orientable at all.

A smooth otientable surface together with an explicit choice of otientation for it, is called an oriented sutrface. If S is a smooth otiented
sutface, then we define the vector sutface integral of F along S by finding a smooth parametrization of X of S, such that the unit normal vector
n = N(s,t)/||N(s,t)|| arising from the parameterization agrees with the choice of the orientation normal. We take the surface integral to be



/LF%:/LF%

By the theorem above, if Y is any orientation preserving reparametrization of X, the value of f fY F - dS is the same as f fx F - dS, and so this
notion of a surface integral over the undetlying otiented surface S is well-defined. Even though we may petfectly well calculate f fX F - dS, where
X is the parametrized Mobius strip of the previous example, it does not make sense to consider the surface integral over the underlying Mobius
strip, since there is no way to otient it. Similatly, the interpreation of the vector surface integral as the total flux of F actoss the surface S only
makes sense once an orientation of the surface is chosen. Then, the flux measures the flow rate, positive or negative, depending on the choice of
orientation.

Another reason for de-emphasizing the role of parameterization in surface integrals is that we can often exploit the geometry of the underlying
surface and vector field when making calculatons. If S is a smooth, otientable surface and n a unit normal that gives an otientation of S (so, in
patticular n is understood to vary continuously with the points of S), then for a continuous vector field F defined on S, we have:

[ [Feas=[ [F-nas

If we can determine a continuously varying unit normal vector at each point of S (for example, S is the graph of a function f(z,y) of two
vatiables or the graph of a level set f(z,y, 2) = ¢ of a function of three variables), then thete is a good chance that the surface integtal can be
evaluated readily.

Example. Let F = zi+ yj + 2k be a radial vector field and suppose S is the sphere of radius a with equation 2% + 3% + 22 = a?. Orient S by
outwardpointing unit normal vectors as shown in the figure. We calculate the flux of F actross .S in two ways : (1) by means of parametrization
of S and (2) via geomettic considerations, that is, without resorting to explicit parametrization of the sphete.

Solution.

For approach (1), use the usual parametrization X of the sphere:

T =acosssint
y=asinssint

z =acost

where 0 < s <2mand 0 <t <.

The standard normal vector for this parametrization is given by:

T, = (—asinssint, acos ssint,0)
T, = (acosscost,asinscost, —asint)
N(s,t) = T, x Ty

i j k
= | —asinssint acosssint 0
acosscost asinscost —asint

2

= —a? cos s sin® ti — a” sin s sin” tj — a’sint cos t(sin2 5+ cos? s)k

= —a®sint(cos s sin ti + sin s sin tj + cos tk)

If we normalize N, we find that:

N(s, t)
n=_———>=:"-
[IN(s, )|
! ( int,sinssint t)
= - cos ssint, sin ssint, cos
sin? t(cos? s + sin? s) + cos? t
1

= —.z—(cos ssint, sin ssint, cost)
sin“t -1+ cos?t

= —(cos ssint, sin ssint, cost)



Thus, n is inward-pointing at every point on the sphere. Therefore, we must make a sign-change when we evaluate the vector surface integral, if
we use the parameterization just given. Hence, we have:

[ Jris==] |

:_/0/0 F(X(s,1)) - N(s, t)dsdt

'TJ
Q.
w

Il
o

(acosssint,asinssint,acost) - sint(cos ssint, sin ssint, cost)dsdt

sint(cos® ssin? t + sin? s sin t + cos® t)dsdt

I
S)

sint(sin® t + cos® t)dsdt

sintdsdt

s
J
J
T 27
/ sint(sin? t(cos? s + sin® s) + cos® t)dsdt
0
s
J
s
)
s
0

= 27a® sintdt
= 21a®[— cos ]
= 4na®

Now, reconsider the calculation along the lines of the approach (2). Since S is defined as a level set of the function f(x,y, z) = 2% + y* + 22,
normal vectors can be obtained from the gradient :

Vi(x,y,z) = 2xi+ 2yj + 22k

If we normalize the gradient, then we have the normal unit vectors:

(22, 2y,22)
(2,9, 2)
_ (z,9,2)

a

n—=

because 22 + y% + 22 = a? at all points on S. Note, that n is always outward pointing.

Therefore,

//SF-dS //F-ndS
//xy, (x,y,2)dS
E//S(xQ—&-yz—i—zQ)dS
é//SGQdS

=af [ as

= a(4na?)

= 4ma’



Example. We evaluate [ |, S(;U?’i + %)) - dS where S is the closed cylinder bounded laterally by #2 + 3? = 4 and on bottom and top by the
planes z = 0 and 2z = 5 oriented by outward normal vectors.

Solution.

Figure. Piecewise smooth cylindrical surface S.

Evidently, S is the union of thtee smooth oriented pieces: (1) the bottom surface S7, which is a pottion of the plane z = 0, oriented by n; = —k
(2) the top sutface So, which is a portion of the plane z = 5, oriented by ny = k and the lateral cylindrical surface S3 given by the equation
22 + y? = 4 and oriented by normalizing the gradient of 2% + 32 along S3, namely:

(2z, 2y)
(2z,2y)
_ (@)
2

Now, we calculate:

//s<x3i+?/3i)'ds://sl(“fgﬁy?’i%(k)ds

+//gz(x3i+y3i)-(—k)d5
+;//S3(a:3i+y3i)~(xi+yi)ds

:0+0+1// (z* +y*)dS
2/ Js

To finish the evaluation, we parametrize S as :

T =2coss
Yy =2sins
z=1

where 0 < s < 2w and 0 < ¢t < 5. Then,



//(x3i+y3j)~ds = %// (z* +y*)dS
S S3
1 5 27
=3 / / 16(cos? s + sin? 5)2dsdt
0 0

5 pr2m
= / / 16((cos® s + sin? 5)? — 2sin? 5 cos? s)dsdt
0 0

= 16/05 /0%(1— (1/2) sin® 2s)dsdt

5 27
1 — cos4
:16// (1— —— %% gt
o Jo 4

Exercise Problems.

1. Let X(s,t) = (8,8 + ¢,t),0 < s <1land 0 <t < 2. Find:

//X(a;2 +y? + 2%)dS

Solution.

We have:

TS:(I,I,O)
Tt:(0a171)
N(s,t) = T, x T
i ok
=1 1 0
0 1 1
=i—j+k
IN(s, )| = V3

Thus:



//g<x2+y2+z2)ds:/01/02(52+(8+t)2+t2)\/§dtd5

1 2
= / / (52 4 s + 2st + t* + t*)V/3dtds
0 0
1 2
= 2\/5/ / (s® + st + t*)dtds
0 0
1
= 2\/3/ [s%t + st? /2 + t3/3]1=5ds
0

1
- 2\/5/ (25% + 25 + (8/3))ds
0
— 2V/3[25%/3 4+ 5* + (8/3)s)]}
= 2v3[2/3 41+ 8/3]
=923 x ?

26
V3

2. Let D ={(s,t)[s> +1t2 <1, >0,t >0} and let X : D — R3 be defined by X(s,t) = (s +t,5 — t, st).
(2) Determine [ [ fdS, where f(z,y,2) = 4.

Solution.

We have:

INCs, )| = /(s +8)2 + (s — )2 +4
=252 +2t2+4
Thus,

//deS://Df(X(Svt))HN(S,t)IIdsdt

S // 44/ 252 + 2t2 + 4dsdt
(s,t)eD

Changing to polat cootdinates, we have s = rcos 8, y = rsinf and gg:;g = 7. So:




1 w/2
//de=4/ / \/2T2c0529+2r2sin29+4~rd9d7"
X o Jo
1 pm/2
:4/ / \V2r2 4+ 4 - rdldr
o Jo
1 w/2
:4/ \/2r2+4-r</ d9)d7‘
0 0
1
:4/ \ 212 +4-r[9]3/2dr
0
1
:271-/ \V2r2 +4-rdr
0

Let 2r2 + 4 = u. Then, 4rdr = du. The limits of integration are u = 4 to u = 6. We have:

//de:QTr Gﬁ-dﬂ

X 4 4
T 6
=— [ Vudu
2 )4
7 [ ud/? 0
2 [(3/2)]4
= Z(6V6 -4V
= g(G\/é —8)
(b) Find the value of [ [, F - dS where F = zi + yj + zk.
Solution.
We have:

//XF'dSZ//DF(X(S’t))'N<5,t)d$dt

://D(s+t,s—t,st)~(s+t,7(sft),—2)dsdt
://D[(SH)Q_(s_t)2—25t}dsdt

= / / 2stdsdt
D

Changing to polar coordinates, let s = rcos§,t = rsin 6, 85:’8 = 7. So, we get:

1 pm/2
/ / F-dS = / / 2r? sin 0 cos OrdOdr
X 0 Jo
1 /2
:/ 7“3/ sin 20d0dr
0 0
1 w/2
20
:/ re {—COS } dr
0 2 0




3. Find the flux of F = zi 4 yj + zk across the surface S consisting of the triangular region of the plane 22 — 2y + z = 2 that is cut out by the
coordinate planes. Use an upward pointing normal to otient S.

Solution.

The plane 22 — 2y + z = 2 has z-intercept 1, y-intercept —1 and z-intercept 2. Let f(x,y, 2) = 2x — 2y + z. Then, the surface S is the level
surface of f. So,

Vf(l', Y, Z) = (Qa _27 1)

1
= 2(2,-2,1
n=32-21)

The flux integral is:

//X(F.n)dsz%//S(x7y’z).(27_2’1)ds
:%//S(2$—2y+z)d5

But, 22 — 2y + 2z = 2 at all points on S. So,

[ [ mis= [ [ as
2

= 3 X Surface area of S

The triangle has base v/2 and height % So, the area of the surface S is (1/2) x v/2 x (3/v/2) = 3/2. Hence, Ik fX(F -n)dS = 1.

4. This problem concerns two surfaces given parametrically as:

X(s,t) = (scost,ssint,3s?), 0<s<2, 0<t<2r

and

Y(s,t) = (2scost,2ssint, 125%), 0<s<1, 0<t<d4r

(a) Show that the images of X and Y are the same. (Hint: Give the equations in x, y, 2 for the surfaces in R® parametrized by X and Y)
Solution.

Consider the helicoid:

322 + 3y* = 22

Consider the surface Sy parametrized by X(s, ). Then, 3(z% + y?) = 352(cos? t + sin® t) = 352 = 22. Hence, X(s, 1) is a parametrization of
the above helicoid.

Consider the surface So parametrized by Y(s,t). Then, 3(2? +y?) = 3(45%)(cos? t +sin?t) = 12. Hence, Y(s, t) is another parameterization
of the helicoid.

(b) Calculate [ fx(yl —zj+ 2%k) -dSand [ fY(yi — xj+ 2%k) - dS.
Solution.

We have:



Ts = (cost,sint, 6s)
T, = (—ssint, scost,0)
i j k
Nx(s,t) =| cost sint  6s
—ssint  scost O
= i(—65% cost) — j(65%sint) + k(s cos® t + ssin® 1)
i(—65% cost) —j(6s%sint) + sk

Now,

//XF.dS://DF(X(s,t)).N(Syt)dsdt

= // (ssint, —scost,9s*) - (—6s% cost, —6s sint, s)dsdt
D

= / / (=653 sint cost + 65> sint cost + 9s°)dsdt
D

2 27
:9/ 55/ dtds
0 0
2
:9/ s°[t)2™ds
0
2
= 187r/ $2ds
0
6 2
— 187 [5}
6 1o

=37 x 64
= 1927

Letu = 2s,v = t. Then, (u,v) = H(s,t) = (2s,t). Then,

Y(s,t) = (2scost,2ssint, 1282)

= (ucos v, usinv, 3u?)

Hence:

d(u,v)
(s, t)
= 2Nx(u, v)

Ny(s,t) = Nx (u, )

= 2(—6u? cos v, —6u* sin v, 1)

= 2(—6(25)% cost, —6(2s)?sint, 2s)
= 2(—245% cost, —24s? sint, 25)

= (—48s% cost, —48s sint, 4s)

Now, 0 <u <2and 0 < v < 4.



//F~dS = // F(Y(s,t)) - Ny(s, t)dsdt
Y (s,t)€[0,1] % [0,47]

= / / (2ssint, —2s cost, 144s%) - (—48s? cost, —48s% sint, 4s)dsdt
(s,t)€[0,1]x[0,47]

/ / (—96s> sint cost + 965> sint cos t + 5765°)dsdt
(s,t)€[0,1]x [0,47]

4
=576 / / dtds

= 23047 / $2ds
0

56 !
= 23047 []
6 0

= 384m

5. Find [ 2?dS where S is the surface of a cube [—2,2] x [-2,2] x [—2,2].
Solution.

Let the surfaces of the cube be S (top face), Sz (bottom face), Si(right face), Sq(left face), S5 (front face), Sg(rear face). We have:

Xi(s,t) = (s,t,2)
Xo(s,t) = (s,t,—2)
X3(s,t) = (s,2,1)
Xy(s,t) = (s,—2,1)
Xs5(s,t) = (2,8,1)
Xs(s,t) = (—2,5,1)
The normal vectors are given by:
T! = (1,0,0)
T, = (0,1,0)
N =Ny=ixj=k
N3 =Ny = —j
N5 = N@ =1

Hence, ||N;|| = 1.

Hence,



//:chS:/ fds+/ de+/ fds
S X1 Xo X3
+/ de+/ de+/ fds
X4 X5 Xs
2 2 2 2
=4 / / s2dsdt + 2 / / Adsdt
—2J-2 —2J-2
2 s3 2 2
4/ [} dt+8/ [s]2,dt
3 2
/ dt + 32 / dt

1
:60 4
3

640
3

6. Find [ [, g (22 + y?)dS where S is the lateral surface of the cylinder of radius a and height h whose axis is the z-axis.

Solution.

Let X(s,t) = (acost,asint,s) where 0 < s < hand 0 < ¢t < 2. Then,

T, = (0707 1)
T; = (—asint,acost,0)

The standard normal vector N is:

N = TS X Tt
i j k
= 0 0 1
—asint acost 0

=i(—acost) —j(asint) + k(0)

So, |IN(s,t)]| = \/CL2 cos2t + a2sin? t = a. Hence:

h  r27
// fdS = / / (a® cos® t + a”sin® t)a dtds
X
27
= / / ds-dt
3(2rh)

7. Let S be a sphete of radius a.
(@) Find [ [¢(2* +y* 4 2%)dS.
Solution.

The equation of the surface S in cartesian coordinates is 12 + y? + 22 = a?. Letw = f(x,y,2) = 2% + y? + 2% Then, S is the level surface
of w. So, the normal vector to S is:



N = Vf(z,y,2)
= (2z,2y,2z)

[IN|| = v/4ax? + 492 + 422
=92 $2+y2+22
= 2a

The surface integral :

/L($2+y2+z2)dS=/La2~dS

= a? x Surface area of the sphere
= a*(4na?)

= 4rat

(b) Use symmetry and part(a) to easily find f f s y2dS.
Solution.

By symmetry [ [(2?dS = [ [(y?dS = [ [4z*dS. Hence:

1
//deS:f//(xQ—&—yZ—i-zQ)dS
s 3J Js
44

= —-TTa

3

8. Let S denote the sphere 72 + 2 + 22 = a?.

(2) Use symmetry considerations to evaluate | | ¢ T - dS without resorting to parametrizing the sphere.
Solution.

The sphere is symmetric about the x-axis. The sphere has a positive charge density on the surface St = {(z,y,2) : > 0} and a negative
charge density on the surface S_ = {(x,y,2) : £ < 0}. So, the sum of all tiny positive charges over S cancels out the negative charges over

S_. Hence, ffsde = ff5+ de-I—ffsi zdS =+0Q —-Q=0.
(b) Let F = i + j + k. Use symmetry to determine | [ ¢ F - dS without parametrizing the sphere.
Solution.

We know that, the flux of F across S is given by the flux-integral:

[ [Feas= [ [(e-mas

Now, n = (2z,2y,22)/2a = 1/a(z,y,2). So, F-n = (1/a)(1,1,1) - (z,y,2) = 1/a(z + y + 2). Since, [ [qzdS = [ [(ydS =
J g zdS =0, it follows that 1 /a [ [(z +y + 2)dS = 0. So, [ [¢F-dS = 0.

9. Let S denote the surface of the cylinder x2 + y2 =4, —2 < z < 2 and consider the surface integral

//S(z—aj2 —y%)dS

(a) Use an approptiate parametrization of S to calculate the value of the integtal.
Solution.

Let the cylindrical surface S be parametrized as:



T =2coss
Yy =2sins

z=1

where 0 < s < 27mand —2 <t < 2.

The normal vector to S is given by:

T, = (—2sins,2cos s,0)

Tt = (anal)
N :Ts X Tt
i j k
=| —2sins 2coss 0
0 0 1

=1i(2cos s) +j(2sins)

The magnitude of N(s,t) is [|[N(s,2)|| = V4 cos? s + 4sin® s = 2.

Hence:

[ [sas=] : /ti:_zf(X(Sat))HN(S,t)IIdtds
- / : /t i=_22(f—4)2dtds

21
= 2/ [t?/2 — 4t]2 ods
0

2
- 2/0 (=6 — (10))ds

=-32 ds
0

= —64m

(b) Now, use geometry and symmetry to evaluate the integral without resorting to a parameterization of the surface.
Solution.

The cylinder is symmetric about the plane z = 0. The sum total of charges due to the positive charge density on Sy = {(z,y,2) : z >
0, (z,y) € R%} cancels out the sum charge due to the negative charge density on S_ = {(z,y, 2) : 2 < 0, (z,y) € R*}. Hence, [ fS zdS = 0.
Now, [ [s(z* +y?)dS = [ [44dS = 4 x Lateral surface area of the cylinder since 2% + y* = 4 at all points on S. So, [ [¢(z* +y?)dS =
4% 2m x (2) x 4 = 64m. So, [ [¢(z — (2® +y?)dS = —64n.

In exetcises 10-18, let S denote the closed cylinder with bottom given by 2 = 0, top given by z = 4 and the lateral surface given by the equation
22 + 9% = 9. Orient S with outward normals. Determine the indicated scalar and vector surface integrals.

The closed cylinder S can be specified as the three piecewise smooth surfaces Sy: the lateral surface, Sa: the top and Ss: the bottom. S can be
parameterized as:

T = 3cost
y = 3sint
zZ=35

where 0 < s <4 and 0 < ¢ < 27. The top and bottom faces can be described as:



and

Normal vector to Sy:

T = Scost
Yy = ssint
z=4

T = Scost
Yy = ssint

z =

T, = (0,0,1)
T; = (—3sint, 3 cost,0)
N = Ts X Tt
i ik
= 0 0 1
—3sint 3cost 0
=i(—3cost) —j(3sint)

The outward pointing normal vector is N = (3 cost)i + (3sint)j. ||[N(s,t)|| = 3.

Normal vector to So:

The normal vector S is N(s,t) = —sk.

10. [ [ zdS

Solution.

We have:

Further, [ sz zdS = 0. Now,

T; = (cost,sint,0)
T; = (—ssint, scost,0)
N=T,xT;
P
cost sint
—ssint  Scost
= k(s cos® t + s sin? t)

N(s,t) = sk

// zdS:4/ s
S2 S2

=4 x 7(3)?
= 367

k
0
0



//S de:// F(X(s,)[IN(s,t)||dsdt
/to /.; 3)dsdt

t=27
=3 / [s%/2]5dt
t

=0
2m
=24 dt
0

= 487

Thus, [ [g2dS = [ [q 2dS+ [ [g 2dS+ [ [g 2dS = 84x.
11. [ [sydS.

Solution.

We have:

//de:// de+// de’—l—// ydS
S Sl SQ SS
3 27
/ / (3sint)( dtds+/ / (ssint)( dtder/ / (ssint)(s)dtds
s=0Jt s=0Jt s=0Jt

=0
:9/ [— cost]; ”ds—|—2/ §%[— cost]2™ds

s=0 s=0
=0

This makes sense because the charge density is symmetric about the y-axis.

12. [ [4zy=dS.

Solution.
We have:
// zyzdS = // xyzdS + // zyzdS + // xyzdS
SQ SS
/ / (3cost)(3sint)(s)3dtds
0
27
(scost)(ssint)(s)dtds
s=0 Jt=0
+0
27 4 27
/ ssm2tdtds+2/ / $2 sin 2tdtds
t=0 t
27/ [ cos?t:| ds—|—2/ 83{ cos2t]
0 s=0 2 0
13. ffs 22dS
Solution.

We have:



//ﬁdsz// x2dS+// x2d5+// z2dS
S Sl Sz SS
/ / 9 cos? t(3 dtds+2/ / 52 cos t )dtds
s=0Jt s=0 J t=
4

cos? tdtds + 2/ / s cos? tdtds
-0 t

[
4 2m
= —/ / (1 + cos 2t)dtds+/ / (1 + cos 2t)dtds
2 s= t=0 0Jt
7 4
== / / dtds—i—— / / cos 2tdtds + / / s3dtds + / / 53 cos 2tdtds
2 s t s=0Jt t s=0 Jt=
! 27 53 $3Tsi 27
=2Tm ds + — [sm 2t]0 ds+2m ds + [sin 2t]5" ds
s=0 4 s=0 s=0 2 s=0

= 1087 + 0 + 27[s* /4] 4+ 0

=27

0
0

81w
=1 il
087 + 5
297w
2
14. [ [y(zi+yj) - dS
Solution.
We have:
4 27
/ / (xi + yj) / (3cost,3sint,0) - (3cost,3sint, 0)dtds
S s=0 t:O
3 2
+/ / scost,ssint,0) - (0,0, s)dtds
s=0Jt=0
3
/ / (scost,ssint,0) - (0,0, —s)dtds
s=0 Jt=0
27
= 9/ / dtds+0+0
s=0 Jt=0
4
= 1871'/ ds
0
=T2r
15. [ [4 2k - dS
Solution.
We have:



16. [ [gyPi-dS

Solution.

We have:

4 27
// yli-dS = / (27 sin® ¢, 0, 0) - (3cost,3sint, 0)dtds
S s t
3 2
/ (s3sin®¢,0,0) - (0,0, s)dtds
t

g 27
+ / (s3sin®¢,0,0) - (0,0, —s)dtds

17. [ [o(—yi+ j) - dS
Solution.

We have:

4 2m
//(—yi + xj) - dS = / / (—3sint,3cost,0) - (3cost,3sint,0)dtds
S s t

3 27
—l—/ / (—ssint, scost,0) - (0,0, s)dtds
s=0Jt=0
/ (—ssint, scost,0) - (0,0, —s)dtds
¢

4 2
- / / (—9sintcost + 9sint cost)dtds
s t

18. [ [ga?i-dS
Solution.

We have:

4 27
//in-dS:/ / (9cos®t,0,0) - (3cost,3sint,0)dtds
S s t

/ (5% cos®t,0,0) - (0,0, s)dtds
s= t
/ / 52 cos?t,0,0) - (0,0, —s)dtds
s=0Jt

4
= 27/ / cos® tdtds

s=0Jt=0

{Using cos 3t = 4 cos® —3 cost}

27 4 27
= / / (cos 3t + 3 cost)dtds
4 s=0 Jt=0

27 [ o
=7 _0[sm3t/3—|—3smt]0 ds

=0



In exercise problems 19-22 find the flux of the vector field F across the upper hemisphere 22 + y* + 22 = a?, 2 > 0. Orient the hemisphere
with an upward pointing normal.

We can parametrize the upper hemishphere of the sphere as:

T = asinscost
y=asinssint

Z = acoss

where 0 < 27 <t,0 < 71/2 < s. Thus:

T, = (acos scost,acosssint, —asins)

T; = (—asinssint, asin scost,0)

N = Ts X Tt
i j k
= | acosscost acosssint —asins
—asinssint asinscost 0

= i(a®sin® s cost) — j(—a?sin® ssint) + k(a® sin s cos s cos® t + a cos s sin s sin® t)

= a®sin s(isin s cos t + jsin ssint 4 k cos s)

where 0 < s < 7/2and 0 <t < 27.
19. F = yj
Solution.

We have:

//SF.ds://(F.n)ds
/: W/Q/to N)dtds

s=m/2 pt=2m
/ / (0,asinssint,0) - a® sin s(sin s cos ¢, sin s sin t, cos s)dtds
s= t

s=m/2 pt=2m
= / a® sin® s sin? tdtds
S

0 t=0
1 s=m/2 pt=2m
=3 / / (sin3s + 3sin s)(1 — cos 2t)dtds
s t
a3 s=m/2
=3 » (3sins — sin 3s)[t — (sin 2t/2)]2"ds
3 s=m/2
= (3sins — sin3s)ds
4 s=0
3
= WZ [—3coss + (cos 38/3)]77/2
ma3 1
= T(—S(cos /2 — cos0) + g(cos 3m/2 — cos0))
3
Ta
= T (3)(-1) + (1/3)(-1)
_ma 8
403
2ma?




Stokes’ and Gauss’s Theorem

Stokes theorem equates the surface integral of the curl of a vector field over a piecewise smooth surface with the line integral of the vector field
along the boundary curve of the surface. Since both vector line and surface integrals are examples of oriented integrals (that is they depend on
the particular orientations chosen), we must comment on the way in which orientations need to be taken.

Definition. Let S be a bounded piecewise smooth, oriented surface in R3. Let C” be any simple, closed curve lying in S. Consider the unit
normal vector n that indicates the otientation of S at any point inside C”. Use nto orient C by a right-hand rule, so that if the thumb of your
right hand points along n, then the fingers curl in the direction of the orientation of C’. We say that C’ with the orientation just described is
oriented consistently with .S or that orientation is the one induced from that of S. Now, suppose the boundary 9.5 of .S consists of finitely
many piecewise C1 simple, closed curves. Then, we say that 35S is oriented consistently (or that 9 has its orientation induced from that of .S)
if each of its simple, closed pieces is oriented consistently with S.

Theorem. (Stokes’s Theorem). Let S be a bounded, piecewise smooth oriented surface in R®. Suppose that OS consists of finitely many C* simple, closed curves each
of which is oriented consistently with S. Let ¥ be a vector field of class C* whose domain includes S. Then:

//VxF~dS:§£ F-ds
s as

The Stoke’s theorem says, that the flux of the curl vectors through a surface is equal to the circulation(flow) around its perimeter. The sum total
of infinitesimal rotation (switlings) of a vector field over S is equal to the circulation(flow) along the boundaty of S.

Example. Let S be the paraboloid z = 9 — 22 — 42 defined over the disk in the zy-plane of radius 3 (that is S is defined for z > 0 only). Then



